

Work done by force \mathbf{F}, where $\Delta \mathrm{r}$ is the displacement vector

$$
W=\mathbf{F} \cdot \Delta \mathbf{r}=F \Delta r \cos \theta
$$

Work and Kinetic Energy

When an object is displaced on a frictionless, horizontal surface, the normal force \mathbf{n} and the gravitational force $m g$ do no work on the object. In the situation shown here, \mathbf{F} is the only force doing work on the object.

That is, if $\theta=90^{\circ}$, then $W=0$ because $\cos 90^{\circ}=0$

SI unit of work :
1 Newton. meter ($\mathrm{N} \cdot \mathrm{m}$)= 1 joule (J)
Work is an energy transfer.

Work Done by a Varying Force

$W=F \Delta r \cos \theta$

Assume that the object is moving in x-direction,
Then; $\quad W=F_{x} \Delta x$
if the force is variable;

$$
W=\int_{x_{i}}^{x_{f}} F_{x} d x
$$

If more than one force acts on a system the work done by the net force is the total work, or net work, as the particle moves from x_{i} to x_{f}

$$
\Sigma W=W_{\text {net }}=\int_{x_{i}}^{x_{j}}\left(\sum F_{x}\right) d x
$$

Work Done by a Spring

(c)
$\mathrm{F}_{\mathrm{s}}=-\mathrm{kx}$
x is the position of the block relative to its equilibrium $(x=0)$ position and k is a positive constant called the force constant or the spring constant of the spring.

$$
\begin{gathered}
W_{s}=\int_{x_{i}}^{x_{f}} F_{s} d x=\int_{-x_{\max }}^{0}(-k x) d x=\frac{1}{2} k x_{\max }^{2} \\
W_{s}=\int_{x_{i}}^{x_{f}}(-k x) d x=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2}
\end{gathered}
$$

Kinetic Energy and the Work-Kinetic Energy
Theorem

$$
\sum W=\int_{x_{i}}^{x_{f}} \sum F d x
$$

$$
\begin{aligned}
& \sum W=\int_{x_{i}}^{x_{f}} m a d x=\int_{x_{i}}^{x_{f}} m \frac{d v}{d t} d x=\int_{x_{i}}^{x_{f}} m \frac{d v}{d x} \frac{d x}{d t} d x=\int_{v_{i}}^{v_{f}} m v d v \\
& \sum W=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}
\end{aligned}
$$

$$
K \equiv \frac{1}{2} m v^{2} \quad \text { Kinetic Energy }
$$

$$
\Sigma W=K_{f}-K_{i}=\Delta K \quad \text { work-kinetic energy theorem }
$$

the work done by the net force equals the change in kinetic energy of the system.
$F_{s}=-k x$
x is the position of the block relative to its equilibrium ($x=0$) position and k is a positive constant called the force constant or the spring constant of the spring.

Situations Involving Kinetic Friction

Force of friction is always in opposite direction to motion, then the work done by force of friction is;

$$
-f_{k} \Delta x=\Delta K
$$

The general case involving kinetic friction

$$
\begin{aligned}
\Delta K & =-f_{k} d+\sum W_{\text {other forces }} \\
K_{f} & =K_{i}-f_{k} d+\sum W_{\text {other forces }}
\end{aligned}
$$

Ex/ a) A 6.0-kg block initially at rest is pulled to the right along a horizontal, frictionless surface by a constant horizontal force of 12 N . Find the speed of the block after it has moved 3.0 m .

$$
W=F \Delta x=(12 \mathrm{~N})(3.0 \mathrm{~m})=36 \mathrm{~J}
$$

$$
\begin{aligned}
W & =K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-0 \\
v_{f} & =\sqrt{\frac{2 W}{m}}=\sqrt{\frac{2(36 \mathrm{~J})}{6.0 \mathrm{~kg}}}=3.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) Find the speed of the block after it has moved 3.0 m if the surfaces in contact have a coefficient of kinetic friction of 0.15 .

$$
\begin{aligned}
& \Delta K=-f_{k} d+\sum W_{\text {other forces }} \\
& K_{f}=K_{i}-f_{k} d+\sum W_{\text {other forces }}
\end{aligned}
$$

$$
\begin{aligned}
& n=m g . \\
& f_{k}=\mu_{k} n=\mu_{k} m g=(0.15)(6.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=8.82 \mathrm{~N} \\
& \begin{array}{c}
\Delta K_{\text {friction }}= \\
\frac{1}{2} m v_{f}{ }^{2}= \\
f_{k} d=-(8.82 \mathrm{~N})(3.0 \mathrm{~m})=-26.5 \mathrm{~J} \\
v_{f}{ }^{2}-f_{k} d+\sum W_{\text {other forces }} \\
=\sqrt{v_{i}{ }^{2}+\frac{2}{m}\left(-f_{k} d+\sum W_{\text {other forces }}\right)} \\
=\sqrt{0+\frac{2}{6.0 \mathrm{~kg}}(-26.5 \mathrm{~J}+36 \mathrm{~J})} \\
=1.8 \mathrm{~m} / \mathrm{s}
\end{array}
\end{aligned}
$$

Power

average power

$$
\overline{\mathscr{P}} \equiv \frac{W}{\Delta t}
$$

instantaneous power

$$
\mathscr{P} \equiv \lim _{\Delta t \rightarrow 0} \frac{W}{\Delta t}=\frac{d W}{d t}
$$

$$
d W=\mathbf{F} \cdot d \mathbf{r}
$$

$$
\mathscr{P}=\frac{d W}{d t}=\mathbf{F} \cdot \frac{d \mathbf{r}}{d t}=\mathbf{F} \cdot \mathbf{v}
$$

In general, power is defined for any type of energy transfer. Therefore, the most general expression for power is ;

$$
\mathscr{P}=\frac{d E}{d t} \quad 1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}
$$

Ex/ An elevator car has a mass of 1600 kg and is carrying passengers having a combined mass of 200 kg . A constant friction force of 4000 N retards its motion upward, as shown in Figure.
a) What power delivered by the motor is required to lift the elevator car at a constant speed of $3.00 \mathrm{~m} / \mathrm{s}$?
b) What power must the motor deliver at the instant the speed of the elevator is v if the motor is designed to provide the elevator car with an upward acceleration of $1.00 \mathrm{~m} / \mathrm{s} 2$?

a)

$$
a=0 . \quad \Sigma F_{y}=0
$$

$$
\sum F_{y}=T-f-M g=0
$$

$M=1600+200=1800 \mathrm{~kg}$

$$
\begin{aligned}
& T=f+M g \\
&=4.00 \times 10^{3} \mathrm{~N}+\left(1.80 \times 10^{3} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \\
&=2.16 \times 10^{4} \mathrm{~N} \\
& \mathscr{P}= \mathbf{T} \cdot \mathbf{v}= \\
&= T v \\
&=\left(2.16 \times 10^{4} \mathrm{~N}\right)(3.00 \mathrm{~m} / \mathrm{s})=6.48 \times 10^{4} \mathrm{~W} \\
& \text { b) } \begin{aligned}
\sum F_{y} & =T-f-M g=M a \\
T & =M(a+g)+f \\
& =\left(1.80 \times 10^{3} \mathrm{~kg}\right)\left(1.00 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& +4.00 \times 10^{3} \mathrm{~N} \\
& =2.34 \times 10^{4} \mathrm{~N} \\
\mathscr{P}= & T v=\left(2.34 \times 10^{4} \mathrm{~N}\right) v
\end{aligned}
\end{aligned}
$$

