

General Structure

Shop Vac Mini Cyclone Video

ClearVue Cyclones

Multi-cyclones

General

A particulate matter control equipment.

The principal collection force: Centrifugal force

Advantages:

- Low cost equipment
- No moving parts, hence low maintenance costs
- Capable of capturing liquid and solid particulates (noncorrosive particles)
- Harsh operating conditions (high temperatures)
- Proven technology (since 1940s)

Disadvantages:

- Low efficiency for fine particles (dp<10 microns)
- •High pressure drop \rightarrow High operating costs
- Not suitable for adhesive particles

13

Pressure Drops in a cyclone

- Total Pressure Drop (△P), between entrance and exit of a cyclone is composed of the following factors:
- 1. Frictional losses in the entrance duct,
- 2. Pressure drop due to sudden expansion in the entrance of cylindrical body
- 3. Frictional losses on the inside wall of the cyclone
- 4. Pressure drop and kinetic energy losses due to turbulence inside the cyclone (the most important)
- 5. Pressure drop due to sudden contraction in the entrance of exit duct
- 6. Static pressure drop due to head difference between entrance and exit
- 7. Frictional losses in the exit duct

20.10.2013

Design Criteria

Two important design criteria

1. Optimum Diameter

- High rotational velocity for high efficiency Decrease cyclone body diameter in order to increase rotational (tangential) velocity
 - But, saltation occurs as velocity increases...
 - Therefore, velocity should have an **optimum** value...
 - Cyclone body diameter is increased to decrease rotational velocity...

Hence, **Optimum body diameter** is considered

2. Check for Pressure Drop…

20.10.2013

Optimum cyclone body diameter

20.10.2013

20.10.2013

Standard Cyclone Dimesions

Table 1 Standard cyclone dimensions

	Cyclone Type					
	High Efficiency		Conventional		High Throughput	
	(1)	(2)	(3)	(4)	(5)	(6)
Body Diameter,	1.0	1.0	1.0	1.0	1.0	1.0
D/D						
Height of Inlet,	0.5	0.44	0.5	0.5	0.75	0.8
H/D						
Width of Inlet,	0.2	0.21	0.25	0.25	0.375	0.35
W/D						
Diameter of Gas Exit,	0.5	0.4	0.5	0.5	0.75	0.75
D_e/D						
Length of Vortex Finder,	0.5	0.5	0.625	0.6	0.875	0.85
S/D						
Length of Body,	1.5	1.4	2.0	1.75	1.5	1.7
L_b/D						
Length of Cone,	2.5	2.5	2.0	2.0	2.5	2.0
L_c/D						
Diameter of Dust Outlet,	0.375	0.4	0.25	0.4	0.375	0.4
D_d/D						

SOURCES: Columns (1) and (5) = Stairmand, 1951; columns (2), (4) and (6) = Swift, 1969; columns (3) = Lapple, 1951.

Real Scales of Standard Cyclones

The distance gas travels inside the cyclone (Length of outer vortex in which PM capturing occurs)

$$N_e = \frac{1}{H} \left(L_b + \frac{L_c}{2} \right)$$

- N_e = number of effective turns
- H =height of inlet duct (m or ft)
- L_b = length of cyclone body (m or ft)
- L_c = length (vertical) of cyclone cone (m or ft).

Residence time of gas on the outer vortex

 $\Delta t = \pi D N_e / V_i$

 Δt = time spent by gas during spiraling descent (sec)

27

D = cyclone body diameter (m or ft)

 V_i = gas inlet velocity (m/s or ft/s) = Q/WH

Q = volumetric inflow (m³/s or ft³/s)

W = width of inlet (m or ft).

Forces acting on particle:

• $\mathbf{F}_{centrifugal} - \mathbf{F}_{drag} + \mathbf{F}_{bouyancy} = \mathbf{F}_{net} = \mathbf{m} \ \mathbf{a}$ $F_{centrifugal} - 3\pi\mu d_p \mathbf{v} + m_p \frac{\rho_f}{\rho_p} \mathbf{g} = \mathbf{m} \frac{d\mathbf{v}}{dt}$ $F_{centrifugal} = \frac{\mathbf{m} V_i^2}{\mathbf{R}}$ $\frac{d\mathbf{v}}{dt} + \frac{18\mu}{\rho d_p^2} \mathbf{v} = \frac{V_i^2}{\mathbf{R}}$ 20.10.2013

Efficiency Calculation

Re-arranging the force equilibrium...

$$V_{t} = \frac{d_{p}^{2}\rho_{p}V_{i}^{2}}{18\mu R} = \frac{W}{\Delta t}$$

Diameter of the minimum particle to be captured

$$d_{p} = \left[\frac{9\mu W}{\pi N_{e}V_{i}\rho_{p}}\right]^{\frac{1}{2}}$$

20.10.2013

- This equation says that,,
- Particles having diameter greater than dp will be captured at 100% efficiency
- which is NOT correct in reality...

Then,

Only theory is NOT sufficient to calculate the real efficiency....

20.10.2013

Efficiency Calculation

Lapple (1950) defined a semi-empirical term called "50% CUT DIAMETER" …

Cut diameter

Use 0,5 for Efficiency term and solve for d_p

$$d_{pc} = \left[\frac{9\,\mu W}{2\pi\,N_e\,V_i\,(\rho_p - \rho_g)}\right]^{1/2}$$

20.10.2013

Overall removal efficiency:

$$\eta = \frac{\sum \eta_j m_j}{M}$$

 η = overall collection efficiency ($0 < \eta < 1$) m_j = mass of particles in the *j*th size range M = total mass of particles.

You know that m_i / M = g_i