2023-2024 Spring Semester Railway Engineering 1st Problem Session-Group 5

Question-1: Stations A and B are placed at both edges of a railway section which is designed according to the principle of constant resistance. The profile of the railway section is provided above. On this section a tunnel and a curve coincides.

By using the given data answer the following questions:
a) Find km value of tangent point F_{1}.
$D_{r}=\frac{2 * \pi^{*} R^{*} \Delta}{360}=\frac{2 * \pi * 1000 * 66}{360}=1151,92 m$
$\mathrm{F}_{\mathrm{KM}}=\Phi_{\mathrm{KM}}+\mathrm{D}_{\mathrm{r}}$
$\mathrm{H}_{\mathrm{B}}=180 \mathrm{~m}$.
$\mathrm{F}_{\mathrm{KM}}=(3+000)+(1151.92)=\left(4+151^{92}\right)$

b) Calculate the applied gradient $\left(S_{u}\right)$ on this section.

b) Calculate the applied gradient $\left(\mathrm{S}_{\mathrm{u}}\right)$ on this section.

$$
w_{r}=\frac{650}{R-55}=\frac{650}{1000-55}=0,69 \mathrm{~N} / \mathrm{kN}
$$

$$
\Delta h_{r}=w_{r} * D_{r}=0,69 * \frac{1151,92}{1000}=0,79 m
$$

$$
\mathrm{H}_{\mathrm{B}}=180 \mathrm{~m} .
$$

b) Calculate the applied gradient $\left(\mathrm{S}_{\mathrm{u}}\right)$ on this section.

$$
w_{t}=1 N / k N
$$

$$
\Delta h_{t}=w_{t} * L_{t}=1 * \frac{4500-3500}{1000}=1 m
$$

c) Find elevations of points $\mathrm{K}_{1}, \mathrm{~F}_{1}$.
$\mathrm{H}_{\mathrm{K} 1}=\mathrm{H}_{\mathrm{A} 2}+\mathrm{s}_{\mathrm{u}} * \mathrm{~L}_{\mathrm{A} 2-\Phi 1}+\left(\mathrm{s}_{\mathrm{u}}-\mathrm{W}_{\mathrm{r}}\right) * \mathrm{~L}_{\Phi 1-\mathrm{K} 1}=120.5+(7.66 / 1000) * 2500+(7.66-0.69) / 1000 * 500=143.14$

$$
\mathrm{H}_{\mathrm{F} 1}=\mathrm{H}_{\mathrm{K} 1}+\left(\mathrm{s}_{\mathrm{u}}-\mathrm{w}_{\mathrm{r}}-\mathrm{w}_{\mathrm{t}}\right) * \mathrm{~L}_{\mathrm{K} 1-\mathrm{F} 1}=143.14+(7.66-0.69-1.00) / 1000 *(4151.92-3500)=147.03
$$

d) Is there a negative (dangerous) grade for a train which is running downwards from station B to station A with a constant speed $120 \mathrm{~km} / \mathrm{h}$. Why?
Dangerous slope occurs when, $s>w$. We have checked the section with highest gradient and lowest resistances where only w_{0} exists.

$$
w_{0}=1,7+\frac{V^{2}}{4000}=1,7+\frac{120^{2}}{4000}=5,3 \mathrm{~N} / \mathrm{kN} \quad \mathrm{~s}_{\mathrm{u}}=7.66>\mathrm{w}=\mathrm{w}_{0}=5.3
$$

So, there is dangerous slope at this line.
$\mathrm{H}_{\mathrm{B}}=180 \mathrm{~m}$.
If we are asked to find which sections have dangerous slope, we would check three sections, with curve with tunnel and with both of them.

KM

Layout Plan

Question-2: On a railway network freight trains are pulled by the locomotives which have the features provided in the table below. Also data about the whole train provided in the same table. Trains (wagons) are pulled by a single locomotive. The given grades are upwards. According to the given data, calculate the values for the parameters below. Consider the criteria below during calculations.

Note 1: The principle of constant resistance will not be implied on the network. Do not make any changes on the given grades related to the principle of constant resistance.

Note 2: Each part of the problem is independent from each other; therefore, do not transfer data between the parts of the problem.

By using the given data answer the following questions:
$2+2+2=6$ driving axles

Locomotive Axle Configuration	$\mathrm{Bo}^{\prime} \mathrm{Bo}^{\prime} \mathrm{Bo}^{\prime}$	
Weight of Locomotive	135	tons
w_{o}	$2.5+\mathrm{V}^{2} / 3000$	$\mathrm{~N} / \mathrm{kN}$
$1 / \rho$	105	
Acc. of Gravity (g)	10	$\mathrm{~m} / \mathrm{s}^{2}$
μ_{y} (rail-wheel)	$160+7500 /(\mathrm{V}+44)$	N / kN
Locomotive Power	4500	kW
Curve Resistance	$650 /(\mathrm{R}-45)$	N / kN

a) $G_{w}=1500$ tons is given. Calculate the maximum upgrade value that this train can climb at $90 \mathrm{~km} / \mathrm{h}$ constant speed on a straight (no curve) and open air (no tunnel) section.

Stages (regimes)	Forces acting upon the train	Acceleration or deceleration rate	Equation of motion in the stage
regime (constant speed)	$z-w$	$\frac{d v}{d t}=0$	$z=w$

$$
\begin{aligned}
& z-w=\frac{1}{\rho} * \frac{d V}{d t} \\
& \mathrm{z}=\mathrm{w} \rightarrow \mathrm{z}=\mathrm{w}_{\mathrm{o}}+\mathrm{s} \rightarrow \mathrm{~s}=\mathrm{z}-\mathrm{w}_{\mathrm{o}}
\end{aligned}
$$

$$
w_{o}=2,5+\frac{V^{2}}{3000}=2,5+\frac{90^{2}}{3000}=5,2 \mathrm{~N} / \mathrm{kN}
$$

$$
Z=\frac{3600 * N}{V}=\frac{3600 * 4500}{90}=180000 \mathrm{~N}
$$

$$
z=\frac{Z}{10 *\left(G_{L}+G_{W}\right)}=\frac{180000}{10 *(135+1500)}=11,01 \mathrm{~N} / \mathrm{kN}
$$

$$
\mathrm{s}=\mathrm{z}-\mathrm{w}_{\mathrm{o}}=11,01-5,2=\% 5,81
$$

b) What is the total weight of wagons for which this train can run at $90 \mathrm{~km} / \mathrm{h}$ constant speed on a 7.5% upgraded, straight (tangent) and open air (no tunnel) alignment section?

$$
z-w=\frac{1}{\rho} * \frac{d V}{d t}
$$

Since the speed is constant $\frac{d V}{d t}=0$ and $\mathrm{z}=\mathrm{w}$

$$
\mathrm{z}=\mathrm{w} \Rightarrow \mathrm{z}=\mathrm{w}_{\mathrm{o}}+\mathrm{s} \Rightarrow \mathrm{~s}=\mathrm{z}-\mathrm{w}_{\mathrm{o}}
$$

$$
w_{o}=2,5+\frac{V^{2}}{3000}=2,5+\frac{90^{2}}{3000}=5,2 \mathrm{~N} / \mathrm{kN}
$$

$$
Z=\frac{3600 * N}{V}=\frac{3600 * 4500}{90}=180000 N
$$

$$
z=\frac{Z}{10 *\left(G_{L}+G_{W}\right)}=\frac{180000}{10 *\left(135+G_{w}\right)}
$$

$$
\mathrm{s}=7,5=\mathrm{z}-\mathrm{w}_{\mathrm{o}}=\frac{180000}{10 *\left(135+G_{w}\right)}-5,2 \Rightarrow \mathrm{G}_{w}=1282,32 \text { ton }
$$

c) What is the horizontal curve radius, which allows the train to run at maximum constant speed of $75 \mathrm{~km} / \mathrm{h}$ when $\mathrm{s}_{\mathrm{r}}=2.83 \%$ and $\mathrm{G}_{\mathrm{w}}=2500$ tons?
$z-w=\frac{1}{\rho} * \frac{d V}{d t}$
Since the speed is constant $\frac{d V}{d t}=0$ and $\mathrm{z}=\mathrm{w}$
$Z=\frac{3600 * N}{V}=\frac{3600 * 4500}{75}=216000 N$
$z=\frac{Z}{10 *\left(G_{L}+G_{W}\right)}=\frac{216000}{10 *(135+2500)}=8,2 \mathrm{~N} / \mathrm{KN}$
$z=w=w_{o}+s+w_{r} \Rightarrow w_{r}=z-w_{0}-s$
$w_{0}=2,5+\frac{V^{2}}{3000}=2,5+\frac{75^{2}}{3000}=4,38 \mathrm{~N} / \mathrm{kN}$
$w_{r}=z-w_{0}-s=8,2-4,38-2,83=0,99 N / k N$
$0,99=\frac{650}{R-45} \Rightarrow R=700 \mathrm{~m}$
d) Train with $\mathrm{G}_{\mathrm{w}}=2000$ tons is accelerating on a horizontal track ($\mathrm{s}=0 \%$), straight (no curve) and open air (no tunnel) alignment section. What is the Acceleration ratio when speed is exactly equal to critical speed (transition speed), $\mathrm{V}=\mathrm{V}_{\mathrm{g}}$?
For transition speed $Z_{a}=Z_{m}$

$$
\begin{aligned}
& 10 * \mu * G_{A}=\frac{3600 * N}{V_{g}} \quad \begin{array}{c}
\text { (regimes) } \\
\begin{array}{c}
\text { acceleration } \\
\text { (speed up) }
\end{array} \\
10 *\left(160+\frac{7500}{V_{g}+44}\right) * 135=\frac{3600 * 4500}{V_{g}} \Rightarrow V_{g}=50,05 \mathrm{~km} / \mathrm{sa} \\
z-w=\frac{1}{\rho} * \frac{d V}{d t} \\
Z=\frac{3600 * 4500}{50,05}=323676,32 \mathrm{~N} \\
z=\frac{Z}{10 *\left(G_{L}+G_{W}\right)}=\frac{323676,32}{10 *(135+2000)}=15,16 \mathrm{~N} / \mathrm{KN} \\
w=w_{0}=2,5+\frac{50,05^{2}}{3000}=3,34 \mathrm{~N} / \mathrm{kN} \\
z-w=15,16-3,34=11,82 \mathrm{~N} / \mathrm{kN}
\end{array} \\
&
\end{aligned}
$$

Forces acting upon the train

Acceleration or Equation of deceleration rate motion in the stage $\frac{d v}{d t}>0 \quad z-w=\frac{1}{\rho} \frac{d v}{d t}$
$11,82=\frac{1}{\rho} * \frac{d V}{d t}=105 * \frac{d V}{d t} \Rightarrow \frac{d V}{d t}=0,11 \mathrm{~m} / \mathrm{s}^{2}$
e) What is the maximum wagon load (weight), which allows the train to start moving with $0.2 \mathrm{~m} / \mathrm{s}^{2}$ acceleration ratio on a 5% upgraded, straight and open air alignment conditions?
$z-w=\frac{1}{\rho} * \frac{d V}{d t}$
$\underline{1} * \frac{d V}{d t}=w_{D} \quad$ When a train starts moving, an acceleration resistance $\left(\mathbf{w}_{\mathrm{d}}\right)$ acts on the train
$\rho d t$
depending on the acceleration rate applied.
$z-w=w_{D}$
$w=w_{0}+s \Rightarrow z=w_{0}+s+w_{D}$
$w_{D}=\frac{1}{\rho} * \frac{d V}{d t}=105 * 0,2=21 \mathrm{~N} / \mathrm{kN}$
$w_{0}=2,5+\frac{V^{2}}{3000}=2,5+\frac{0^{2}}{3000}=2,5 \mathrm{~N} / \mathrm{kN}$
$z=w_{0}+s+w_{D} \Rightarrow \frac{10 * \mu^{*} G_{A}}{10 *\left(G_{L}+G_{W}\right)}=w_{0}+s+w_{D}$
$\frac{10 *\left(160+\frac{7500}{0+44}\right) * 135}{10 *\left(135+G_{W}\right)}=2,5+5+21 \Rightarrow G_{W}=1430$ ton
f) When $G_{w}=2000$ tons, what is the limit gradient (smallest value) on which the train cannot move with any value of acceleration on a straight (no curve) and open air (no tunnel) section.

$$
z-w=\frac{1}{\rho} * \frac{d V}{d t}
$$

no movement condition $=\frac{d V}{d t}=0$

$$
\begin{aligned}
& z=w \\
& \frac{10 * \mu * G_{A}}{10 *\left(G_{L}+G_{W}\right)}=w_{0}+s \Rightarrow s=\frac{10 * \mu * G_{A}}{10 *\left(G_{L}+G_{W}\right)}-w_{o}=\frac{\mu^{*} G_{A}}{\left(G_{L}+G_{W}\right)}-w_{0} \\
& \frac{\mu * G_{A}}{G_{L}+G_{W}}=\frac{135 *\left(160+\frac{7500}{0+44)}\right.}{135+2000}=20,9 N / k N \\
& w_{0}=2,5+\frac{V^{2}}{3000}=2,5+\frac{0^{2}}{3000} 2,5 \mathrm{~N} / \mathrm{kN} \\
& \mathrm{~s}=20,9-2,5=\% 18,4
\end{aligned}
$$

Question-3: Data about a freight train is given below. By using the given data answer the following questions:

Number of Locomotives	$\mathbf{2}$	unit
Loco. power	4000	kW
Loco. driving axle weight	20	tons/axle
Loco. axle configuration	$\mathrm{Bo}^{\prime} \mathrm{Bo}^{\prime} \mathrm{Bo}^{\prime}$	6 driving axles
Loaded weight of wagons	60	tons
Number of wagons	40	unit
Coeff. of train mass increa. (1 + $\xi)$	1,05	
Acc. of Gravity (g)	10	$\mathrm{~m} / \mathrm{s}^{2}$
Running Resistance $\left(\mathrm{w}_{0}\right)$	$2,4+\mathrm{V}^{2} / 3000$	$\mathrm{~N} / \mathrm{kN}$
μ_{y} (rail-wheel)	200 (constant)	N / kN
μ_{f} (brk.shoe-wheel)	$5000 /(50+\mathrm{V})$	N / kN
$\alpha / \beta / \mathrm{Y}$	$0,6 / 0,8 / 1,0$	
Max. (regime) velocity	90	$\mathrm{~km} / \mathrm{h}$

Note: All acceleration calculations will be performed in one interval from zero to transition speed and one interval from transition speed to regime speed. All braking calculations will be performed in 2 equal intervals from regime speed to zero ($\mathrm{V}=0$).
a) Calculate the length of the horizontal track (palye) and time required for the train to reach regime speed under the condition that train started to move 500 meters before the exit point of a zero graded (horizontal) station.
Transition Speed Calculation:

$$
Z_{\text {aderans }}=Z_{\text {motor }} \quad \frac{3600 * N}{V_{g}}=\mu_{y} * G_{A} * g
$$

Axle conf. $\mathrm{Bo}^{\prime} \mathrm{Bo}^{\prime} \mathrm{Bo}^{\prime}=>\mathrm{G}_{\mathrm{A}}=20 * 6 * 2=240$ ton since there are two locomotives.

$$
2 * \frac{3600 * 4000}{V_{g}}=200 * 120 * 10 * 2 V_{g}=60 \mathrm{~km} / \mathrm{sa}
$$

	Speed interval (km/h)	$\Delta \mathrm{V}(\mathrm{km} / \mathrm{h})$	$\mathrm{V}_{\text {ort }}(\mathrm{km} / \mathrm{h})$	Z (N)	$\mathrm{z}(\mathrm{N} / \mathrm{kN})$	$\mathrm{w}_{0}(\mathrm{~N} / \mathrm{kN})$	s (\%)	$\Sigma \mathbf{w}=\mathrm{w}_{0} \pm \mathbf{s}(\mathrm{N} / \mathrm{kN})$	$\Delta t(s)$	$\Delta \mathrm{l}(\mathrm{m})$
1	0-60	60	30	480000	18,18	2,7	0	2,7	113,05	942,08
2	60-90	30	75	384000	14,55	4,28	0	4,28	85,2	1775
ww tractive force calculation: $Z=2 * \mu^{*} g^{*} G_{A}=2 * 200 * 10 * 120=480000 N \quad$ Total $\quad 198,25$ 2717,08										

2. row tractive force calculation: $Z=\frac{3600 * 2 * N}{V_{\text {ort }}}=\frac{3600 * 2 * 4000}{75}=384000 \mathrm{~N}$
3. row unit tractive force calculation: $z=\frac{Z}{g\left(G_{L}+G_{W}\right)}=\frac{480000}{10 *(120 * 2+40 * 60)}=18,18 \mathrm{~N} / \mathrm{kN}$
4. row running resistance calculation: $w_{0}=2,4+\frac{V_{o r t}^{2}}{3000}=2,4+\frac{30^{2}}{3000}=2,7 \mathrm{~N} / \mathrm{kN}$

Acceleration is performed on the horizontal section therefore, s is taken as 0 .

1. row Δt calculation:
$\Delta t=\frac{1}{\rho} * \frac{\Delta V}{3,6 *\left[z-\left(\mathrm{w}_{0} \overline{ \pm} \mathrm{s}\right)\right.}$
$\frac{1}{\rho}=\frac{1000}{g} *(1+\xi)=\frac{1000}{10} * 1,05=105$
$\Delta t=105 * \frac{60}{3,6 *(18,18-2,7)}=113,05 \mathrm{~s}$
2. ropw $\Delta \ell$ calculation:
$\Delta \ell=\frac{V_{\text {ort }}}{3,6} * \Delta t=\frac{30}{3,6} * 113,05=942,08 \mathrm{~m}$
Horizontal track length $=$ acceleration length - station length $=2717,08-500=2217,08$ meters.
b) In case of having 3% downgraded station and speeding track (palye) section, what will be the values calculated in previous part (a) of the problem?

Sample calculations: Numerical values and all calculations are same with part a of the problem until slope.
Acceleration is performed on the $\% 3$ downgraded section therefore, s is taken as -3

1. row calculation of $\mathrm{w}_{0} \pm \mathrm{s}$: $\mathrm{W}_{\mathrm{o}} \pm \mathrm{s}=2,7-3=-0,3 N / k N$
2. row Δt calculation:
$\Delta t=\frac{1}{\rho} * \frac{\Delta V}{3,6 *\left[z-\left(\mathrm{w}_{0} \overline{ \pm} \mathrm{s}\right)\right]}$
$\Delta t=105 * \frac{30}{3,6 *[18,18-(-0,3)]}=94,7 \mathrm{~s}$
3. row $\Delta \ell$ calculation:
$\Delta \ell=\frac{V_{\text {ort }}}{3,6} \Delta t=\frac{30}{3,6}(94,7)=789,17 \mathrm{~m}$
c) In case of stopping on a 4% upgraded, straight (no curve) and open air (no tunnel) line section, what is the time and distance required for this train to reach the regime speed again?

Sample Calculations. Numerical values and all calculations are same with part a of the problem until slope.
Acceleration is performed on the $\% 04$ upgraded section therefore, s is taken as 4

1. row calculation of $\mathrm{w}_{\mathrm{o}} \pm \mathrm{s}: \mathrm{w}_{\mathrm{o}} \pm \mathrm{s}=2,7+4=6,7 \mathrm{~N} / \mathrm{kN}$
2. row Δt calculation:
$\Delta t=\frac{1}{\rho} * \frac{\Delta V}{3,6 *\left[z-\left(\mathrm{w}_{\mathrm{o}} \pm \mathrm{s}\right)\right]}$
$\Delta t=105 * \frac{30}{3,6 *(18,18-6.7)}=152,44 \mathrm{~s}$
3. row $\Delta \ell$ calculation:
$\Delta \ell=\frac{V_{\text {ort }}}{3,6} \Delta t=\frac{30}{3,6}(152,44)=1270,33 \mathrm{~m}$
d) In case of starting to brake while running on a 4\% upgraded, straight and open air section with the regime velocity, what will be the time and distance until a complete stop? Repeat the calculations for 4% downgraded section and horizontal (zero grade) sections.

Stages (regimes)	Forces acting upon the train	Acceleration or deceleration rate	Equation of motion in the stage
deceleration (braking)	$-w-w_{f}$	$\frac{d v}{d t}<0$	$-w-w_{f}=-\frac{1}{\rho} \frac{d v}{d t}$

4\% upgraded section:

1. row w_{f} calculation: $\frac{\alpha^{*} \beta}{\gamma}=\frac{0,6^{*} 0,8}{1,0}=0,48 \Rightarrow w_{f}=\mu_{f} * \frac{\alpha^{*} \beta}{\gamma}=\frac{5000}{50+V_{\text {ort }}} * 0,48=\frac{5000}{50+67,5} * 0,48=20,43 \mathrm{~N} / \mathrm{kN}$
2. row running resistance calculation
$w_{0}=2,4+\frac{V_{o r t}^{2}}{3000}=2,4+\frac{67,5^{2}}{3000}=3,92 \mathrm{~N} / \mathrm{kN}$

Braking is performed on the $\% 4$ upgraded section therefore, s is taken as 4

1. row calculation of $\mathrm{w}_{\mathrm{o}} \pm \mathrm{s}: \mathrm{w}_{\mathrm{o}} \pm \mathrm{s}=3,92+4=7,92 \mathrm{~N} / \mathrm{kN}$
2. row Δt calculation:
$\Delta t=\frac{1}{\rho} * \frac{\Delta V}{3,6^{*}\left[w_{f}+\left(\mathrm{w}_{0} \pm \mathrm{s}\right)\right]}$
$\Delta t=105 * \frac{45}{3,6 *(20,43+7,92)}=46,3 \mathrm{~s}$
3. row $\Delta \ell$ calculation
$\Delta \ell=\frac{V_{\text {ort }}}{3,6} * \Delta t=\frac{67,5}{3,6} * 46,3=868,13 m$

Without grade:

	Speed interval (km/h)	$\Delta \mathrm{V}(\mathrm{km} / \mathrm{h})$	$\mathrm{V}_{\text {ort }}(\mathrm{km} / \mathrm{h})$	$\mathrm{w}_{\mathrm{f}}(\mathrm{N} / \mathrm{kN})$	$\mathbf{w}_{0}(\mathrm{~N} / \mathrm{kN})$	s (\%)	$\sum \mathbf{w}=\mathrm{w}_{0} \pm \mathbf{s}(\mathbf{N} / \mathrm{kN})$	$\Delta t(s)$	$\Delta \ell(\mathrm{m})$
1	90-45	45	67,5	20,43	3,92	0	3,92	53,9	1010,63
2	45-0	45	22,5	33,1	2,57	0	2,57	36,8	230
							Total	90,7	1240,63

Calculations until slope are same with calculation for $\% 4$ upgraded section:
Braking is performed on the horizontal section therefore, s is taken as 0

1. row Δt calculation:
$\Delta t=\frac{1}{\rho} x \frac{\Delta V}{3,6 x\left[w_{f}+\left(\mathrm{w}_{\mathrm{o}} \pm \mathrm{s}\right)\right]}$
$\Delta t=105 x \frac{45}{3,6 *(20,43+3,92)}=53,9 \mathrm{~s}$
2. row $\Delta \ell$ calculation
$\Delta \ell=\frac{V_{\text {ort }}}{3,6} * \Delta t=\frac{67,5}{3,6} * 53,9=1010,63 \mathrm{~m}$

\% 04 downgraded section:

	Speed interval (km/h)	$\Delta \mathrm{V}(\mathrm{km} / \mathrm{h})$	$\mathrm{V}_{\text {ort }}(\mathrm{km} / \mathrm{h})$	$\mathrm{w}_{\mathrm{f}}(\mathrm{N} / \mathrm{kN})$	$\mathrm{w}_{0}(\mathrm{~N} / \mathrm{kN})$	s (\%)	$\sum \mathbf{w}=\mathrm{w}_{0} \pm \mathbf{s}(\mathbf{N} / \mathrm{kN})$	$\Delta \mathrm{t}(\mathrm{s})$	$\Delta \mathrm{l}(\mathrm{m})$
1	90-45	45	67,5	20,43	3,92	-4	-0,08	64,5	1209,38
2	45-0	45	22,5	33,1	2,57	-4	-1,43	41,44	259
							Total	105,94	1468,38

Calculations until slope are same with calculation for \% $\% 4$ upgraded and horizontal sections:

1. row calculation of $\mathrm{w}_{\mathrm{o}} \pm \mathrm{s}: \mathrm{w}_{\mathrm{o}} \pm \mathrm{s}=3,92-4=-0,08 \mathrm{~N} / \mathrm{kN}$

Braking is performed on the $\% 4$ downgraded section therefore, s is taken as -4

1. row Δt calculation:
$\Delta t=\frac{1}{\rho} * \frac{\Delta V}{3,6 *\left[w_{f}+\left(\mathrm{w}_{\mathrm{o}} \pm \mathrm{s}\right)\right]}$
$\Delta t=105 * \frac{45}{3,6 *[20,43+(-0,08)]}=64,5 \mathrm{~s}$
2. row $\Delta \ell$ calculation:
$\left.\Delta \ell=\frac{V_{\text {ort }}}{3,6} \Delta t=\frac{67,5}{3,6} 644,5\right)=1209,38 \mathrm{~m}$
e) In case of slowing down without using tractive force and braking force while moving on a 7% upgraded, straight and open air section, what will be the time and distance required for a complete stop.

No brake therefore $\mathrm{w}_{\mathrm{f}}=0$. Rest of the equations are calculated by using the similar calculation at previous sections.

1. row Δt calculation:
$\Delta t=\frac{1}{\rho} x \frac{\Delta V}{3,6 x\left(\cdot \mathrm{w}_{\mathrm{o}} \pm \mathrm{s}\right)}$
$\Delta t=105 x \frac{45}{3,6^{*}(\quad 10,92)}=120,19 \mathrm{~s}$
2. row $\Delta \ell$ calculation:
$\Delta \ell=\frac{V_{\text {ort }}}{3,6} \Delta t=\frac{67,5}{3,6}(120,19)=2253,56 \mathrm{~m}$

Question-4: For passenger and freight trains operating on a railway line, their regime speeds, weights and number of daily trips are given. By using the given data answer the following questions:

Train Name	Speed $(\mathbf{k m} / \mathbf{h})$	Total train weight (tons)	Daily trip number
Passenger1	140	120	7
Passenger2	120	170	9
Freight1	40	1200	8
Freight2	30	2000	10

Project speed: $180 \mathrm{~km} / \mathrm{h}$
Max superelevation: 160 mm
Upper limit of uncompensated transverse (comfort) acceleration: $0.9 \mathrm{~m} / \mathrm{s}^{2}$
Max superelev. excess for freight trains: 40 mm
Track gauge: 1500 mm
Acc. of gravity (g): $10 \mathrm{~m} / \mathrm{s}^{2}$
a) Calculate the permissible minimum curve radius.

$$
R_{\min }=\frac{11,8 * V_{P}^{2}}{d_{\text {mats }}+153 \gamma_{\text {mats }}}=\frac{11,8 * 180^{2}}{160+153 * 0,9}=1284 \mathrm{~m}
$$

Min curve radius has to be multiples of 50 ; therefore $R_{\min }=1300 \mathrm{~m}$.
b) Calculate the applied superelevation based on even (rail) wearing requirement, and check this value if it is between the minimum (for passenger trains) and maximum (for freight trains) allowable values.

According to even wearing requirement, superelevation will be calculated as follows:
Find average speed by considering the trip numbers and the weights. Apply theoretical superelevation to the railway. Use the formula below.
$V_{o}=\sqrt{\frac{\sum_{i} n_{i} * G_{i} * V_{i}^{3}}{\sum_{i} n_{i} * G_{i} * V_{i}}}$
i, is the index for train;
n_{i}, is the daily trip number;
V_{i}, is the velocity;
G_{i}, is the weight of the train.

Train Name	Speed (V $\mathbf{i})$ $(\mathbf{k m} / \mathbf{h})$	Total train weight $\left(\mathbf{G}_{\mathbf{i}}\right)($ Tons $)$	Daily trip number $\left(\mathbf{n}_{\mathbf{i}}\right)$	$\mathbf{n}_{\mathbf{i}} \mathbf{G}_{\mathbf{i}} \mathbf{V}_{\mathbf{i}}$	$\mathbf{n}_{\mathbf{i}} \mathbf{G}_{\mathbf{i}} \mathbf{V}_{\mathbf{i}}^{\mathbf{3}}$
Passenger1	140	120	7	117.600	2.304 .960 .000
Passenger2	120	170	9	183.600	2.643 .840 .000
Freight1	40	1200	8	384.000	614.400 .000
Freight2	30	2000	10	600.000	540.000 .000
			Total	1.285 .200	6.103 .200 .000

$V_{o}=\sqrt{\frac{6 \cdot 103 \cdot 200.000}{1.285 \cdot 200}}=68,91 \mathrm{~km} / \mathrm{sa}$
$d_{\text {applied }}=d_{\text {teo, } V_{o}}=\frac{11.8 * 68.91^{2}}{1300}=43.10 \mathrm{~mm}$
Maximum missing superelevation should be checked from fastest train.
Amount of missing superelevation for passenger train is $153^{*} \gamma_{\max }$
$\mathrm{d}_{\text {min,passenger }}=\mathrm{d}_{\text {teo, passenger }}-153^{*} \gamma_{\text {max }}$
$d_{\text {min, pass1 }}=d_{\text {teo, pass1 }}-153^{*} \gamma_{\max }=\frac{11,8^{*} 140^{2}}{1300}-153 * 0,9=40,20 \mathrm{~mm}<43,10 \mathrm{~mm} \rightarrow$ Satisfied.
Maximum excess superelevation should be checked from slowest train.
Max superelev. excess for freight trains is given as 40 mm .
$d_{\text {min,freight2 }}=d_{\text {teo, freight2 }}+153 * \Delta d_{f}=\frac{11,8 * 30^{2}}{1300}+40=48,17 \mathrm{~mm} \rightarrow$ Satisfied

c) Find the direction and magnitude of the net force acting on train "Passenger 1 " when it passes on a curve with minimum radius and having the applied superelevation with given speed.

When passenger train passes the curve with given speed it will be affected by a comfort acceleration of γ. According to Newton laws mass times acceleration will give the net force on the train. Which is called the centrifugal force for this case.

$$
\begin{aligned}
& d_{\text {applied }}=d_{\text {teo,pass1 }}-153^{*} \gamma \\
& 43.10=\frac{11.8 * 140^{2}}{1300}-153^{*} \gamma \rightarrow \gamma=0.88 \mathrm{~m} / \mathrm{s}^{2} \\
& Y=\frac{F_{\text {net }}}{m_{\text {train }}} \rightarrow F_{\text {net }}=m_{\text {train }} * \gamma=120^{*} 0.88=105.6 \mathrm{kN}
\end{aligned}
$$

If speed of the train $>\mathrm{V}_{\mathrm{o}}$, then uncompensated outward (centrifugal) force exist.

If speed of the train $<\mathrm{V}_{0}$, then uncompensated inward (centripetal) force exist.

