
YILDIZ TECHNICAL UNIVERSITY CIVIL ENGINEERING DEPARTMENT DIVISION OF MECHANICS

THIRD CHAPTER RIGID BODIES AND EQUIVALENT SYSTEMS OF FORCES

RIGID BODIES AND FORCE RESULTANT (MITTAL COPLANAR FORCES

3.1 Resultant of two forces (concurrent forces)

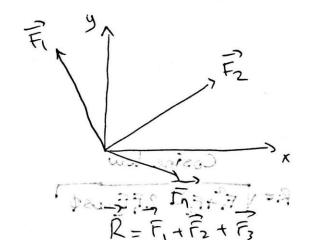
Theory of sinus
$$\overrightarrow{R} = \overrightarrow{F_1} + \overrightarrow{F_2}$$

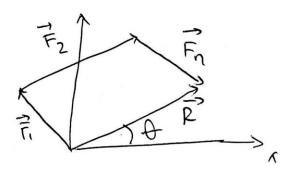
$$\overrightarrow{R} = (F_1 \times \overrightarrow{i} + F_1 y \overrightarrow{j}) + (F_2 \times \overrightarrow{i} + F_2 y \overrightarrow{j})$$

$$= (F_1 \times + F_2 \times) \overrightarrow{i} + (F_1 y + F_2 y) \overrightarrow{j}$$
Cosine lew

Theory of sinus
$$\frac{12}{\sin \phi} = \frac{F_1}{\sin \beta} = \frac{F_2}{\sin \beta}$$
sind
sine low

R= \Fi+F2- 2FE cosp


For = Fx = Fax+Fbx = Fa cos Cla+Fb sos Clb) Solve


Fa = Fb

A B the engle

Q-Us Cla-b between F and x axis

F = (Fax + Fbx) i + (Fay+Fby) j 3.3 Resultant of System of Forces

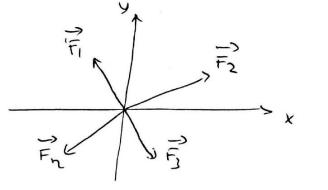
Using Rectangular components $\vec{R} = Rx\vec{i} + Ry\vec{j}$

$$R_X = \sum f_{ix} = F_{ix} + F_{2x} + F_{nx}$$

 $R_Y = \sum f_{iy} = f_{iy} + F_{2y} + F_{ny}$

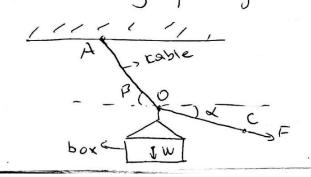
Magnitude R = VIZX+Ry2

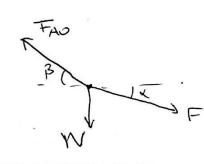
Denection (Aple between 12 and x exis)


$$tan \theta = \frac{Ry}{Rx}$$

33 Resulton 34 Equilibrium of Particle

Condition for Equilibrium is simple:


The resultant of all the forces acting on the particle must be sero.


$$\begin{aligned}
\widehat{R} &= O \\
\widehat{R} &= Rx \widehat{i} + Ry \widehat{j} + Rz \widehat{k} = O \\
Rx &= Fix + Fzx + F3x + Fax = O \\
&= \sum Fix = O \\
Ry &= Fzy + Fzy + Fzy + Fay = O \\
&= \sum Fiy = O
\end{aligned}$$

3.5 Free Body Diapron (FBD)

FBD is a sketch of the outlined shape of the body, whic represents it as being "free" from its surroundings. (e.g. supports)

if the system is in equilibrium Then, $Rx = \sum Fx = 0$ $-Fx = \cos 3 + F\cos x = 0$ $Ry = \sum Fy = 0$ Fac. $\sin 3 \neq F\sin x - W = 0$

Find the resultant of R of the force system given in Fig. X Find the direction of 12.

$$F_1 = \bar{r}_2 = \hat{r}_4 = 5$$

 $F_3 = 26 \text{ kN}$
 $Q = 5 \text{ m/O} + 6$

F₁=F₂=F₄= 5kN e) Finde the resultant of the given Force system.

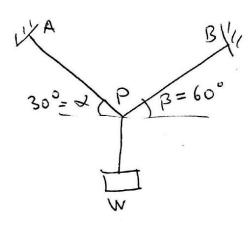
F₃=26kN h) 1-1

b) Lesolve the resultant of R into its components in u an u director

into its components in
$$R_{\pm} = 5.00560 + 5.00500 + \frac{12}{13} = -19 \text{ kN}$$

$$R_{\pm} = 5.00560 + 5.00500 + \frac{12}{13} = -19 \text{ kN}$$

$$R_{\pm} = 5.00560 + 5.00500 - 26.\frac{5}{13} = -5 \text{ kN}$$


$$R_{\pm} = \sqrt{18^{2} + 5^{2}} = 18.65 \text{ kN}$$

b)
$$Rx = Fu.\cos 30 - Fv.\cos 30 = -19$$

 $Ry = Fu.\sin 30 + Fv.\sin 30 = -5$
Solving For Fu and Fv

$$F_{u} = -15,97 \text{ kN}$$

$$F_{v} = 5,97 \text{ kN}$$

Example

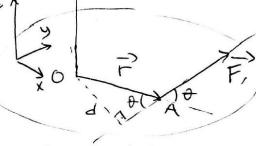
The maximum lood that can be corried by the AP rope is 500 kM.

Find the maximum weight w whic conbe corried by the ropes?

Moment of a Force

Monient of a Force about a point O can be expressed by rector poduct of position vector is and force F.

2 axis.



Force F tends to

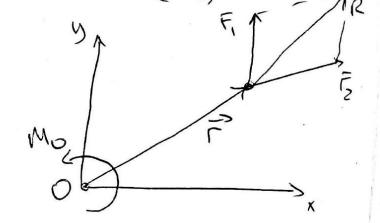
The sperpendicular to the xy plane $M_0 = 7 \times F$ rotate the bar about $M_0 = 7 \times F$

Mo=rFsin O

d = C. sin O

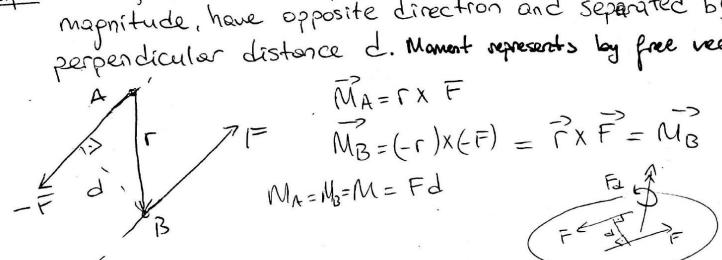
Sign of moment Mo. can be determined by right hand rule

7=X7+497 Mo=ixF= [x b] = (x ry-y Fx)]

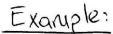

r= Xi+ys

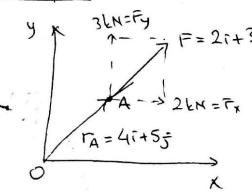
Varianon Theorem: Retoment of the Resultants of a system of forces about a point equals to the sum of numerals of individual forces

$$\overline{M}_{0} = \overrightarrow{r} \times \overrightarrow{R}$$


$$= \overrightarrow{r} \times (\overrightarrow{F_{1}} + \overrightarrow{F_{2}})$$

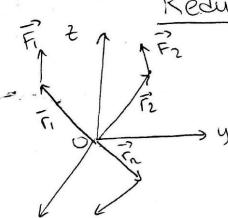
$$M_{0} = \overrightarrow{r} \times \overrightarrow{F_{1}} + \overrightarrow{r} \times \overrightarrow{F_{2}} = \overrightarrow{r} \times \overrightarrow{R}$$




Moment of a Couple

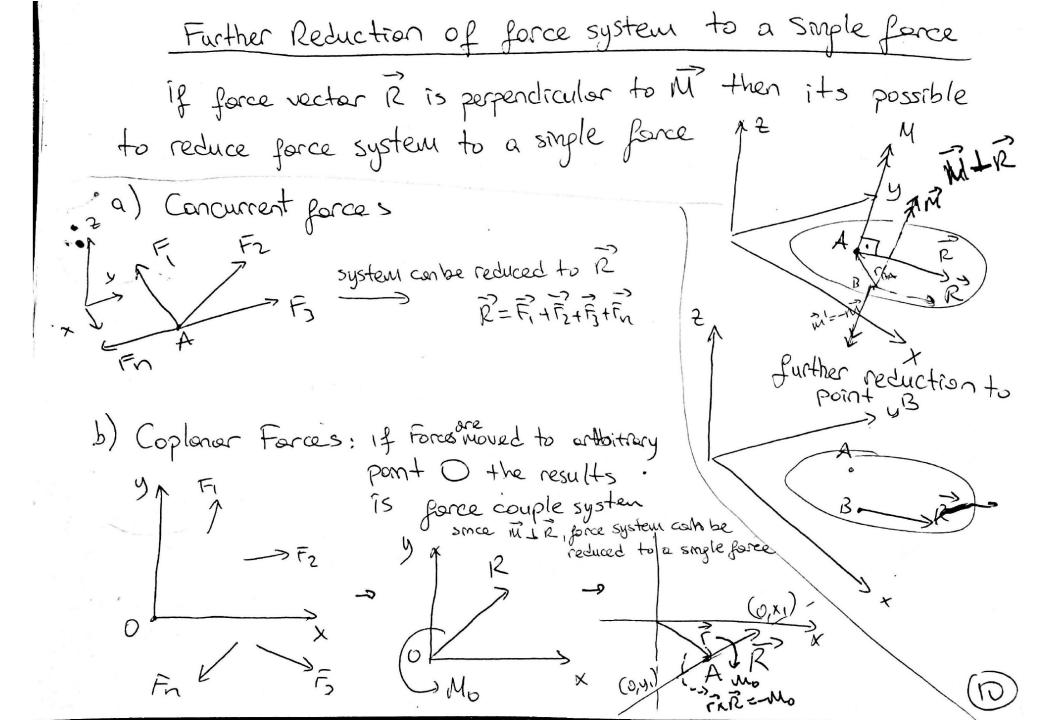
Couple is defined as two parallel porces that have the same mapnitude, have opposite directron and separated by a perpendicular distance d. Moment represents by free vectors

Equivalent Couple's Took Two Couples are said to be equivalent if they produce some moment. F=50 EN 2=2m > F= -50 EN 120 = Fz M = 2.50 = 100 kHM = 20,5 = 100 EN Moving a Force to a point out of its line of action No =7 X F Forces withsome magnitude but opposite sense Force Couple system one odded



A(4,5)m nottosina ethiyan F=21+35/lik huvneti O noktosina taziyin.

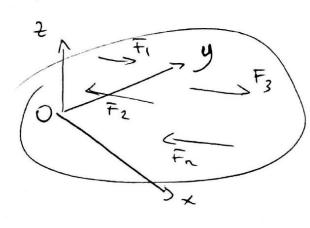
$$M_0 = rx F = \begin{vmatrix} 1 & 5 \\ u & 5 \\ 2 & 3 \end{vmatrix} = (ux3 - 5x2) k = 2k Hug.$$


Kurvetter Sistemanin

Reduction of Force System to a Point

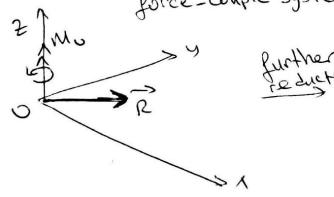
Reduction results in force-couple systems

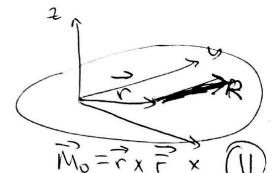
ongle between force and couple

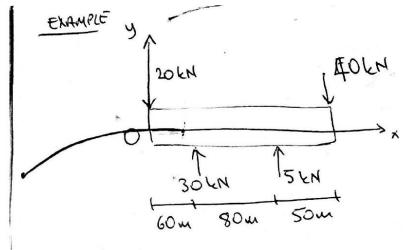


The moment of R with respect to point O is;
$$\widetilde{M}_{o} = M_{o}\widetilde{k} = \begin{vmatrix} \widetilde{x} & \widetilde{y} \\ Rx & Ry \end{vmatrix} = (xRy - yRx)\widetilde{k}$$

Mo = xRy-yRx -> equation of line of action

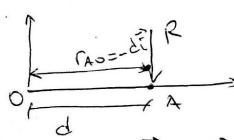

for
$$y=0$$
 $X_1 = \frac{M_0}{Ry}$ points that intersect the x and y exist for $x=0$ $y_1 = -\frac{M_0}{Rx}$

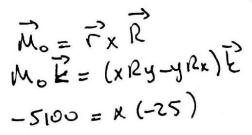

c) Parellel Forces: Forces to m the some plane (xy plane)



Resultant 12 = Rxi+Ry 5 Moment at 0 $\vec{M} = \vec{Z} \vec{r}_i \times \vec{F}_i = M_0 \vec{k}$

Than it is obvious that R_LM, Hence force-couple system can be reduced to a simple for

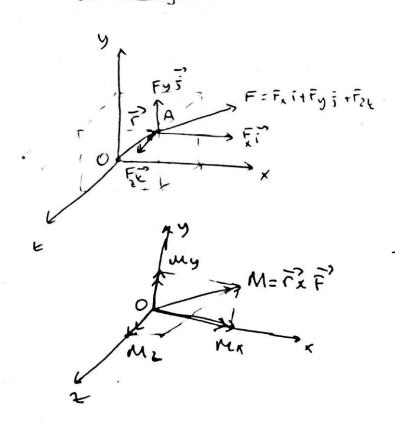

Find the resultant Force of piven Parellel forces applied on the ripid body?


R=Rxit Ryj

Rx=0

Ry=-20+30+5-40=-25 kM

if we are to find a single resultent force we have to move the force-couple system to point A



EXAMPLE For the piven parce system (3,4) - 7 LN a) Find the resultant at point O (reduce the forces system) 1 FN b) Find the equation for line of action c) Raduce the force system to point A a) Rx=7+8-8-5-4=3KM Ry = 1+5.3 = 4 kN +6M0=1.1+3.3+1.4-8.0,5-7.4=-18 kNm 12 = 12x+12y= 5 kN $tan \phi = \frac{ey}{R\lambda} = \frac{u}{\lambda}$ $\phi = 53.13^\circ$ b) Equation got line of ection c) MA = -4.4 - 18 = -34 ENn Mo=PXR= | x g | = x Ry - Ryy } MO= x Ry- Rxy (0,6) -18 = x4 - 34(-4,5,0)

Rectangular components of the Moment of a Force

In the case of Problem involving two dimensions

Mok = Mo = (X, Fy-y Fx) k

Consider the force applied at point A and position vector is using their rectangular components

T= x i+ y j+ z ł

F= Fxi+ Fy j+ +Fz ł

+he moment of the force about point 0

Mi) = (x F = Mxi+Myj+Mz)

- | i = 2 = (y-12-21y)i+

- | x fy = 2 + (2 Fx - x Fz) j+

+ (x Fy - y Fx) &

Hence:

Mx = yf2-2fg My = 2fx - Xf2 Mz = x fy-yfx

Moment of a Force About a Given Axis

Moment of a Force about an exis always remains constant

lett moment of Force F about poin o in which the exist tet passes through Be Mo

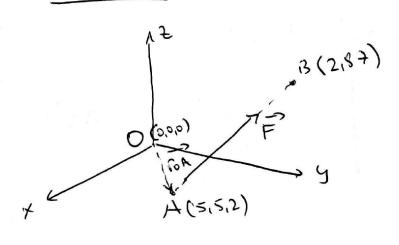
Moment of F about t-t exis is calculated or follow

- take the moment of F about a point Ires

on the t-t exis. Say point o;

Mo = TOAXF

- Calculate the unit vector of t-t exis


HE = Mo. Tt (projection of Mo on t-t exis)

- Write Mt in Vectorial form

Mi=Mt lit

if the moment MB is calculated first result willbe some

EXAMPLE

The force F is acting on the direction AB and its magnitude is F=10 kM. Move F? to point O.

$$dx = (2-5) = -3 m$$

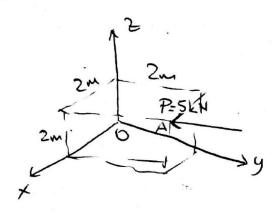
$$dy = (8-5) = 3 m$$

$$d = (7-2) = 5 m$$

$$d = (dx^{2} + dy^{2} + dz = 6,56m)$$

F=FZ

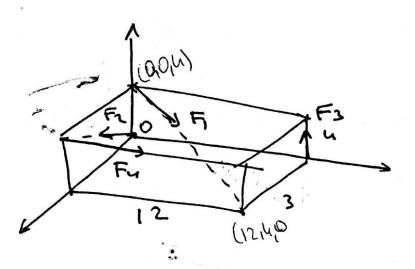
$$\lambda_{x} = \frac{dx}{d} = -0.457$$


$$\lambda_{y} = \frac{dy}{d} = 0.457$$

$$\lambda_{z} = \frac{dz}{d} = 0.762$$

$$\lambda_{z} = \frac{dz}{d} = 0.762$$

$$|W_{0}| = |V_{0}| = |V_{$$

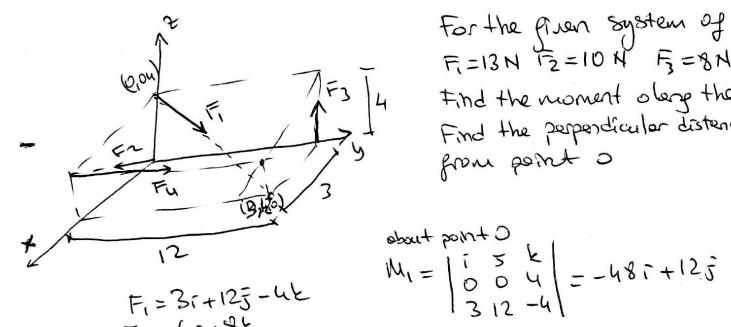

EXAMPLE

P knivetini O noktosina tosiyin.

$$\overline{M_0} = \overline{OA} \times \overline{F} = \begin{vmatrix} \overline{C} & 5 & 1 \\ 2 & 2 & 2 \\ 0 & -5 & 0 \end{vmatrix} = 10\overline{C} - 10\overline{C}$$

Reducing the force-Couple system to a whenchis The given force-couple system con be reduced to a point where the force and the moment vector are in the same direction The magnitude of Mi = R. Mo (Mi is the) In order to define exis of whench the force-couple system the following equation can be unitten (No, M, and R are known) the component of . T (e.g. r= xi+yj+2k) can be found by the above equation.

For the given system of forces


F_1=13 H F_2=10N F_3=8H Fu=10N

Find the moment values along the diffection of whench

from pomt 0

$$F_1 = 3i + 12j - 4k$$
 $F_2 = 6i + 8k$ $M_1(0) = -4ki + 12j$
 $F_3 = 8k$ $F_4 = 9j$ $M_2(0) = 0$
 $M_3(0) = 194 = 96i$
 $M(0) = 24i + 12j + 2j$
 $M(0) = 25i + 2j$
 $M(0) = 25i + 2j$

$$M_{i} = \frac{P(0).M(0)}{|P(0)|} = \frac{24}{|P(0)|} = \frac{684}{31.88} = \frac{21.115}{31.88} = \frac{1}{12} = \frac{1}$$

$$F_{2} = 6i + 8e$$

$$F_{3} = 8k$$

$$F_{u} = 85$$

$$M_{2} = 0$$

$$M_{3} = |0|20| = 96i$$

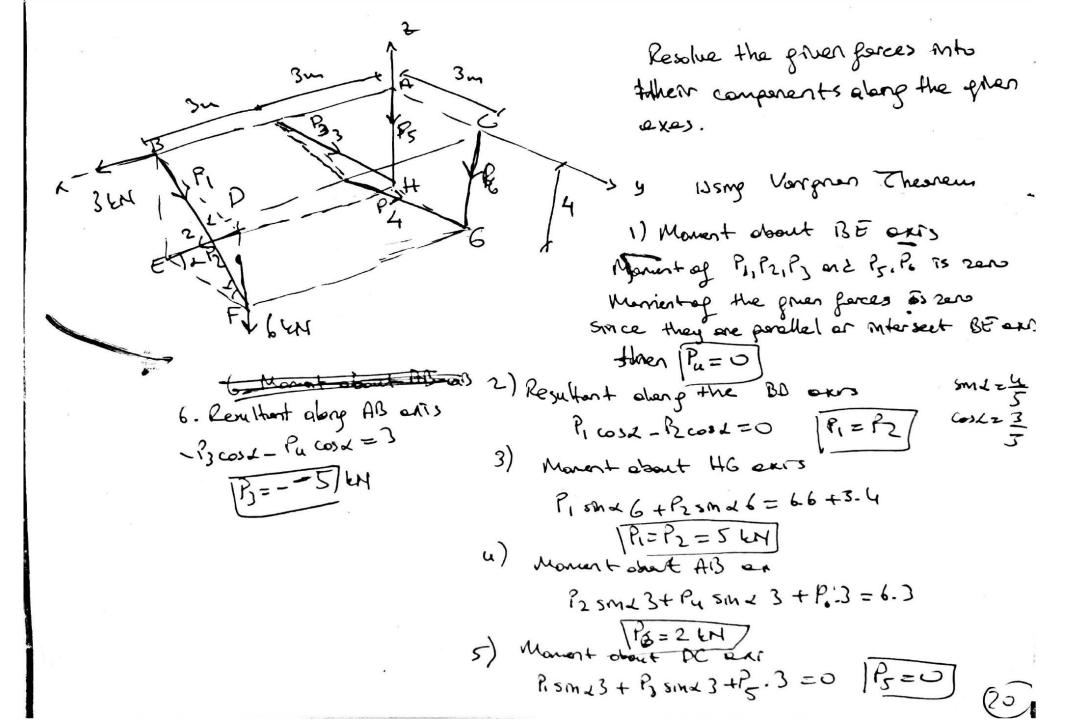
$$M_{1} = \frac{28i + 105 - 4k}{3^{2} + 12^{2} + 4k^{2}} = \frac{3}{13}i + \frac{12}{13}s - \frac{4}{13}k$$

$$M_{2} = 0$$

$$M_{3} = |0|20| = 96i$$

For the firen system of forces F=13N ==10N F=8N F=3N Find the moment oleng the direction of whench Find the perpordicular distence of exis of unench from point o

m= 14,+142+143+144


アニーキーラナディル

= \$1+21=+126

=127+125+276

R= 0,01357+90325+0,018 k $M_1 = \frac{12.17}{121} = \frac{684}{25.81} = 26,5 \text{ H.m.} \Rightarrow M_1 = M_1, M_2 = 0,358 + 0,836 + 0,477 \text{ k}$

0,130y-0,880p= 12 7xR+W = W6 (xi+yz+2k) x (0,358i+0,836 z+0,477k)=12i+12z+27k -0,477x+0,358z=12 (0,4774-0,836)] = (0,477x-0,3582)]+ (0,836x-0,358y) = 12;+12;+27 (0,836x-9358y=27

