# Settling Chambers and Performance Models

## **Settling Chamber**

- Also known as Gravity Settler
- Operating Principle:
  - Slow down the veocity of gas stream in a large volume having large cross-sectional area and sufficient length,
  - Thereby, provide a sufficient time for particles to settle down to the bottom of device under the effect of **Gravitational Force**.

## **Settling Chamber**

#### Basic Features:

- Low Capital and Operating Costs
- Low Pressure Drop, Very Low Energy Cost
- No Moving Parts, Few Maintenance Requirements
- Excellent Reliability
- Device Not Subject to Abrasion
- Provides Incidental Cooling of Gas Stream
- Dry Collection and Disposal

#### Disadvantages

- Relatively Low PM Collection Efficiencies, not suitable for fine particles
- Unable to Handle Sticky or Tacky Materials
- Large Physical Size, needs large settlement area
- Trays in Multiple-Tray Settling Chamber may Warp

## **Settling Chamber**

A general Picture of its shape



Settling Chamber

## **Settling Chamber**

Settling action of particles



## **Settling Chamber**

Some design geometries



Some design geometries



# **Settling Chamber**

• High efficiency settlers



- Fundamental parameters of modelling:
- Particles will stay in settling chamber in a time period called **Residence time**  $(t_R)$
- Particles will settle down to the bottom in a time period called Collection time (t<sub>c</sub>)

#### **Performance Modelling in Settling Chamber**

Dimensions and model parameters of settling chamber:



- Residence Time
  - $-t_R = L/V_q$
- Collection Time
  - $-t_C = H/V_t$
- Theoretically speaking, for a particle to be collected:
  - $-t_R$  should be greater or equal to  $t_C$ 
    - The worst case is  $t_R = t_C$
- For an acceptable performance:
  - $-V_t$  should be greater than 10 cm/s
    - This corresponds to about 50 micron for low density particles and about 10 micron for high density particles
  - $-V_q$  should be less than 3 m/s
    - Preferably V<sub>t</sub> should be less than 0,3 m/s

#### **Performance Modelling in Settling Chamber**

- For a particle to be collected...
- Its route should point to the bottom (collecting plate)



**Figure 3.** Two identical particles' behaviors in a settling chamber





**Figure 4.** Effect of throughput velocity on particulate collection

- Think of a point at an entrance elevation of h
  from the bottom (distance to the collecting
  plate)....such that
  - All particles having elevation less than h will fall to the bottom and be collected...
    - Theoretically 100% efficiency for these particles,
  - All particles having elevation greater than h will escape to the exit and not be captured...
    - Theoretically 0 % efficiency for these particles

#### **Performance Modelling in Settling Chamber**

- Relying on these two cases and together with the following additional assumptions:
  - Horizontal gas velocity  $(V_{avg} = V_g)$  is constant throughout the chamber
  - Horizontal component of the velocity of particles is equalt to  $\ensuremath{V_{g}}$
  - Vertical component of the velocity of particles is equal to  $\ensuremath{V_{g}}$
  - Collected particles do not re-enter into the gas stream
  - All particles in this consideration are identical having the same diameter  $d_{\mbox{\tiny p}}$

- An **efficiency** term is defined as follows:
- Efficiency : η = h/H......Α
  - Here:
  - h is the settling distance  $h = t_c \cdot V_t$ .....B
  - H is the total height of the settling chambe,
- $t_C$  will be equal to  $t_R$  for the worst case:

- Putting C into B and B into A, you get an efficiency equation called
- "Plug-Flow Efficiency Equation"

$$-\eta = (L \cdot V_t) / (H \cdot V_g)$$

 We may put V<sub>t</sub> as "the corrected stoke's settling velocity equation" into above equation

#### **Performance Modelling in Settling Chamber**

- Efficiency variation of plug-flow model:
  - Unrealistic, because it estimates effiencies greater than 100%



Figure 7. Change of particulate collection efficiency estimated by plug flow model of a settling chamber with respect to particle size

#### Mixed Model Efficiency:

- In plug flow model, no mixing in flow-cross section is assumed which is unrealistic.
- Mized model assumes that there is well mixing in flow cross sectional area so that there is a concentration change as the gas flows through the chamber.
- Change in PM concentration throughout the chamber should be defined and put into Efficiency equation....

## **Performance Modelling in Settling Chamber**

#### Mixed Model Efficiency:

- There will be a concentration change, dc, in the dx travel of gas stream in a time period dt
- This will cause a change in efficiency defined as follows:
  - Efficiency in the section dx:
  - η = h / H = V, dt / H
- Concentration change is defined as:
  - dc = -c (Efficiency in the section dx)
  - $dc = -c V_t dt / H$



Figure 8. Incremental mixing in settling chambers

#### Mixed Model Efficiency:

- We know that
  - $dt = dx / V_g$
- This time definition is combined with
  - $dc = -c V_t d_t / H$
- Resulting Differential Equation:

$$\frac{dc}{c} = -\frac{v_t}{Hv_g} dx$$

## **Performance Modelling in Settling Chamber**

#### Mixed Model Efficiency:

– Solution of the differential equation:

$$\int_{c=c_0}^{c=c_e} \frac{dc}{c} = -\int_{x=0}^{x=L} \frac{v_t}{Hv_g} dx$$

$$C_e = C_0 \exp \left[ -\frac{Lv_t}{Hv_g} \right]$$

#### Mixed Model Efficiency:

- Recall the definition of efficiency in terms of inlet and outlet concentrations,
- The efficiency of mixed model is:

$$\eta_{M} = 1 - \exp \left[ -\frac{Lv_{t}}{Hv_{g}} \right]$$

 A relation between mixed-flow model and plug-flow model may also be written:

$$\eta_{M} = 1 - \exp[-\eta_{PF}]$$

## **Performance Modelling in Settling Chamber**

#### Mixed Model Efficiency:

Efficiency estimate of mixed-model which is

realistic



**Figure 9.** Change of particulate collection efficiency estimated by mixed model of a settling chamber with respect to particle size