STATICS-FRICTION



Characteristics of Dry Friction

 Friction is a force that resists the movement of two contacting surfaces that slide
relative to one another

* This force always acts tangent to the surface at the points of contact and is
directed so as to oppose the possible or existing motion between the surfaces.
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* Equilibrium. The effect of the distributed normal and frictional loadings is
indicated by their resultants N and F on the free-body diagram.
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* Impending Motion. In cases where the surfaces of contact are rather “slippery,” the frictional force F
may not be great enough to balance P, and consequently the block will tend to slip. In other words, as P
is slowly increased, F correspondingly increases until it attains a certain maximum value Fs, called the
limiting static frictional force

When the block is on the verge of sliding , the
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Table 81 Typical Values for pu,

Contact Coefficient of
Materials Static Friction ()
Metal on ice 0.03-0.05
Wood on wood 0.30-0.70
Leather on wood 0.20-0.50
Leather on metal 0.30-0.60
Aluminum on 1.10-1.70

aluminum




* Motion. If the magnitude of P acting on the block is increased so that it becomes
slightly greater than Fs, the frictional force at the contacting surface will drop to a
smaller value Fk, called the kinetic frictional force .

* The block will begin to slide with increasing speed. Typical values for u,are
approximately 25 percent smaller than ug
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Fis a static frictional force if equilibrium is maintained.

F is a limiting static frictional force F, when it reaches a maximum
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The uniform crate shown in Fig. 874 has a mass of 20 kg. If a force
P = 80 Nis applied to the crate, determine if it remains in equilibrium.

The coefficient of static friction is g, = 0.3,

SOLUTION
Free-Body Diagram. As shown in Fig. 8-7b, the resultani normal
force N- must act a distance x from the crate’s center line in order to
counteract the tipping effect caused by P. There are three unknowns,
F, N, and x, which can be determined strictly from the three equations
of equilibrium.
Equations of Equilibrium.

X 3F, =0, 80cos30°PN — F =0

+12F, =0 —80sin30°N + N — 1962N =0

C+3XMp = 0; 80 sin 30° N(0.4 m) — 80 cos 30° N(0.2 m) + Ne(x) = 0
Solving,
F= 693N

Nc = 236.2N
xr= —0.00908 m = —9.08 mm

(b)

Since x is negative it indicates the resulfant normal force acts (slightly)
to the left of the crate’s center line. No tipping will occur since
x << 0.4 m. Also. the maximum frictional force which can be developed
at the surface of contact is F,, = puNo = 0.3(236.2N) = 709 N.
Since F = 693 N < 70.9 N, the crate will not slip, although it is very
close to doing so.



The uniform 10-kg ladder in Fig. 8-9a rests against the smooth wall at
B, and the end A rests on the rough horizontal plane for which the
coefficient of static friction is p, = 0.3. Determine the angle of
inclination 6 of the ladder and the normal reaction at B if the ladder is
on the verge of slipping.

SOLUTION

Free-Body Diagram. As shown on the free-body diagram, Fig. 8-9b,
the frictional force F, must act to the right since impending motion at A
is to the left.

Equations of Equilibrium and Friction. Since the ladder is on the
verge of slipping, then Fy = p Ny = 0.3N,. By inspection, N4 can be
obtained directly.

+12F, =0; Ny — 10(981)N =0 Ny =08.1N
Using this result, F; = 0.3(98.1 N) = 29.43 N. Now Np can be found.
LK 3F, =0, 2943N — Ny =10

Np=2943N = 204N Ans.

Finally, the angle 6 can be determined by summing moments about
point A.

C+EIM, = 0; (2043 N)4 m) sin # — [10(9.81) NJ(2Zm)cos =0

sinb _ 10 = 1.6667

cos f
g = 59.04° = 390° Ans.

10(9.81) N

{4 m} sin 8

4
N“ll[lm} cos® (2m)cosd
(a) (b)




Beam AB is subjected to a uniform load of 200 N /m and is supported
at B by post BC, Fig. 8-10a. If the coefficients of static friction at B
and C are puy = 0.2 and p- = 0.5, determine the force P needed to
pull the post out from under the beam. Neglect the weight of the
members and the thickness of the beam.

SOLUTION

Free-Body Diagrams. The free-body diagram of the beam is shown
in Fig. 8-10b. Applying ZM, = 0, we obtain Ny = 400 N. This result
is shown on the free-body diagram of the post, Fig. 8-10c. Referring to
this member, the four unknowns Fy, P, F, and N are determined
from the three equations of equilibrium and one frictional equation
applied either at B or C.

Equations of Equilibrium and Friction.

KIF, =0; P—Fg—F:=10 (1)
+12F, =0; Ne— 400N =0 (2)
C+IMc=0; —P(0.25m) + Fg(lm) = 0 (3)
S00N (Post Slips at B and Rotates about C.) This requires Fr = puc-Ngand
L & """ 1 Fg = ppNp: Fp = 02(400N) = 80N
A, — ] . - . c
AKX = F,  Using this result and solving Eqs. 1 through 3, we obtain
" N, = a00n P = 320N
Ne = 400N
Since Fr = 240N > pcNe = 0.5(400 N) = 200N, slipping at C
occurs. Thus the other case of movement must be investigated.
l (Post Slips at C and Rotates about B.) Here Fp = ppNg and
400N
Fy 31 Fc = pcNe: Fe = 05Ne (4)
e P Solving Egs. 1 through 4 yields
F. - 10.25'm
c A P = 26TN Ans.
Ne Ne = 400N
Fe= 200N
(€) Fp = 66.TN
Fig. 8-10 Obviously. this case occurs first since it requires a smaller value for P.




Blocks A and B have a mass of 3 kg and 9 kg, respectively, and are
connected to the weightless links shown in Fig. 8-11a. Determine the
largest vertical force P that can be applied at the pin C without causing
any movement. The coefficient of static friction between the blocks
and the contacting surfaces is pu, = 0.3.

SOLUTION

Free-Body Diagram. The links are two-force members and so the
free-body diagrams of pin C and blocks A and B are shown in Fig. 8-115.
Since the horizontal component of Fy- tends to move block A to the
left, F4 must act to the right. Similarly, Fy must act to the left to oppose
the tendency of motion of block B to the right, caused by Fpp. There
are seven unknowns and six available force equilibrium equations,
two for the pin and two for each block, so that only one frictional
equation is needed.

Equations of Equilibrium and Friction. The force in links AC and
BC can be related to P by considering the equilibrium of pin C.

+TEF_V=0; Foocos 30° — P = O Fyc = 1.155P

HKEF, =0 L155P sin 30° — F- = 0 Fpe = 05774P

Using the result for F,, for block A,

HKEF. =0, Fy—1155Psin30° = 0; F, = 05774P (1)

+12F, = 0; Ny— L155P cos 30° — 3(9.81 N) = 0
Ny=P+2943N (2)

Using the result for Fpe, for block B,

L 3F, =0 (0.5774P) — Fp = 0; Fg= 057T14P (3)

+12F, = 0; Npg —9981)N = 0; Np = B8.2ON

Movement of the system may be caused by the initial slipping of either
block A or block B. If we assume that block A slips first, then

Fy = p,Ny = 03N, 4
Substituting Eqgs. 1 and 2 into Eq. 4.

0.5774P = 0.3(P + 29.43)
P= 318N Ans.
Substituting this result into Eq. 3. we obtain Fp = 18.4 N. Since
the maximum static frictional force at B is (Fplp, = udNp =
0.3(88.29N) = 26.5N = Fp. block B will not slip. Thus, the above
assumption is correct. Notice that if the inequality were not satisfied,
we would have to assume slipping of block B and then solve for P.
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Wedges

* A wedge is a simple machine that is often used to transform an applied force into
much larger forces, directed at approximately right angles to the applied force.
Wedges also can be used to slightly move or adjust heavy loads.
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There are seven unknowns, consisting of the applied force P, needed to cause motion of
the wedge, and six normal and frictional forces.

The seven available equations consist of four force equilibrium equations, ), Fx=0, ), Fy=0
applied to the wedge and block, and three frictional equations, F = uN,
applied at each surface of contact.



The uniform stone in Fig. 8-13a has a mass of 500 kg and is held in the
horizontal position using a wedge at B. If the coefficient of static
friction is u, = 0.3 at the surfaces of contact, determine the minimum
force P needed to remove the wedge. Assume that the stone does not

slip at A.
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SOLUTION

The minimum force Prequires F = u N at the surfaces of contact with
the wedge. The free-body diagrams of the stone and wedge are shown
in Fig. 8-13b. On the wedge the friction force opposes the impending
motion, and on the stone at A, Fy = N4, since slipping does not occur
there. There are five unknowns. Three equilibrium equations for the
stone and two for the wedge are available for solution. From the
free-body diagram of the stone,

G+EM, = 0; —4905N(0.5m) + (Ngcos 7° N)(1 m)
+ (03N sin 7°N)(1m) = 0
Ny = 2383.1 N

Using this result for the wedge, we have
+12F, =0 Ne — 2383.1cos 7°N — 0.3(2383.1sin7°N) = 0
Ne = 2452.5N
HSF, =0; 2383.1sin7°N — 0.3(2383.1 cos 7° N) +
P — 0.3(24525N) = 0
P =11549N = 1.15kN Ans.

NOTE: Since P is positive, indeed the wedge must be pulled out. If P
were zero, the wedge would remain in place (self-locking) and the
frictional forces developed at B and C would satisfy Fy < uNg and

Fe < u,Ne.



Frictional Forces on Flat Belts

* Consider the flat belt shown in Figure which passes over a fixed curved surface. The total angle of belt to surface contact
in radians is , f and the coefficient of friction between the two surfaces is u.

* We wish to determine the tension T2 in the belt, which is needed to pull the belt counterclockwise over the surface, and
thereby overcome both the frictional forces at the surface of contact and the tension T1 in the other end of the belt.
Obviously, 72 > T1.

A free-body diagram of the belt segment in contact with the surface is shown

Motion or impending
motion of belt relative
to surface

db 46
NHYF = 0; TCOS(T> + wdN — (T + dT) cos(?) =0 (1)

dﬁ' y
T+dT do do
‘%/‘fd +/3F, = 0; dN — (T + dT) sin(?> - Tsin(?) =0 (2)
5

—dF = u dN

”f* Since du is of infinitesimal size , sin(d6/2) = df8/2 and
cos(df/2 ) =1 . Also, the product of the two infinitesimals
dT and df /2 may be neglected

dadN —

wdN = dT (3)
dN = T df (4)
(b) Eliminating dN yields
dT
— = pdé (5)



dTl

— = udb
T M
Fgffgggfiﬁﬁﬁ?fe noting that T=T,at 6=0and T=T, at 6 = B, yields
T; dT B
— = ,u,f df
[, 7=
In2 =
N = B

Solving for T,, we obtain

T, = T,e*f

T,, T) = belt tensions; T; opposes the direction of motion (or
impending motion) of the belt measured relative to the
surface, while T> acts 1n the direction of the relative belt
motion (or impending motion); because of friction,
T, = T,

. = coefficient of static or kinetic friction between the belt
and the surface of contact

B = angle of belt to surface contact, measured in radians

e = 2.718 . .., base of the natural logarithm



The maximum tension that can be developed in the cord shown in
Fig. 8-19a is 500 N. If the pulley at A 1s free to rotate and the coefficient
of static friction at the fixed drums B and C is g, = 0.25, determine
the largest mass of the cylinder that can be lifted by the cord.

(2)

SOLUTION

Lifting the cylinder, which has a weight W = mg, causes the cord to
move counterclockwise over the drums at B and C: hence, the
maximum tension 75 in the cord occurs at D. Thus, F = T, = 500 N. A
section of the cord passing over the drum at B is shown in
Fig. 8-19b. Since 180° = 7 rad the angle of contact between the drum
and the cord is B = (135°/180°)m = 3 /4 rad. Using Eq. 8-6, we have

T, = T,e™P; 500 N = T,e" P10/

Hence,

500N 500N

I, = O2513/4m 180

=2714N

Since the pulley at A is free to rotate, equilibrium requires that the
tension in the cord remains the same on both sides of the pulley.

The section of the cord passing over the drum at C is shown in
Fig. 8-19c. The weight W < 277.4 N. Why? Applying Eq. 8-6, we obtain

T, = T,eM®; 2774 N = W B/
W=1539N
so that
_ W _ I539N
g  981m/s?
= 15.7kg Ans.

Impending
motion - — -
¥
135° B
T,
S00N
(®)
Impending
motion_ - —
y 135°
c
2774N
W=mg

(c)
Fig. 8-19




Determine the maximum and the minimum wvalues of
weight W which may be applied without causing the 50-1b
block to slip. The coefficient of static friction between the
block and the plane 1s p, = 0.2, and between the rope and
the drum D p; = 0.3

SOLUTION

Equations of Eguilibrium and Friction: Since the block is on the verge of sliding
up or down the plane, then, F = p N = 0.2N. If the block is on the verge of sliding
up the plane [FBD (a)],

N+EZFy =0; N —50cos45° =10 N =35361b

A+3F, =0 T, — 0.2(3536) — 50sind5° =0 T, = 4243 1b

If the block 1s on the verge of shding down the plane [FBD (b)],
N+ZFy =0 N —50cosd45° =0 N =35361b

A+EF, =0 T, + 0.2(3536) — 50sind5° =0 T, = 2828 1b

3
Frictional Force on Flat Belt: Here, B = 45° + 90° = 135° = Tﬂ rad. If the block
is on the verge of sliding up the plane, T} = 4243 lband 75 = W.

=T erf
W = 42.43¢"%F)
= 80.02 Ib = 86.01b Ans,

If the block is on the verge of sliding down the plane. T) = W and T; = 2828 |b.
IL=T etf

2828 = We"¥F)

W =13951b = 1391b Ans.

50lb T,
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