Motion

Position, Velocity, and Speed

Assume that an object is moving form A to B
initial position of the object is $X_{i}=-2 \mathrm{~m}$
Final position of the object is $X_{f}=3 \mathrm{~m}$
The displacement of the particle is defined as its change
in position in some time interval.

$$
\Delta x \equiv x_{f}-x_{i}
$$

The average velocity of the particle

$$
\bar{v}_{x} \equiv \frac{\Delta x}{\Delta t}
$$

The average speed of the particle

$$
\text { Average speed }=\frac{\text { total distance }}{\text { total time }}
$$

Distance is the total length of the path followed
by the particle.
displacement and velocity are vector quantities
distance and speed are scalar quantities
$E x / A$ car is moving from $x=30 m$ to $x=-53 m$ in 50 s .
Find the displacement, average velocity of the car.

$$
\begin{aligned}
\Delta x & =x_{\mathrm{F}}-x_{\mathrm{A}}=-53 \mathrm{~m}-30 \mathrm{~m}=-83 \mathrm{~m} \\
\bar{v}_{x} & =\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{x_{\mathrm{F}}-x_{\mathrm{A}}}{t_{\mathrm{F}}-t_{\mathrm{A}}} \\
& =\frac{-53 \mathrm{~m}-30 \mathrm{~m}}{50 \mathrm{~s}-0 \mathrm{~s}}=\frac{-83 \mathrm{~m}}{50 \mathrm{~s}} \\
& =-1.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Instantaneous Velocity and Speed

$$
v_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

The instantaneous speed of a particle is the magnitude of its instantaneous velocity.

Acceleration

Average acceleration

$$
\bar{a}_{x} \equiv \frac{\Delta v_{x}}{\Delta t}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}}
$$

Instantaneous acceleration

$$
\begin{gathered}
a_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\frac{d v_{x}}{d t} \\
a_{x}=\frac{d v_{x}}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& E x / x(t)=3 t^{2}-2 t+4(\mathrm{~m}) \\
& v(t)=6 t-2(\mathrm{~m} / \mathrm{s}) \\
& a(t)=6\left(\mathrm{~m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

EX/ The velocity of a particle moving along the x axis varies in time according to the expression $v_{x}=\left(40-5 t^{2}\right) \mathrm{m} / \mathrm{s}$, where t is in seconds.
(A) Find the average acceleration in the time interval $t=0$ to $t=2.0 \mathrm{~s}$.
(B) Determine the acceleration at $t=2.0 \mathrm{~s}$.
(A)

$$
\bar{a}_{x}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}}=\frac{v_{x \mathrm{~B}}-v_{x \mathrm{~A}}}{t_{\mathrm{B}}-t_{\mathrm{A}}}
$$

$v_{x A}=\left(40-5 t_{\mathrm{A}}{ }^{2}\right) \mathrm{m} / \mathrm{s}=\left[40-5(0)^{2}\right] \mathrm{m} / \mathrm{s}=+40 \mathrm{~m} / \mathrm{s}$
$v_{x \mathrm{~B}}=\left(40-5 t_{\mathrm{B}}{ }^{2}\right) \mathrm{m} / \mathrm{s}=\left[40-5(2.0)^{2}\right] \mathrm{m} / \mathrm{s}=+20 \mathrm{~m} / \mathrm{s}$

$$
\bar{a}_{x}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}}=\frac{v_{x \mathrm{~B}}-v_{x \mathrm{~A}}}{t_{\mathrm{B}}-t_{\mathrm{A}}}=\frac{(20-40) \mathrm{m} / \mathrm{s}}{(2.0-0) \mathrm{s}}=-10 \mathrm{~m} / \mathrm{s}^{2}
$$

(B) $a_{x}=-10 t \mathrm{~m} / \mathrm{s}^{2}$

$$
a_{x}=(-10)(2.0) \mathrm{m} / \mathrm{s}^{2}=-20 \mathrm{~m} / \mathrm{s}^{2}
$$

One-Dimensional Motion with Constant
Acceleration

(a)

(b)

(c)

$$
a_{x}=\frac{v_{x f}-v_{x i}}{t-0}
$$

$$
v_{x f}=v_{x i}+a_{x} t
$$

$$
\bar{v}_{x}=\frac{v_{x i}+v_{x f}}{2}
$$

$$
\begin{gathered}
x_{f}-x_{i}=\bar{v} t=\frac{1}{2}\left(v_{x i}+v_{x f}\right) t \\
x_{f}=x_{i}+\frac{1}{2}\left(v_{x i}+v_{x j}\right) t \\
- \\
x_{f}=x_{i}+\frac{1}{2}\left[v_{x i}+\left(v_{x i}+a_{x} t\right)\right] t \\
x_{f}=x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2} \\
x_{f}=x_{i}+\frac{1}{2}\left(v_{x i}+v_{x f}\right)\left(\frac{v_{x f}-v_{x i}}{a_{x}}\right)=\frac{v_{x j}{ }^{2}-v_{x i}^{2}}{2 a_{x}} \\
v_{x j}^{2}=v_{x i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right)
\end{gathered}
$$

(1)

(2)

Kinematic Equations for Motion of a Particle Under Constant Acceleration

Equation	Information Given by Equation
$v_{x f}=v_{x i}+a_{x} t$	Velocity as a function of time
$x_{f}=x_{i}+\frac{1}{2}\left(v_{x i}+v_{x x}\right) t$	Position as a function of velocity and time
$x_{f}=x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2}$	Position as a function of time
$v_{x f}{ }^{2}=v_{x i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right)$	Velocity as a function of position

(3)

Freely Falling Objects

A freely falling object is any object moving freely under the influence of gravity alone, regardless of its initial motion. Objects thrown upward or downward and those released from rest are all falling freely once they are released. Any freely falling object experiences an acceleration directed downward, regardless of its initial motion.
Magnitude of the free-fall acceleration denoted by the symbol «g».
The value of g is approximately $9.80 \mathrm{~m} / \mathrm{s}^{2}$.
Generally we use use $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Freely Falling Objects

$$
\begin{array}{lcc}
v_{1}=-g t & v_{2}=v-g t & v_{3}=-v-g t \\
y_{1}=-(1 / 2) g t^{2} & y_{2}=v t-(1 / 2) g t^{2} & y_{3}=v t-(1 / 2) g t^{2}
\end{array}
$$

Ex / A stone thrown from the top of a building is given an initial velocity of $20.0 \mathrm{~m} / \mathrm{s}$ straight upward. The building is 50.0 m high, and the stone just misses the edge of the roof on its way down, as shown in Figure. Using $t_{\mathrm{A}}=0$ as the time the stone leaves the thrower's hand at position «A», determine
a) the time at which the stone reaches its maximum height,
b) the maximum height,
c) the time at which the stone returns to the height from which it was thrown,
d) the velocity of the stone at this instant,
e) the velocity and position of the stone at $t=5.00 \mathrm{~s}$.

a)

$$
\begin{gathered}
v_{y \mathrm{~B}}=v_{y \mathrm{~A}}+a_{y} t, \\
v_{y \mathrm{~B}}=0
\end{gathered}
$$

d)

$$
\begin{aligned}
v_{y \mathrm{C}} & =v_{\mathrm{yA}}+a_{y} t=20.0 \mathrm{~m} / \mathrm{s}+\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(4.08 \mathrm{~s}) \\
& =-20.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

e) $\quad v_{y \mathrm{D}}=v_{y \mathrm{~A}}+a_{y} t=20.0 \mathrm{~m} / \mathrm{s}+\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(5.00 \mathrm{~s})$ $=-29.0 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
y_{\mathrm{D}}= & y_{\mathrm{c}}+v_{\mathrm{c}} t+\frac{1}{2} a_{y} t^{2} \\
= & 0+(-20.0 \mathrm{~m} / \mathrm{s} \mathrm{~s})(5.00 \mathrm{~s}-4.08 \mathrm{~s}) \\
& +\frac{1}{2}\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(5.00 \mathrm{~s}-4.08 \mathrm{~s})^{2} \\
= & -22.5 \mathrm{~m}
\end{aligned}
$$

$$
\text { C) } \begin{aligned}
y_{\mathrm{C}} & =0 \\
y_{\mathrm{C}} & =y_{\mathrm{A}}+v_{\mathrm{yA}} t+\frac{1}{2} a_{y} t^{2} \\
0 & =0+20.0 t-4.90 t^{2} \\
t & (20.0-4.90 t)=0
\end{aligned}
$$

$$
t=4.08 \mathrm{~s}
$$

