Vectors

Coordinate Systems

1) Cartesian coordinates are also called rectangular coordinates (x, y, z).

2) Plane polar coordinates (r, θ)

Vector and Scalar Quantities

A scalar quantity is completely specified by a single value with an appropriate unit and has no direction. Temperature, time, mass, distance and speed are some examples of scalar quantities.

A vector quantity is completely specified by a number and appropriate units plus a direction.
Force, displacement, velocity are some examples of vector quantities.
Displacement

 but in most texts a bold letter represents a vector: A magnitude of the vector is A or $|\mathbf{A}|$
The magnitude of a vector is always a positive number and has physical units.
distance

Some Properties of Vectors

Equality of Two Vectors

Two vectors A and B are equal if they have the same magnitude and point in the same direction.

$$
\begin{gathered}
\qquad \mathbf{A}=\mathbf{B} \\
\text { only if } A=B \text { and }
\end{gathered}
$$

if A and B point in the same direction along parallel lines.

these four vectors are equal

Adding Vectors

Sum of two vectors is the resultant vector

$$
\mathbf{R}=\mathbf{A}+\mathbf{B}
$$

commutative law of addition

$$
\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}
$$

associative law of addition

$$
\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}
$$

Negative of a Vector;

The negative of the vector A is defined as the vector that when added to A gives zero for the vector sum.
$\mathrm{A}+(-\mathrm{A})=0$
The vectors A and -A have the same magnitude but point in opposite directions.

Subtracting Vectors;

$A-B=A+(-B)$

Multiplying a Vector by a Scalar:

When vector \mathbf{A} is multiplied by a positive scalar m, then the product $m \mathbf{A}$ is a vector with the magnitude $m A$ and in the same direction as \mathbf{A}.
If vector \mathbf{A} is multiplied by a negative scalar $-m$, then the product $-m \mathbf{A}$ is directed opposite \mathbf{A}.
For example, the vector $\mathbf{3 A}$ is three times as long as \mathbf{A} and points in the same direction as \mathbf{A}.

Components of a Vector and Unit Vectors

$$
\mathbf{A}=\dot{\mathbf{A}}_{x}+\mathbf{A}_{y}
$$

\mathbf{A}_{x} and A_{y} are components of vector \mathbf{A}

$$
\begin{gathered}
A_{x}=A \cos \theta \\
A_{y}=A \sin \theta \\
A=\sqrt{A_{x}^{2}+A_{y}^{2}} \\
\tan \theta=\left(\frac{A_{y}}{A_{x}}\right)
\end{gathered}
$$

Unit Vectors

A unit vector is a vector that has a magnitude of 1 unit.
A unit vector has no dimension
A unit vector shows the direction of a vector.
$\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are unit vectors for x, y and z directions.

$$
\mathbf{A}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}
$$

$$
\mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}} .
$$

$$
\mathbf{R}=\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}}+\left(A_{z}+B_{z}\right) \hat{\mathbf{k}}
$$

The Scalar Product of Two Vectors (dot product)
$\mathbf{A} \cdot \mathbf{B} \equiv A B \cos \theta \quad$ result is scalar

$$
\begin{aligned}
& \hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=1 \\
& \hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{i}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=0
\end{aligned}
$$

i.i=(1) (1) $\cos 0^{\circ}=1$
i.j=(1) (1) $\cos 90^{\circ}=0$

$$
\begin{array}{ll}
\mathbf{A}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}} & \mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\
\mathbf{B}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}} & \mathbf{A} \cdot \mathbf{A}=A_{x}^{2}+A_{y}^{2}+A_{z}^{2}=A^{2}
\end{array}
$$

$$
\text { Ex/ } \quad \mathbf{A}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}} \quad \mathbf{B}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}
$$

a) $\mathbf{A} \cdot \mathbf{B}=(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}) \cdot(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}})$

$$
\begin{aligned}
& =-2 \hat{\mathbf{i}} \cdot \hat{\mathbf{i}}+2 \hat{\mathbf{i}} \cdot 2 \hat{\mathbf{j}}-3 \hat{\mathbf{j}} \cdot \hat{\mathbf{i}}+3 \hat{\mathbf{j}} \cdot 2 \hat{\mathbf{j}} \\
& =-2(1)+4(0)-3(0)+6(1)
\end{aligned}
$$

$$
=-2(1)+4(0)-3(0)+6(1)
$$

$$
=-2+6=4
$$

b) $A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(2)^{2}+(3)^{2}}=\sqrt{13}$ $B=\sqrt{B_{x}{ }^{2}+B_{y}{ }^{2}}=\sqrt{(-1)^{2}+(2)^{2}}=\sqrt{5}$

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{A} \cdot \mathbf{B}}{A B}=\frac{4}{\sqrt{13} \sqrt{5}}=\frac{4}{\sqrt{65}} \\
\theta & =\cos ^{-1} \frac{4}{8.06}=60.2^{\circ}
\end{aligned}
$$

The Vector Product of Two Vectors (cross product)

$$
\begin{array}{ll}
\mathbf{C}=\mathbf{A} \times \mathbf{B} & \text { result is a vector } \\
C \equiv A B \sin \theta & \text { (magnitude of the product) }
\end{array}
$$

Right-hand rule

$$
\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}
$$

$$
\mathbf{A} \times(\mathbf{B}+\mathbf{C})=\mathbf{A} \times \mathbf{B}+\mathbf{A} \times \mathbf{C}
$$

ixi= (1) (1) $\sin 0^{\circ}=0$
$\mathrm{ixj}=(1)(1) \sin 90^{\circ}=\mathbf{k}$

$$
\begin{aligned}
& \hat{\mathbf{i}} \times \hat{\mathbf{i}}=\hat{\mathbf{j}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}} \times \hat{\mathbf{k}}=0 \\
& \hat{\mathbf{i}} \times \hat{\mathbf{j}}=-\hat{\mathbf{j}} \times \hat{\mathbf{i}}=\hat{\mathbf{k}} \\
& \hat{\mathbf{j}} \times \hat{\mathbf{k}}=-\hat{\mathbf{k}} \times \hat{\mathbf{j}}=\hat{\mathbf{i}} \\
& \hat{\mathbf{k}} \times \hat{\mathbf{i}}=-\hat{\mathbf{i}} \times \hat{\mathbf{k}}=\hat{\mathbf{j}}
\end{aligned}
$$

determinant form

$$
\begin{gathered}
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\left|\begin{array}{ll}
A_{y} & A_{z} \\
B_{y} & B_{z}
\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{ll}
A_{x} & A_{z} \\
B_{x} & B_{z}
\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{ll}
A_{x} & A_{y} \\
B_{x} & B_{y}
\end{array}\right| \hat{\mathbf{k}} \\
\mathbf{A} \times \mathbf{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\mathbf{i}}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \hat{\mathbf{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { EX/ } \begin{aligned}
\mathbf{A} & =2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}} \quad \mathbf{B}=-\mathbf{i}+2 \mathbf{j} \\
\mathbf{A} \times \mathbf{B} & =(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}) \times(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \\
& =2 \hat{\mathbf{i}} \times 2 \hat{\mathbf{j}}+3 \hat{\mathbf{j}} \times(-\hat{\mathbf{i}})=4 \hat{\mathbf{k}}+3 \hat{\mathbf{k}}=7 \hat{\mathbf{k}} \\
\mathbf{B} \times \mathbf{A} & =(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \times(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}) \\
& =-\hat{\mathbf{i}} \times 3 \hat{\mathbf{j}}+2 \hat{\mathbf{j}} \times 2 \hat{\mathbf{i}}=-3 \hat{\mathbf{k}}-4 \hat{\mathbf{k}}=-7 \hat{\mathbf{k}}
\end{aligned} \\
&
\end{aligned}
$$

