The Laws of Motion

The Concept of Force

Net force causes an object to accelerate.
The object accelerates only if the net force acting on it is not equal to zero.

The net force acting on an object is defined as the vector sum of all forces acting on the object. (We sometimes refer to the net force as the total force, the resultant force, or the unbalanced force.)

If the net force exerted on an object is zero, the acceleration of the object is zero and its velocity remains constant.

That is, if the net force acting on the object is zero, the object either remains at rest or continues to move with constant velocity.

When the velocity of an object is constant (including when the object is at rest), the object is said to be in equilibrium.

Newton's First Law and Inertial Frames

Newton's first law of motion, sometimes called the law of inertia.

Newton's First Law : In the absence of external forces, when viewed from an inertial reference frame, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line).

Simply, when no force acts on an object, the acceleration of the object is zero.

The tendency of an object to resist any attempt to change its velocity is called inertia.

An inertial frame of reference has no acceleration.

Mass

Mass is that property of an object that specifies how much resistance an object exhibits to changes in its velocity.

$$
\frac{m_{1}}{m_{2}} \equiv \frac{a_{2}}{a_{1}}
$$

Newton's Second Law

The acceleration of an object is directly proportional to the force acting on it. The magnitude of the acceleration of an object is inversely proportional to its mass.

Newton's second law: When viewed from an inertial reference frame, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

$$
\begin{gathered}
\sum \mathbf{F}=m \mathbf{a} \quad 1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \\
\sum F_{x}=m a_{x} \quad \sum F_{y}=m a_{y} \quad \sum F_{z}=m a_{z}
\end{gathered}
$$

Ex/ A hockey puck having a mass of 0.3 kg slides on the horizontal, frictionless surface of an ice rink. Two hockey sticks strike the puck simultaneously, exerting the forces on the puck shown in Figure. The force F_{1} has a magnitude of 5 N , and the force F_{2} has a magnitude of 8 N . Determine both the magnitude and the direction of the puck's acceleration.

$$
\begin{aligned}
& a_{x}=\frac{\sum F_{x}}{m}=\frac{8.7 \mathrm{~N}}{0.30 \mathrm{~kg}}=29 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{y}=\frac{\sum F_{y}}{m}=\frac{5.2 \mathrm{~N}}{0.30 \mathrm{~kg}}=17 \mathrm{~m} / \mathrm{s}^{2} \\
& a=\sqrt{(29)^{2}+(17)^{2}} \mathrm{~m} / \mathrm{s}^{2}=34 \mathrm{~m} / \mathrm{s}^{2} \\
& \theta=\tan ^{-1}\left(\frac{a_{y}}{a_{x}}\right)=\tan ^{-1}\left(\frac{17}{29}\right)=30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\sum F_{x} & =F_{1 x}+F_{2 x}=F_{1} \cos \left(-20^{\circ}\right)+F_{2} \cos 60^{\circ} \\
& =(5.0 \mathrm{~N})(0.940)+(8.0 \mathrm{~N})(0.500)=8.7 \mathrm{~N} \\
\sum F_{y} & =F_{1 y}+F_{2 y}=F_{1} \sin \left(-20^{\circ}\right)+F_{2} \sin 60^{\circ} \\
& =(5.0 \mathrm{~N})(-0.342)+(8.0 \mathrm{~N})(0.866)=5.2 \mathrm{~N}
\end{aligned}
$$

The Gravitational Force and Weight

The attractive force exerted by the Earth on an object is called the gravitational force F_{g}. This force is directed toward the center of the Earth and its magnitude is called the weight of the object.

$$
\begin{aligned}
\Sigma \mathbf{F} & =m \mathbf{a} \\
\mathbf{a} & =\mathbf{g} \\
\Sigma \mathbf{F} & =\mathbf{F}_{g} \\
\mathbf{F}_{g} & =m \mathbf{g}
\end{aligned}
$$

Newton's Third Law

The action force is equal in magnitude to the reaction force and opposite in direction. In all cases, the action and reaction forces act on different objects and must be of the same type.

If two objects interact, the force F_{12} exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force F_{21} exerted by object 2 on object 1.

in magnitude $n=m g$

Some Applications of Newton's Laws

Ex/ A traffic light weighing 122 N hangs from a cable tied to two other cables fastened to a support, as in Figure 5.10a. The upper cables make angles of 37.0° and 53.0° with the horizontal. Find the tensions in the cables.

T_{3} has only y-component

$$
\begin{gathered}
\Sigma F_{y}=\ddot{0} \quad T_{3}-\dot{F_{g}}=0 . \\
T_{3}=F_{g}=122 \mathrm{~N} .
\end{gathered}
$$

T_{1} and T_{2} have x - and y -components

$$
\begin{aligned}
& \sum F_{x}=-T_{1} \cos 37.0^{\circ}+T_{2} \cos 53.0^{\circ}=0 \\
& \sum F_{y}=T_{1} \sin 37.0^{\circ}+T_{2} \sin 53.0^{\circ}+(-122 \mathrm{~N})=0
\end{aligned}
$$

$$
T_{2}=T_{1}\left(\frac{\cos 37.0^{\circ}}{\cos 53.0^{\circ}}\right)=1.33 T_{1}
$$

$$
T_{1} \sin 37.0^{\circ}+\left(1.33 T_{1}\right)\left(\sin 53.0^{\circ}\right)-122 \mathrm{~N}=0
$$

$$
T_{1}=73.4 \mathrm{~N}
$$

$$
T_{2}=1.33 T_{1}=97.4 \mathrm{~N}
$$

Ex/

$\sum F_{x}($ system $)=F=\left(m_{1}+m_{2}\right) a_{x}$

For m_{2}

$$
\sum F_{x}=P_{12}=m_{2} a_{x} \quad P_{12}=m_{2} a_{x}=\left(\frac{m_{2}}{m_{1}+m_{2}}\right) F
$$

For m_{1}
$\sum F_{x}=F-P_{21}=F-P_{12}=m_{1} a_{x}$
$P_{12}=F-m_{1} a_{x}=F-m_{1}\left(\frac{F}{m_{1}+m_{2}}\right)=\left(\frac{m_{2}}{m_{1}+m_{2}}\right) F$

Weighing in an Elevator

Acceleration for the elevator;

1) $a=0$

$$
\mathrm{F}_{\mathrm{y}}=\mathrm{ma} ; \mathrm{T}-\mathrm{mg}=0 ; \mathrm{T}=\mathrm{mg}
$$

2) Acceleration is upward; a \uparrow $\mathrm{F}_{\mathrm{y}}=\mathrm{ma}$; $\mathrm{T}-\mathrm{mg}=\mathrm{ma}$; $\mathrm{T}=\mathrm{m}(\mathrm{g}+\mathrm{a})$
3) Acceleration is downward ; a $\mathrm{F}_{\mathrm{y}}=\mathrm{ma} ; \mathrm{mg}-\mathrm{T}=\mathrm{ma} ; \mathrm{T}=\mathrm{m}(\mathrm{g}-\mathrm{a})$

$$
\begin{aligned}
& \sum F_{y}=T-m_{1} g=m_{1} a_{y} \\
& \sum F_{y}=m_{2} g-T=m_{2} a_{y}
\end{aligned}
$$

$$
-m_{1} g+m_{2} g=m_{1} a_{y}+m_{2} a_{y}
$$

$$
a_{y}=\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) g
$$

Ex/ A ball of mass m_{1} and a block of mass m_{2} are attached by a lightweight cord that passes over a frictionless pulley of negligible mass as in Figure. The block lies on a frictionless incline of angle θ. Find the magnitude of the acceleration of the two obiects and the tension in the cord.

Free body diagrams

For m_{1}
$\sum F_{x}=0$
$\sum F_{y}=T-m_{1} g=m_{1} a_{y}=m_{1} a$
for m_{2}
$\sum F_{x^{\prime}}=m_{2} g \sin \theta-T=m_{2} a_{x^{\prime}}=m_{2} a$
$\sum F_{y^{\prime}}=n-m_{2} g \cos \theta=0$

$$
a=\frac{m_{2} g \sin \theta-m_{1} g}{m_{1}+m_{2}}
$$

$$
T=\frac{m_{1} m_{2} g(\sin \theta+1)}{m_{1}+m_{2}}
$$

Forces of Friction

When an object is in motion either on a surface or in a viscous medium such as air or water, there is resistance to the motion because the object interacts with its surroundings. We call such resistance a force of friction.

- force of static friction \mathbf{f}_{s} acts on a standing object.
$f_{s}=F$
- force of $\underline{\text { kinetic friction }} \mathbf{f}_{\mathrm{k}}$ acts on a moving object.

$$
f_{s} \leq \mu_{s} n \quad f_{k}=\mu_{k} n
$$

- μ_{s} : the coefficient of static friction
- μ_{k} : the coefficient of kinetic friction.
- \mathbf{n} : the normal force

Ex/ The following is a simple method of measuring coefficients of friction: Suppose a block is placed on a rough surface inclined relative to the horizontal, as shown in Figure. The incline angle is increased until the block starts to move. By measuring the critical angle θ_{c} at which this slipping just occurs, we can obtain μ_{s}.

$$
\begin{aligned}
& \sum F_{x}=m g \sin \theta-f_{s}=m a_{x}=0 \\
& \sum F_{y}=n-m g \cos \theta=m a_{y}=0
\end{aligned}
$$

$$
f_{s}=m g \sin \theta=\left(\frac{n}{\cos \theta}\right) \sin \theta=n \tan \theta
$$

$$
\begin{aligned}
\mu_{s} n & =n \tan \theta_{c} \\
\mu_{s} & =\tan \theta_{c} \\
\mu_{k} & =\tan \theta_{c}^{\prime}
\end{aligned}
$$

in which

$$
\theta_{c}^{\prime}<\theta_{c} .
$$

Ex/A hockey puck on a frozen pond is given an initial speed of $20 \mathrm{~m} / \mathrm{s}$. If the puck always remains on the ice and slides 115 m before coming to rest, determine the coefficient of kinetic friction between the puck and ice.

$$
\sum F_{x}=-f_{k}=m a_{x}
$$

$$
\sum F_{y}=n-m g=0 \quad\left(a_{y}=0\right)
$$

$$
\begin{gathered}
v_{x f}^{2}=v_{x i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right) \\
x_{i}=0 \text { and } v_{f}=0 \\
0=v_{x i}^{2}+2 a_{x} x_{f}=v_{x i}^{2}-2 \mu_{k} g x_{f} \\
\mu_{k}=\frac{v_{x i}^{2}}{2 g x_{f}} \\
\mu_{k}=\frac{(20.0 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(115 \mathrm{~m})}=0.117
\end{gathered}
$$

$$
f_{k}=\mu_{k} n, \quad n=m g
$$

Ex/A block of mass m_{1} on a rough, horizontal surface is connected to a ball of mass m_{2} by a lightweight cord over a lightweight, frictionless pulley, as shown in Figure. A force of magnitude F at an angle θ with the horizontal is applied to the block as shown. The coefficient of kinetic friction between the block and surface is μ_{k}. Determine the magnitude of the acceleration of the two objects.

Free body diagrams

$F \cos \theta-\mu_{k}\left(m_{1} g-F \sin \theta\right)-m_{2}(a+g)=m_{1} a$

$$
a=\frac{F\left(\cos \theta+\mu_{k} \sin \theta\right)-g\left(m_{2}+\mu_{k} m_{1}\right)}{m_{1}+m_{2}}
$$

