CHAPTER 2

ATMOSPHERIC CONCENTRATION UNITS

MASS

* Quantity of matter in an object.
* Default SI unit is kilograms (kg)
\times Other units
+ Miligrams, micrograms, nanograms (atmospheric concentrations)
+ Pound-mass ($1 \mathrm{lb} \mathrm{m}=0.454 \mathrm{~kg}$)

FORCE

* Any influence that causes an object to undergo a certain change in its state (movement, direction, shape, etc.)
* In motion equations
+ Force is the product of mass of the object and its acceleration (Newton's secand law)
\times Units
+ Newton (kilogram.meters per second square)
$+\operatorname{Dyn}\left(1 \mathrm{~N}=10^{5} \mathrm{dyn}\right.$)
+ Kilogram-force ($1 \mathrm{~N}=0.10197 \mathrm{kp}$)
+ Pound-force ($1 \mathrm{~N}=0.22481 \mathrm{lb}_{\mathrm{f}}$)

PRESSURE

* The force exerted per unit area in a direction perpendicular to the surface.
* Two reference systems
+ Absolute pressure
\times Total pressure applied to a surface
\times Total atmospheric pressure at sea level is 1 atm
+ Gauge pressure
\times Pressure relative to the local atmospheric pressure
\times Total pressure minus local atmospheric pressure

PRESSURE

\times Units

+ Default SI unit is Pa
\times Newtons per square meter ($\mathrm{N} / \mathrm{m} 2$)
\times Atmospheric pressure at sea level is 101325 Pa
+ Other units
Atmospheric pressure unit (atu, atm)
bars (mb)
psi
$\times 1 \mathrm{~atm}=1013.25 \mathrm{mb}=101325 \mathrm{~Pa}$
$\times 100 \mathrm{~Pa}=1 \mathrm{mb}$
$\times 1 \mathrm{~atm}=14.7 \mathrm{psi}$

PRESSURE

* Toricelli experiment
* Mercury
+1 atm at sea level $=76 \mathrm{~cm} \mathrm{Hg}=760 \mathrm{~mm} \mathrm{Hg}$
* Water
x 1 atm at sea level $=10.33 \mathrm{~m} \mathrm{H} 2 \mathrm{O}=1033 \mathrm{~cm} \mathrm{H} 2 \mathrm{O}$
\times Other
+ Density of ethanol at $20 \mathrm{C}=789 \mathrm{~kg} / \mathrm{m} 3$
+ Density of water at $20 \mathrm{C}=998.2 \mathrm{~kg} / \mathrm{m} 3$
+ Atmospheric pressure in terms of ethanol column?

TEMPERATURE \& HEAT

* Heat: Total kinetic energy of all atoms and molecules in a matter
* Temperature: Average kinetic energy of all atoms and molecules in a matter
* Units:
+ Degrees Celcius
\times Water freezes at 0 C, and boils at 100 C
+ Fahrenheit
\times Water freezes at 32 F , and boils at $212 \mathrm{~F} \rightarrow$ slope $=1.8: 1.0$
+ Kelvin
Water freezes at 273 K , and boils at $373 \mathrm{~K} \rightarrow$ slope $=1.0: 1.0$

VOLUME

* The amount of space occupied by an object
* At any given time space is three-dimensional
+ Each dimension is measured by a length unit.
+ Thus, the default unit is cubic length
* Units
+ Cubic meters, cubic centimeters, liters, mililiters, etc.
+ Cubic foot, cubic inch, gallons, barrel, etc.
+ $1 \mathrm{~m} 3=35.315 \mathrm{ft} 3$
* Volume changes by changing temperature and pressure

CONCENTRATION UNITS

* Concentration is the amount of matter (usually pollutant) in unit amount of mixture
* Volumetric concentrations
+ Usually for gaseous components in a mixture
+ Parts per million by volume (ppm or ppmv): number of molecules of a pollutant in a million number of molecules of gaseous mixtures
+ Parts per billion by volume (ppb or ppbv): number of molecules of a pollutant in a billion number of molecules of gaseous mixtures
+ Parts per trillion by volume (ppt or pptv): number of molecules of a pollutant in a trillion number of molecules of gaseous mixtures

CONCENTRATION UNITS

* Volumetric concentrations
+ Partial pressure is most commonly used in air pollution field
+ Partial pressure is a unit of volumetic concentration
+ Example: Partial pressure of benzene in a flue gas is 0.98 mb . What is the ppm concentration? Flue gas pressure is 1013 mb.
$\times 0.98 \mathrm{mb} / 1013 \mathrm{mb}$ * $1000000=993 \mathrm{ppm}$
+ Comes from ideal gas law.
\times At constant temperature and pressure, volume of a pollutant is proportional to its number of moles in the mixture
+ Concentration is the ratio of volume of gaseous pollutant to the total volume of mixture

CONCENTRATION UNITS

* Volumetric concentrations
+ Example: What is the partial pressure (in mm Hg) of 1350 ppm of toluene in the flue gas at a pressure of 1 atm .
$\times 1350 / 1000000$ * 1 atm * ($760 \mathrm{~mm} \mathrm{Hg} / 1 \mathrm{~atm}$) $=1.026 \mathrm{~mm} \mathrm{Hg}$
+ Number of moles of a pollutant in unit number of total moles of gaseous mixture is the volumetric concentration of a pollutant.
+ Example: A gaseous mixture of 7000 moles contains a mole of m -xylene? What is the concentration of m -xylene in ppm

1 mole $/ 7000$ moles * $1000000=142.9 \mathrm{ppm}$

+ The atmosphere is roughly a mixture of oxygen (21% by volume) and nitrogen (79% by volume). The concentration of oxygen is 210000 ppm and and of nitrogen is 790000 ppm . Sums up to 1000000 ppm, which is equal to 1 .

CONCENTRATION UNITS

* Mass concentrations
+ Mass of a pollutant in unit volume of gaseous mixture
+ Units
Miligrams per cubic meter
\times Micrograms per cubic meter
\times Nanograms per cubic meter
\times Pounds per cubic foot
\times Pounds per gallon

CONCENTRATION UNITS

* Mass concentrations
+ Can be used to express both particulate and gaseous pollutants
+ Mass of a pollutant does not change with temperature
+ Volume of a gaseous mixture changes with both temperature and pressure
+ Thus, mass concentration changes with both temperature and pressure

CONCENTRATION UNITS

* Conversion between mass and volumetric concentrations
+ $1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{L}$?
\times Only valid for diluted aqueous solutions
\times Very important
+ In air pollution field, 1 ppm is not equal to $1 \mathrm{mg} / \mathrm{L}$.
+ ppm - $\mathrm{mg} / \mathrm{m} 3$ conversions are based on ideal gas law
+ Example: 100 ppm benzene, $78 \mathrm{~g} / \mathrm{mole}, 25 \mathrm{C}, 1 \mathrm{~atm}, \mathrm{mg} / \mathrm{m} 3$?
+ Example: 650 ppm toluene, $92 \mathrm{~g} / \mathrm{mole}, 100 \mathrm{C}, 1 \mathrm{~atm}, \mathrm{mg} / \mathrm{m} 3$?
+ Example: 21% oxygen in atmosphere, $25 \mathrm{C}, \mathrm{g} / \mathrm{m} 3$?
+ Example: $1200 \mathrm{mg} / \mathrm{m} 3$ of toluene, $25 \mathrm{C}, 92 \mathrm{~g} / \mathrm{mole}, \mathrm{ppm}$?
+ Example: $3300 \mathrm{mg} / \mathrm{m} 3$ of SO2, $150 \mathrm{C}, 64 \mathrm{~g} / \mathrm{mole}, \mathrm{ppm}$?

FLOWRATE

* Mass flowrate
+ Mass rate of transfer of a matter through a known crosssection per unit time
+ Units
\times Miligrams per second
\times Kilograms per second
\times Tons per year
\times Kilograms per hour
\times Pounds per hour

FLOWRATE

* Volumetric flowrate
+ Volume of a gaseous matter transfered through a known cross-section per unit time
+ Units
\times Cubic meters per second
\times Liters per second
\times Cubic meters per hour
\times Cubic feet per second
\times Cubic feet per hour

FLOWRATE

\times Normal and standard conditions

+ Normal conditions: 1 atm, 0 C
+ Standard conditions: 1 atm, 25 C
+ Since volume of a gas changes with temperature and pressure, a standardization is necessary
+ Based on ideal gas law.
+ Units
$\times \mathrm{Nm} 3 / \mathrm{s}, \mathrm{Nm} 3 / \mathrm{h}$
\times Acfm $=$ actual cubic foot per minute
\times Scfm $=$ standard cubic foot per minute

FLOWRATE

* Normal and standard conditions
+ Example: Flue gas of $3500 \mathrm{~m} 3 / \mathrm{h}$ at 150 C and 1 atm . What is the flowrate under normal conditions?
$\times 3500 \mathrm{m3} / \mathrm{h}$ * $273 / 423=2259 \mathrm{Nm} 3 / \mathrm{h}$
+ Example: Flue gas with a flowrate of $4000 \mathrm{Nm} 3 / \mathrm{h}$. What is the actual flowrate at 120 C ?
$\times 4000 \mathrm{Nm} 3 / \mathrm{h}$ * $393 / 273=5758 \mathrm{~m} / \mathrm{h}$
+ Example: Flue gas contains $550 \mathrm{mg} / \mathrm{m} 3$ of benzene. What is the concentration under normal conditions if flue gas temperature is 230 C ?
$\times 550$ * $303 / 273=1013 \mathrm{mg} / \mathrm{Nm} 3$

FLOWRATE

\times Normal and standard conditions

+ Example: Flue gas contains $475 \mathrm{mg} / \mathrm{Nm} 3$ of toluene. Flue gas flowrate is $6500 \mathrm{Nm} 3 / \mathrm{h}$. Temperature is 160 C . Density of flue gas is $0.812 \mathrm{~kg} / \mathrm{m} 3$. Toluene: $92 \mathrm{~g} / \mathrm{mole}$
+ What is the actual concentration?
$475 \mathrm{mg} / \mathrm{Nm} 3$ *273/433 $=299.5 \mathrm{mg} / \mathrm{m} 3$
+ What is the actual flowrate?
$\times 6500$ * 433/273 $=10309.5 \mathrm{~m} 3 / \mathrm{h}$
+ What is the mass flowrate of toluene?
475 * $6500 \approx 299.5$ * $10309.5=3087500 \mathrm{mg} / \mathrm{h}=3.088 \mathrm{~kg} / \mathrm{h}$
+ What is the mass flowrate of flue gas?
$\times 10309.5 * 0.812=8371.3 \mathrm{~kg} / \mathrm{h}$

FLOWRATE

* Normal and standard conditions
+ Example (Cont'd): Flue gas contains 475 mg/Nm3 of toluene. Flue gas flowrate is $6500 \mathrm{Nm} 3 / \mathrm{h}$. Temperature is 160 C . Density of flue gas is $0.812 \mathrm{~kg} / \mathrm{m} 3$. Toluene: $92 \mathrm{~g} / \mathrm{mole}$
+What is the concentration of toluene in ppm? $\times 0.000475$ * 0.082 *273 / $92=0.000116 \mathrm{~atm}=116 \mathrm{ppm}$

STACK GAS CORRECTIONS

\times With respect to oxygen concentration

+ To prevent dilution of industrial stack gases with ambient air
+ Legislations set emission standards for 3\% oxygen or 6\% oxygen
+ Correction:
$C_{C}=C_{m} \frac{21-R}{21-M}$
$+\mathrm{C}_{\mathrm{c}}=$ concentration of pollutant with respect to reference oxygen
$+C_{m}=$ concentration of pollutant measured in stack gas
$+\mathrm{R}=$ Percent reference oxygen
+ $M=$ Actual percent oxygen concentration measured in stack gas

STACK GAS CORRECTIONS

* With respect to oxygen concentration
+ Example: Flue gas contains $450 \mathrm{mg} / \mathrm{Nm} 3$ of m -xylene and 6\% oxygen. What is the m-xylene concentration wrt 3% oxygen?
$\times 450$ * $(21-3) /(21-6)=540 \mathrm{mg} / \mathrm{Nm} 3$
+ Example: Flue gas contains 1200 ppm of benzene and 5.4\% of oxygen. What is the benzene concentration wrt 3% oxygen? $\times 1200$ * $(21-3) /(21-5.4)=1385 \mathrm{ppm}$

STACK GAS CORRECTIONS

* With respect to humidity
+ Legislations usually set emission standards based on dry flue gas
+ Cerrection $_{C}=100$
$+\mathrm{H}=$ Percent humidity measured in stack gas
+ Example: Sulfur dioxide concentration in flue gas is 950 $\mathrm{mg} / \mathrm{Nm} 3$. Humidity is 4.7%. What is the concentration on a dry basis?
+950 * $100 /(100-4.7)=997 \mathrm{mg} / \mathrm{Nm} 3$

STACK GAS CORRECTIONS

* With respect to temperature
+ Legislations usually set emission standards based on normal conditions, that's 0 C
+ Correction:

$$
C_{C}=C_{m} \frac{T_{m}}{T_{S}}
$$

$+\mathrm{T}_{\mathrm{m}}=$ Measured temperature of stack gas in Kelvin
$+\mathrm{T}_{\mathrm{S}}=$ Normal temperature in Kelvin (273 K)

+ Example: Sulfur dioxide concentration in flue gas is 840 $\mathrm{mg} / \mathrm{m} 3$. Temperature is 230 C . What is the normal concentration?
+840 * $503 / 273=1548 \mathrm{mg} / \mathrm{Nm} 3$

STACK GAS CORRECTIONS

* With respect to pressure
+ Legislations usually set emission standards based on normal conditions, that's 1 atm or 1013 mb
+ Correction:

$$
C_{C}=C_{m} \frac{P_{S}}{P_{m}}
$$

$+P_{m}=$ Measured pressure of stack gas
$+P_{S}=$ Normal pressure

+ Example: Sulfur dioxide concentration in flue gas is 840 $\mathrm{mg} / \mathrm{m} 3$. Pressure is 1022 mb . What is the normal concentration?
$+840 * 1013 / 1022=832 \mathrm{mg} / \mathrm{m} 3$

EXAMPLE

* A flue gas contains 1400 ppm of m-xylene. The flue gas flowrate is $6700 \mathrm{~m} 3 / \mathrm{h}$ at 120 C and a pressure of 1023 mb . The oxygen concentration in the flue gas is 5.6% and humidity is 3.8%. The emission standard for m-xylene is 500 $\mathrm{mg} / \mathrm{Nm} 3$ on a dry basis based on 3\% oxygen. M-xylene: 106 $\mathrm{g} / \mathrm{mole}$. Density of flue gas under normal conditions is 1.25 kg/m3.
\times What is the flue gas flowrate under normal conditions?
$+6700 \mathrm{m3} / \mathrm{h}$ * $(273 / 393)$ * $(1023 / 1013)=4700 \mathrm{Nm} 3 / \mathrm{h}$
* What is the actual concentration of m-xylene?
$1400 / 10^{6}$ * $106 / 0.082 / 393=0.004605 \mathrm{~g} / \mathrm{L}=4605 \mathrm{mg} / \mathrm{m} 3$

EXAMPLE

* A flue gas contains 1400 ppm of m -xylene. The flue gas flowrate is $6700 \mathrm{~m} 3 / \mathrm{h}$ at 120 C and a pressure of 1023 mb .
The oxygen concentration in the flue gas is 5.6% and humidity is 3.8%. The emission standard for m-xylene is 500 $\mathrm{mg} / \mathrm{Nm} 3$ on a dry basis based on 3\% oxygen. M-xylene: 106 $\mathrm{g} / \mathrm{mole}$. Density of flue gas under normal conditions is 1.25 $\mathrm{kg} / \mathrm{m} 3$.
\times What is the concentration under normal conditions?
$+4605^{*}(393 / 273)^{*}(1013 / 1023)=6564 \mathrm{mg} / \mathrm{Nm} 3$
* What is the concentration under normal conditions on a dry basis?

6564 * $100 /(100-3.8)=6823 \mathrm{mg} / \mathrm{Nm} 3$

EXAMPLE

* A flue gas contains 1400 ppm of m-xylene. The flue gas flowrate is $6700 \mathrm{~m} 3 / \mathrm{h}$ at 120 C and a pressure of 1023 mb . The oxygen concentration in the flue gas is 5.6% and humidity is 3.8%. The emission standard for m-xylene is 500 $\mathrm{mg} / \mathrm{Nm} 3$ on a dry basis based on 3\% oxygen. M-xylene: 106 $\mathrm{g} / \mathrm{mole}$. Density of flue gas under normal conditions is 1.25 $\mathrm{kg} / \mathrm{m} 3$.
* What is the concentration under normal conditions on a dry basis, corrected with respect to 3% reference oxygen?
$+6564 \mathrm{mg} / \mathrm{Nm}^{*}(21-3) /(21-5.6)=7975 \mathrm{mg} / \mathrm{Nm} 3$
\times What is the mass flowrate of m-xylene?
$6564 \mathrm{mg} / \mathrm{Nm} 3 * 4700 \mathrm{Nm} 3 / \mathrm{h}=3.085 * 10^{7} \mathrm{mg} / \mathrm{h}=30.85 \mathrm{~kg} / \mathrm{h}$

EXAMPLE

* A flue gas contains 1400 ppm of m-xylene. The flue gas flowrate is $6700 \mathrm{~m} 3 / \mathrm{h}$ at 120 C and a pressure of 1023 mb .
The oxygen concentration in the flue gas is 5.6% and humidity is 3.8%. The emission standard for m-xylene is 500 $\mathrm{mg} / \mathrm{Nm} 3$ on a dry basis based on 3\% oxygen. M-xylene: 106 $\mathrm{g} / \mathrm{mole}$. Density of flue gas under normal conditions is 1.25 $\mathrm{kg} / \mathrm{m} 3$.
* What is the molar flowrate of flue gas if its molar mass is $28.27 \mathrm{~g} / \mathrm{mole}$?
$5875 \mathrm{~kg} / \mathrm{h} /(28.27 \mathrm{~kg} / \mathrm{kmole})=207.82 \mathrm{kmole} / \mathrm{h}$
\times Check the ppm concentration of m-xylene?
$0.291 \mathrm{kmole} / \mathrm{h} / 207.82 \mathrm{kmole} / \mathrm{h}=0.0014 \mathrm{kmole} / \mathrm{kmole}=1400 \mathrm{ppm}$

EXAMPLE

* A flue gas contains 1400 ppm of m-xylene. The flue gas flowrate is $6700 \mathrm{~m} 3 / \mathrm{h}$ at 120 C and a pressure of 1023 mb . The oxygen concentration in the flue gas is 5.6% and humidity is 3.8%. The emission standard for m-xylene is 500 $\mathrm{mg} / \mathrm{Nm} 3$ on a dry basis based on 3\% oxygen. M-xylene: 106 $\mathrm{g} / \mathrm{mole}$. Density of flue gas under normal conditions is 1.25 $\mathrm{kg} / \mathrm{m} 3$.
* Check if the industry meets emission standard?
$7975 \mathrm{mg} / \mathrm{Nm} 3>500 \mathrm{mg} / \mathrm{Nm} 3 \rightarrow$ Fails

