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Classical Solutions of Ordinary
Linear Differential Equations
Integrating Factor Method
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The integrating factor method provides a solution to
any first-order linear differential equation. Consider

This equation can be put into the form

The solution is
The integration constant C is obtained using the initial
condition. 25.12.2017
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Example

So
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Then,

Applying the initial condition
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Classical Solutions of Ordinary
Linear Differential Equations
Characteristic Equation
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The characteristic equation method is the technique for
solving homogeneous nth-order linear differential
equations with constant (time invariant) coefficients.
This method provides the solution for a constant-
coefficient linear homogeneous differential equation.
Consider

an, an–1, a1, and a0 are constant coefficients.
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The fundamental step of this technique is to assume a
solution of the form y = ert. Using this assumption,

Substituting into equation,

and dividing both sides by ert gives
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This equation is called the characteristic equation; it
yields the following n roots: rn, rn–1, …,r1. Because
there is more than one root, we rewrite the initial
assumption as

or,

The constants Cn, Cn–1, …, and C1 are evaluated using
the initial conditions.
This method is fairly simple; the most difficult step is
obtaining the roots of the characteristic equation. 25.12.2017
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Qualitative Characteristic of System Response

The characteristic equation method is particularly
powerful because the roots of the equation completely
describe the qualitative response (behavior) of the
system. Most of the important information about the
system response can be obtained from these roots.
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The relevant questions about the response are the
following:
• Is the response stable? That is, will the response
remain bounded when forced by a bounded input?

• Is the response monotonic or oscillatory?

• If monotonic and stable, how long will it take for the
transients to die out?

• If oscillatory, what is the period of oscillation and how
long will it take for the oscillations to die out? 25.12.2017
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A response is stable if it remains bounded when forced
by a bounded input. An unstable response is one that
when forced by a bounded response, it continues
moving up or down without stopping and reaching a
final value; a stable response reaches a final value.
The bounded input must be one that reaches a final
value.

Consider a second-order differential equation; all
findings apply to any nth-order differential equation,
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from which the following characteristic equation
develops:

and from the quadratic equation we obtain the roots
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There are three possible cases depending on the value
of the term under the square root:

1. yielding two real roots r1 and r2
2. yielding a single repeated real root
3. yielding two complex roots at 𝛼+ i𝛽

For case 1 (two real roots),

For case 2 (a single repeated root), both roots are at
r = –(a1 /2a2 ). The first term of the solution is y1 = C1
ert. 25.12.2017
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The second term of the solution is the same (except
with coefficient) multiplied by the independent
variable, y2 = C2t ert , then

For case 3 (two complex roots) the roots are at r1 = 𝛼
+i𝛽 and r2 = 𝛼–i𝛽, where 𝛼=a1/2a2 and

then
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It is rather difficult to obtain a good qualitative
indication of this response because of the complex
exponential powers. A better expression, avoiding
complex numbers, can be obtained using Euler’s
identity eiβt = cos βt + i sin βt.

The first two cases, result in exponential responses,
and the third case, in an oscillatory response. The
roots can be either real or complex; consider Figure
“Roots of characteristic equation”.
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Locations 1 and 4 correspond to cases 1 and 2 when
the roots are real, and locations 2 and 3 correspond to
case 3 when the roots are complex (the asterisk
denotes the complex conjugate).
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Roots of characteristic equation
25.12.2017
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As the independent variable t increases, the solutions
for the roots in locations 1 and 2 indicate that the
response decays exponentially, owing to the negative
exponent, with oscillations superimposed in location 2.
However, the solutions for the roots in locations 3 and
4 indicate that the responses increase without bounds,
owing to the positive exponent. Thus, the roots in
locations 1 and 2 provide stable responses, and the
roots in locations 3 and 4 provide unstable responses.
The difference is in the location of the real part of the
root.
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For roots with negative real parts the response is
stable; for roots with positive real parts the response is
unstable. Furthermore, for real roots the response is
monotonic, and for complex roots the response is
oscillatory . Not very often, although the roots are real
and thus the response is given by exponentials, the
response is a bit oscillatory and not monotonic. This
rare instance may only happen when there are multiple
roots. Because for homogeneous differential equations
there is no forcing function, the qualitative behavior of
the system does not depend on the type of forcing
function, f(t), only on the characteristics of the system
itself.
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We can also express these last statements as
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Classical Solutions of Ordinary
Linear Differential Equations
Undetermined Coefficients
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The undetermined coefficient method is a technique for
solving nonhomogeneous nth-order linear differential
equations with constant coefficients.
The characteristic equation method only applies to
homogeneous differential equations.
The method for obtaining the general solution, y, of a
nonhomogeneous differential equation calls for dividing
the solution into two parts, the complementary solution
yC and the particular solution yP or

y = yC + yP
25.12.2017
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The form of the particular solution solely depends on
the form of the forcing function, and this is why
sometimes it is also called the forced response.

Because the particular solution only depends on the
forcing function, it does not have anything to do with
the system itself. The complementary solution is the
one related to the system, including the initial
conditions.
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Consider

Because yP is the solution that depends on the forcing 
function
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Then

So, the solution of the complementary part is just the
solution of the corresponding homogeneous equation,
which hereinafter we refer to as yH or
y = yH + yP
Thus, the general solution is the summation of a
“solution of the corresponding homogeneous equation”
plus a “particular solution of the nonhomogeneous
equation.” 25.12.2017
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The form of the particular solution depends only on the
form of the forcing function.
The solution of homogeneous differential equations is
independent of the type of forcing function affecting the
system. Thus, it is only dependent on the system itself,
and it is why sometimes it is called the natural
response.
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Using the characteristic equation method, we obtained
the homogeneous solution. For obtaining the particular
solution we use the method of undetermined
coefficients; this method consists of the following:
• On the basis of the forcing function select a particular
solution (also referred to as a “trial solution”).
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• If the forcing function involves a sine or cosine, the
particular solution should contain both a sine and a
cosine
• If any part of the particular solution is a solution of the
homogeneous equation, multiply that particular
solution by the independent variable. Repeat if
necessary, that is, if after multiplied by the independent
variable the result is still a solution of the
homogeneous equation, multiply again by the
independent variable
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Example
Obtain the solution of

Assume
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One root, r1, is located in the positive real axis, and the
other root, r2, is in the negative real axis, thus
indicating an unstable response. The fact that both
roots are real (no imaginary parts) indicates that the
response is monotonic.

The forcing function 12t – 72t2 is a polynomial in the
independent variable t, so a particular solution can be
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This last equation shows two polynomials, one on each
side of the equal sign.
Equating the coefficients of equal terms in these
polynomials, we obtain A2, A1, and A0.
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Thus,

And applying the initial conditions gives C1 = 8/7 and
C2 = 6/7. Therefore
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Example
Obtain the solution of

The corresponding homogeneous equation is the
same as in the previous example. This time the forcing
function is an exponential, so the particular solution
can be
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Example
Obtain the solution of

The corresponding homogeneous equation is the
same as in the previous two examples. The particular
solution, yP = A0e3t, does not work because it is part of
the homogeneous solution. So the suggestion is to
multiply yP by the independent variable t,
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Substituting into the differential equation gives A0 = 1/7; 
thus,

Using the initial conditions gives
C1 = 1.694 and C2 = 1.306.

Therefore,
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Example
The following differential equation describes an
undamped mass-spring system:

We start by finding the solution to the corresponding
homogeneous equation,

Assuming xH = ert, we get
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And using the previous treatment,

The frequency of this homogeneous response or natural
response is 4 radians/time. We call this the natural
frequency and denote it by ωn.

For the particular solution, let us assume first that ω ≠ 4.
In this case, the particular solution can be
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Equating the coefficients of equal terms in this equation,

Finally

25.12.2017

40



x becomes large as ω → 4 or ω → ωn.
Let us now assume that ω = 4. In this case, the
suggestion for the particular solution is in itself a solution
of the homogeneous part and will not work. The
procedure then is to multiply the suggestion the
independent variable. The particular solution is then
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Equating the coefficients of equal terms gives A = −1/2 
and B = 0. Therefore, the general solution is

Note that x becomes unbounded as t increases.
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Multiple Forcing Functions

Sometimes multiple forcing functions may affect the
system at the same time. For example, consider

We can write this differential equation explicitly showing
two forcing functions

where
25.12.2017
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yP1 is the particular solution due the first forcing
function f1(t) and yP2 is the particular solution due the
second forcing function f2 (t).

Using the initial conditions, C1 = 27/21 and C2 = 37/42
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Classical Solutions of Ordinary
Linear Differential Equations
Response of First- and Second-Order Systems
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Most of the models are composed of first- or second
order differential equations; this is often the case for
physical/industrial models.

First-Order Systems

For example;
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The response of these systems to two different types of
input, a step function, and a sine wave.
Consider the linear first-order differential equation with
constant coefficients:

The equation has three coefficients, a1, a0, and b, but,
without loss of generality, we can divide the equation by
one of the three so that we can characterize the
equation by just two parameters.
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It is often customary to divide by the coefficient of the
dependent variable, a0, provided it is not zero. Such an
operation results in the following equation, which we
shall call the standard form of the linear first-order
differential equation with constant coefficients.

𝜏 = a1/a0, often called the time constant; with unit of time
K= b/a0, often called the system gain; with units of the
dependent variable over units of the forcing function.
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Starting from a steady-state operation, meaning that

with a forcing function of x(0) then, y(0) = K x(0).
𝜏 must have dimension of time, and K must have
dimension of y over dimension of x.

Any linear first-order differential equation can be
transformed into the standard form, as long as the
dependent variable y(t) appears in the equation.
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For example;

K2 = 1.0 dimensionless 25.12.2017
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Although equation can be solved by anti-
differentiation, separation of variables or integrating
factor, we choose to solve it here by the characteristic
equation and undetermined coefficient methods. Being a
nonhomogeneous equation, we first solve for the
corresponding homogeneous equation

and the root is

The particular solution depends on the forcing function.25.12.2017
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Step Function Input

Suppose that the forcing function x(t) changes from its
initial value of x(0) to its final value of xF = x(0) + D at
time = 0, that is, x(t) = x(0) + Du(t), a step change of D
units of magnitude. In this case,

Substituting into equation
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Finally,

Using the initial condition, we obtain C

Because xF = x (0) + D,
25.12.2017
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And finally, because y(0) = K x(0),

where D = xF – x(0). Instead of writing D for the step
change, many textbooks show the step response
equation as 25.12.2017
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Obviously, the negative real root indicates that the
system is stable and monotonic in its response. The
above equation describes the unit step response of any
first-order system. These equations are used in many
engineering courses.
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𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑖𝑛	𝑆𝑦𝑠𝑡𝑒𝑚 

�

�

25.12.2017

56

Response of a first-order system to a step change in input.



A graph of the response is very instructive; the above
figure shows the response of the system when K = 2,
D = 3, 𝜏 = 2, and y(0) = 1.
• The steepest slope in the response curve occurs at the
beginning of the response; this is the typical response of
first-order systems to a step change in forcing function
or input variable.
• The total change in dependent variable, output
variable, is given by KD, the system gain times the
change in input; thus, we say that the gain K gives the
change in output per unit change in input (or how
sensitive the output is to a change in input); obviously,
the units of K also show this meaning.
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• 63.2% of the total change occurs in one time constant.
Obviously, the response equation provides this number.
When t = 𝝉,
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Actually, this helps us in obtaining the significance of the
time constant 𝜏. The smaller the time constant, the less
time it takes the system to reach 63.2% of its total
change; thus, the faster responding the system is.
Therefore, the time constant is related to the speed of
the system once it starts changing. The table below
tabulates the change in output versus t/𝜏. Note that the
response starts at maximum rate of change right after
the step is applied, and then the rate of change
decreases so that the final change of KD is approached
asymptotically.
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After one time constant the response reaches 63.2% of
its final change, and in five time constants it reaches
over 99% of the change. In other words, the response is
essentially complete after five time constants; it is
commonly accepted in most areas of engineering to use
5𝜏 as the time it takes to reach the new steady state.

The qualitative response of all first-order differential
equations to a step change in input is the same. The
quantitative portion is the one that differs.
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Sinusoidal Function Input

Suppose x(t) = B sinωt, in this case

Substituting, yP(t) and dyP(t)/dt into equation
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Equating equal terms,

From these last two equations,
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Using the initial condition, we obtain C

Therefore,
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In many engineering fields the study of system
dynamics is of prime importance, and the above
equation is often used. Commonly, this equation is also
expressed as

where θ = – tan–1 (𝜏𝜔). The above equation develops
using the following trigonometric identity,

where 25.12.2017
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Second-Order Systems

Models composed of second-order differential equations
are also quite common. For example,

Here we present the response of second-order systems
to the same two inputs, a step function, and a sine
wave. Our objective is to learn how the parameters of
second-order systems affect their response.
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Consider the linear second-order differential equation:

The equation has four coefficients, a2, a1, a0, and b, but,
without loss of generality, we can divide the equation by
one of the three (commonly by a0) to characterize the
equation by just three parameters as given in
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where
:(assuming a2 and a0 have the same sign) is 
often called a characteristic time; time units.
:is often called the damping ratio;
dimensionless
: is often called the system gain; with units of 
the dependent variable over units of the 
forcing function.

We now write

using this form, 25.12.2017
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with and

The complete solution is

The corresponding homogeneous equation is
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the roots are

The equation shows the roots of the equation so the
response of the system depends on the numerical value
of 𝜁.
We can now see that the term “damping ratio” refers to
the damping of oscillations; the behavior of the response
is summarized as follows:

25.12.2017

70



𝜁>1 The roots are negative real, thus a monotonic
and stable response

0<𝜁<1 The roots are complex with negative real part,
thus an oscillatory and stable response

𝜁=0 The roots are complex with zero real part, 
thus a sustained oscillations response

𝜁=1 The roots are real and repeated, thus a 
monotonic and stable response

-1<𝜁<0 The roots are complex with positive real part, 
thus a growing oscillations response

𝜁≦-1 The roots are positive real, thus a monotonic 
unstable response 25.12.2017
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Step Function Input

Suppose that the forcing function x(t) changes from its
initial value of x(0) to its final value of xF = x(0) + D at
time = 0, that is, x(t) = x(0) + Du(t), a step change of D
units of magnitude. In this case,

So or
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Finally

To show the step responses graphically consider the
following second order system:

and assume 𝜏 = 1. The initial conditions are y(0) = 0
and y′(0) = 0. The figure below, shows the system’s
response when f(t) changes from 0 to 1.
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Response of second-order system to a change in forcing function



Systems that oscillate before reaching their final values
are called underdamped systems; systems that do not
oscillate before reaching their final values are called
overdamped systems. There is another type of system
called critically damped, which is the one with the fastest
approach to its final value without oscillations.

We can summarize this as

Underdamped Systems: 𝜁 < 1.0 or  
Overdamped Systems: 𝜁 > 1.0 or  
Critically Damped Systems: 𝜁 = 1.0 or 25.12.2017
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Sinusoidal Function Input

Suppose x(t) = B sinωt , in this case,
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Substituting yP(t), [dyP(t)/dt], and [d2yP(t)/dt2] into

we get

or

from matching terms
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