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Mechanistic Models I: ODEs
Distinguished Role of Differential Equations
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Mechanistic models use information about the internal
‘‘mechanics’’ of a system.

The main difference between phenomenological
models and mechanistic models lies in the fact that
phenomenological models treat the system as a black
box, while in the mechanistic modeling procedure one
virtually takes a look inside the system and uses this
information in the model.
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(Distinguished role of differential equations)

1. Mechanistic models consider the processes running
inside a system.
2. Typical processes investigated in science and
engineering involve rates of changes of quantities of
interest.
3. Mathematically, this translates into equations
involving derivatives of unknown functions, i.e.
differential equations.
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An Introductory Example
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Consider the tank shown in figure where two streams
enter the tank, mix, and a single stream exits through a
valve.
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Mixing tank



At Steady State condition

Flow1 + Flow2 = Flow3
or
Flow1 + Flow2 - Flow3=0

ΣFlows in – ΣFlows out = 0

w1 = Flow1; w2 = Flow2; w3 = Flow3

w1 + w2 – w3 = 0
6.11.2017
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Let us suppose that w1 = 20 kg/min and w2 = 10 kg/min

20 + 10 – w3 = 0
w3 = 30 kg/min

If w2 changes to 20 kg/min, now w3 = 40 kg/min.

The outlet flow of liquid through the valve depends,
among other things, on the height of liquid in the tank,
h, as indicated in figure, which we often refer to as
head of liquid.
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This dependence, or relation, may be expressed as
𝑤𝑤3 = 𝐶𝐶𝑣𝑣 ℎ

𝐶𝐶𝑣𝑣 is the valve coefficient.

For this particular example, assume
CV = 16.67 kg/m1/2 · min.

𝑤𝑤1 + 𝑤𝑤2 − 16.67 ℎ = 0

For the steady operation, we need height of liquid to
deliver the outlet flow,
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20 + 10 − 16.67 ℎ = 0
h = 3.24 m

If w2 becomes 20 kg/min, the new necessary height to
deliver 40 kg/min is

20 + 20 − 16.67 ℎ = 0
h = 5.76 m
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When flow w2 changes from 10 to 20 kg/min the height
in the tank must change from 3.24 to 5.76 m. This
change in height, however, is not instantaneous,
although the change in inlet flow may be very close to
instantaneous.

It takes some amount of time in going from the initial
height to the new, or final, height.

If the time to reach the new height is important, then
another model is needed.
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The new model needs to describe how fast the height
in the tank changes when any of the inlet flows, or
both, change.

� Rate of mass
entering system−� Rate of mass

exiting system = 0

The expression rate of mass refers to flows in units of
mass/time (kg/min in this example).
Equation only refers to the streams entering and
exiting the system (the tank in this case); it does not
account for the mass inside the system. 6.11.2017
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Thus, it does not describe what happens to the mass
or height of liquid in the tank when the entering and
exiting streams are not equal to each other. To account
for this mass inside the process, and develop the
desired model,

� Rate of mass
entering system−� Rate of mass

exiting system =
Rate of change of
mass accumulated

in system

Applying this equation to the tank

𝑤𝑤1 + 𝑤𝑤2 − 𝑤𝑤3 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 6.11.2017
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The term 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

means the rate of change of the mass in
the tank (m) with respect to time (t), or in other words,
how fast the mass in the tank changes.

A positive derivative indicates that the mass in the tank
is increasing because there is more mass entering the
tank than exiting.

A negative derivative indicates that the mass in the
tank is decreasing, or depleting, because there is more
mass exiting the tank than entering. 6.11.2017
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The mass of liquid accumulated in the tank is related to 
the height of liquid by

𝑑𝑑 = 𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌ℎ

ρ = density of fluid, assumed constant at 1000 kg/m3

V = volume of liquid in tank, m3

A = cross-sectional area of tank, assumed constant at 
0.292 m2

6.11.2017
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝜌𝜌
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

𝑤𝑤1 + 𝑤𝑤2 − 𝐶𝐶𝑣𝑣 ℎ = 𝜌𝜌𝜌𝜌
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

or

𝜌𝜌𝜌𝜌
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

+ 𝐶𝐶𝑣𝑣 ℎ = 𝑤𝑤1 +𝑤𝑤2
is a differential equation that describes how the height
of liquid in the tank varies when either inlet flow, or
when both change. 6.11.2017
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The differential equation describes how the level in the
tank changes — in general, we refer to this as the
“transient response” or “dynamic response”— and its
final steady value.
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Differential Equations

6.11.2017
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A differential equation is an equation containing one or
more derivatives of an unknown function and perhaps
the function itself.

𝑑𝑑3𝑥𝑥
𝑑𝑑𝑑𝑑3

+ 3
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

+ 4
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

+ 𝑥𝑥 = 𝐹𝐹(𝑑𝑑)

x is an unknown function.
The unknown function is called the dependent variable;
the variable by which this dependent variable is
differentiated by, t is called the independent variable.

6.11.2017
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The function on the right-hand side of the equal sign,
F(t) is called the forcing function because once it
changes, it “forces” the dependent variable to change.

It is common in mathematics to use primes (′) or dots
(∙) to represent derivatives.

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑥𝑥′ = �̇�𝑥;
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

= 𝑥𝑥′′ = �̈�𝑥; 𝑒𝑒𝑑𝑑𝑒𝑒.

𝑥𝑥′′′ + 3𝑥𝑥′′ + 4𝑥𝑥′ + 𝑥𝑥 = 𝐹𝐹(𝑑𝑑)
6.11.2017
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𝜌𝜌𝜌𝜌ℎ′ + 𝐶𝐶𝑣𝑣 ℎ = 𝑤𝑤1 +𝑤𝑤2

The order of a differential equation is the highest
derivative in the equation.

�𝑥𝑥
𝑑𝑑=0

= 𝑥𝑥(0)

This specification is called an initial condition. We call
this an initial value problem.
For an nth-order differential equation n initial conditions
are needed to complete the model.

6.11.2017
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The dependent variable in the differential equations
discussed so far is a function of only one independent
variable; for example, in the example of the mixing
tank the height h is only a function of time t. These
differential equations are called ordinary differential
equations or ODEs.

6.11.2017
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Sometimes the dependent variable may be a function
of more than one independent variable. Consider a
well-insulated long pipe in which a liquid flows. At the
initial steady condition the temperature of the liquid is
the same all along the pipe; let us call this temperature
Tinitial, and, of course, at that condition Tin = Tinitial.

6.11.2017
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Suppose now that at some time, t = 0, the inlet
temperature Tin increases by 30°C. The liquid
temperature inside the pipe starts increasing at some
rate (not instantaneously) to its final value but not at
the same time all along the pipe. That is, the
temperature next to the entrance starts changing
before the temperature at 0.1 L, and this temperature
at 0.1 L starts changing before the temperature at 0.2
L, and so on. That means that the temperature along
the pipe, call it T, is a function of—depends on—time t
and distance x down the pipe; we say that T(t, x).

6.11.2017
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The differential equation in this case will contain partial
derivatives of T(t, x) such as [∂T(x,t)]/∂t and [∂T(x,t)]/∂x;
these equations are called partial differential equations
or PDEs. For a first-order PDE the initial condition is of
the form T(t = 0) = Tinitial for all x, and T(x = 0) = Tinitial
for t.
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Forcing Functions

6.11.2017

26



An important use of a model is for studying how some
variables affect some other variables, or how the
forcing functions affect the dependent variables.
For example, the mixing tank may be used to study
how the liquid level in the tank responds to different
types of forcing functions—changes in w1(t) and/or
w2(t).

These changes could be in the form of a ramp, a sine
wave, a pulse, a step change, or any other.

6.11.2017
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The step change is a very common forcing function,
and thus it deserves special attention.
To explain its meaning, consider that at some time, t =
a, w1(t) changes from 20 to 25 kg/min instantaneously;

6.11.2017
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Step change in flow of stream 1.



As the figure shows, the change is in the form of a
step. Mathematical modeling requires describing
mathematically this change. The term u(t – a) is used
to describe a unity step change at time a; that is, the
term is a shorthand notation for

𝑢𝑢 𝑑𝑑 − 𝑎𝑎 = �0 𝑑𝑑 < 𝑎𝑎
1 𝑑𝑑 ≥ 𝑎𝑎

6.11.2017
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Essentially, as long as the argument (t – a) is less than
0, the function u = 0.

When the argument (t – a) is equal or greater than 0,
the function u = 1.

Then, for the example shown in figüre (Step change in
flow of stream 1), the mathematical expression w1(t) =
20 + 5u(t – a) expresses the change of w1(t) from 20 to
25 kg/min at time = a.

6.11.2017

30



Example 1

Consider the forcing function f(t) shown in figure.
Develop the mathematical expression for f(t).

6.11.2017
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Forcing function for example 1



There are three step changes in this figure, at times 4,
6, and 8; each change has a magnitude of 3. The
expression is

f(t) = 1 – 3u(t – 4) + 3u(t – 6) – 3u(t – 8)
At t < 4, all the u values are zero and f(t) = 1 as the
figure shows. At t ≥ 4 but less than 6, u(t – 4) = 1, u(t –
6) = u(t – 8) = 0, and f(t) = –2 as the figure shows. At t
≥ 6 but less than 8, u(t – 4) = u(t – 6) = 1, u(t – 8) = 0,
and f(t) = 1 as the figure shows. On the basis of this
presentation, the reader can understand why f(t) = –2
after t ≥ 8.

6.11.2017

32



Example 2

Consider the forcing function f(t) shown in figure.
Develop the mathematical expression for f(t). This is a
ramp change starting at 4 min. The expression is
f (t) = 5+7/4(t −4)u(t −4)

6.11.2017
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Mass Balances
Example 1

6.11.2017
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Consider the tank shown in figure. Suppose the liquid
is water with a density of 1000 kg/m3, the area of the
tank is 1 m2, the downstream pressure from the valve
is 90 kPa, the steady-state flow into the tank is 10
m3/min, and the valve equation is given by

𝑓𝑓2 = 1.5 𝑃𝑃1 − 𝑃𝑃2 ; m3/min

6.11.2017
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Liquid level



(a)Find the steady-state liquid level.
(b)Develop the model that describes how the level in

the tank varies when the inlet volumetric flow
changes by 2 m3/min or f1 = 10 + 2u(t).

(a) At steady state, the mass flow into the tank must
equal the mass flow out of the tank

𝑤𝑤1 − 𝑤𝑤2 = 0
𝑤𝑤1 = 𝑤𝑤2

𝑤𝑤1 = 𝑤𝑤2 = 𝑓𝑓1 � 𝜌𝜌 = 10
𝑑𝑑3

𝑑𝑑𝑚𝑚𝑚𝑚
1000

𝑘𝑘𝑘𝑘
𝑑𝑑3 = 1𝑥𝑥104

𝑘𝑘𝑘𝑘
𝑑𝑑𝑚𝑚𝑚𝑚

6.11.2017
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The outlet volumetric flow is

𝑓𝑓2 =
𝑤𝑤2
𝜌𝜌

=
1𝑥𝑥104 𝑘𝑘𝑘𝑘

𝑑𝑑𝑚𝑚𝑚𝑚
1000 𝑘𝑘𝑘𝑘𝑑𝑑3

= 10
𝑑𝑑3

𝑑𝑑𝑚𝑚𝑚𝑚

In this example, f1 = f2 because the inlet and outlet
densities are equal, ρ is a constant.
To find the pressure that produces this flow, we make
use of the valve equation,

6.11.2017
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𝑓𝑓2 = 10 = 1.5 𝑃𝑃1 − 𝑃𝑃2 = 1.5 𝑃𝑃1 − 90 → 𝑃𝑃1 = 134.44 𝑘𝑘𝑃𝑃𝑎𝑎

Finally, to find the level to produce pressure P1

𝑃𝑃1 = 134.44 𝑘𝑘𝑃𝑃𝑎𝑎 = 101.32 +
𝜌𝜌𝑘𝑘ℎ

1000

= 101.32 +
1000 𝑘𝑘𝑘𝑘𝑑𝑑3 9.8 𝑑𝑑𝑠𝑠2 ℎ

1000

h = 3.38𝑑𝑑
6.11.2017
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(b)

𝜌𝜌𝑓𝑓1 − 1.5𝜌𝜌 101.32 +
𝜌𝜌𝑘𝑘ℎ

1000
− 𝑃𝑃2 = 𝜌𝜌𝜌𝜌

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

𝜌𝜌𝑓𝑓1 − 1.5𝜌𝜌 11.32 + 9.8ℎ = 𝜌𝜌𝜌𝜌
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

𝜌𝜌𝜌𝜌
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

+ 1.5𝜌𝜌 11.32 + 9.8ℎ = 𝜌𝜌𝑓𝑓1 = 𝜌𝜌 10 + 2𝑢𝑢(𝑑𝑑)

is a first-order nonlinear differential equation. 6.11.2017
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Definition of a Linear Differential Equation
A linear differential equation is one that can be put in the
form

𝑎𝑎𝑛𝑛 𝑥𝑥
𝑑𝑑𝑛𝑛𝑦𝑦
𝑑𝑑𝑥𝑥𝑛𝑛

+ 𝑎𝑎𝑛𝑛−1 𝑥𝑥
𝑑𝑑𝑛𝑛−1𝑦𝑦
𝑑𝑑𝑥𝑥𝑛𝑛−1

+ ⋯+ 𝑎𝑎0 𝑥𝑥 𝑦𝑦 = 𝑟𝑟(𝑥𝑥)

an, an–1, … , a0, and r are either functions of only the
independent variable or constants. They do not have to
be linear functions of the independent variable x.
r(x) is called the forcing function because when it
changes it forces the dependent variable y to change.

6.11.2017
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Consider the following differential equation:
𝑏𝑏2 𝑥𝑥 𝑦𝑦′′ + 𝑏𝑏1 𝑥𝑥 𝑦𝑦′ + 𝑏𝑏0 𝑥𝑥 𝑦𝑦 = 𝑅𝑅 𝑟𝑟 𝑥𝑥 + 𝑆𝑆 𝑠𝑠(𝑥𝑥)

This equation has two forcing functions and obviously
could have any number of them. For a linear system, the
addition of a solution of

𝑏𝑏2 𝑥𝑥 𝑦𝑦′′ + 𝑏𝑏1 𝑥𝑥 𝑦𝑦′ + 𝑏𝑏0 𝑥𝑥 𝑦𝑦 = 𝑅𝑅 𝑟𝑟 𝑥𝑥
plus a solution of

𝑏𝑏2 𝑥𝑥 𝑦𝑦′′ + 𝑏𝑏1 𝑥𝑥 𝑦𝑦′ + 𝑏𝑏0 𝑥𝑥 𝑦𝑦 = 𝑆𝑆 𝑠𝑠(𝑥𝑥)
is equal to a solution of above equation.
It is called the Principle of Superposition.

6.11.2017
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If the right-hand side of a differential equation is equal to
zero, such as

𝑎𝑎2 𝑥𝑥 𝑦𝑦′′ + 𝑎𝑎1 𝑥𝑥 𝑦𝑦′ + 𝑎𝑎0 𝑥𝑥 𝑦𝑦 = 0
it is called a homogeneous equation; otherwise, it is a
nonhomogeneous equation.
The analytical solution of linear differential equations
with coefficients that are functions of the independent
variable, such as a2(x), a1(x),…, and ao(x) is rather
difficult. The analytical solutions to linear differential
equations with constant coefficients is easy.

𝑎𝑎2𝑦𝑦′′ + 𝑎𝑎1𝑦𝑦′ + 𝑎𝑎0𝑦𝑦 = 𝑟𝑟(𝑥𝑥)
6.11.2017
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Mass Balances
Example 2

6.11.2017
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Consider the mixing tank shown in figure.

6.11.2017
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Mixing tank



In this tank a highly concentrated solution of NaOH and
H2O (stream 1) is diluted using pure water (stream 2);
the concentrated solution contains 0.75 mass fraction of
NaOH. The figure shows the steady-state information.
The exit stream flows out of the tank by overflow, the
tank has a volume of 0.2845 m3, and the density of the
liquid accumulated in the tank can be assumed constant
at 1200 kg/m3. Also assume that the contents of the tank
are well mixed (meaning that the concentration of NaOH
is the same in the entire volume, including the exiting
stream).

6.11.2017
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Develop the model that describes how the exit
concentration of NaOH varies when the concentration of
stream 1 changes in a step change to 0.67 mass
fraction of NaOH, or 𝑥𝑥1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.75 − 0.08𝑢𝑢(𝑑𝑑).

�𝑅𝑅𝑎𝑎𝑑𝑑𝑒𝑒 𝑜𝑜𝑓𝑓 𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠 𝑜𝑜𝑓𝑓
𝑁𝑁𝑎𝑎𝑁𝑁𝑁𝑁 𝑒𝑒𝑚𝑚𝑑𝑑𝑒𝑒𝑟𝑟𝑚𝑚𝑚𝑚𝑘𝑘 −�𝑅𝑅𝑎𝑎𝑑𝑑𝑒𝑒 𝑜𝑜𝑓𝑓 𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠 𝑜𝑜𝑓𝑓

𝑁𝑁𝑎𝑎𝑁𝑁𝑁𝑁 𝑒𝑒𝑥𝑥𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑘𝑘

= � 𝑅𝑅𝑎𝑎𝑑𝑑𝑒𝑒 𝑜𝑜𝑓𝑓 𝑒𝑒ℎ𝑎𝑎𝑚𝑚𝑘𝑘𝑒𝑒 𝑜𝑜𝑓𝑓 𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠 𝑜𝑜𝑓𝑓
𝑁𝑁𝑎𝑎𝑁𝑁𝑁𝑁 𝑎𝑎𝑒𝑒𝑒𝑒𝑢𝑢𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑑𝑑𝑒𝑒𝑑𝑑 𝑚𝑚𝑚𝑚 𝑠𝑠𝑦𝑦𝑠𝑠𝑑𝑑𝑒𝑒𝑑𝑑

6.11.2017
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𝑤𝑤1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑤𝑤3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑

𝑤𝑤1𝑥𝑥1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑤𝑤3𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑑𝑑𝑑𝑑𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑

m = ρV = 1200*0.2845 = 341.1 kg

𝑤𝑤1𝑥𝑥1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑤𝑤3𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑑𝑑
𝑑𝑑𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑
6.11.2017
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𝑤𝑤1
𝑑𝑑
𝑥𝑥1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 −

𝑤𝑤3
𝑑𝑑
𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

𝑑𝑑𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑
+ 0.0799 � 𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.0585 � 𝑥𝑥1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

12.5 �
𝑑𝑑𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑
+ 𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.73 � 𝑥𝑥1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.55 − 0.05857 1 − 𝑒𝑒−
𝑑𝑑

12.5
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Mass Balances
Example 3

6.11.2017
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Consider the same mixing tank. This time develop the
model that describes how the exit concentration of
NaOH varies when the concentration of stream 1
changes in a step change to 0.67 mass fraction of
NaOH, and at the same time the flow of stream 1
changes in a step change to 15 kg/min.

The model starts in the same manner as previously, that
is, with a mass balance on NaOH.

6.11.2017
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341.1
𝑑𝑑𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑
+ 𝑤𝑤3𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑤𝑤1𝑥𝑥1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

1 equation, 2 unknowns [𝑤𝑤3, 𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁]

𝑤𝑤1 + 𝑤𝑤2 − 𝑤𝑤3 = 0
2 equations, 2 unknowns

341.1
𝑑𝑑𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑
+ (𝑤𝑤1+𝑤𝑤2)𝑥𝑥3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑤𝑤1𝑥𝑥1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

6.11.2017
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Mass Balances
Example 4

6.11.2017
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Consider the gas tank shown in figure. A fan blows air
into a tank, and from the tank the air flows out through a
valve.

6.11.2017
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Gas system



For purposes of this example, let us suppose that the air
flow delivered by the fan is given by

𝑓𝑓𝑖𝑖 𝑑𝑑 = 0.453𝑠𝑠𝑖𝑖(𝑑𝑑)

𝑓𝑓𝑖𝑖 𝑑𝑑 = air flow in m3/min at 23°C and 101.32 kPa
𝑠𝑠𝑖𝑖(𝑑𝑑) = signal to fan, 0 – 1 fraction

6.11.2017
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The flow through the valve is expressed by

𝑓𝑓𝑜𝑜 𝑑𝑑 = 2.078𝑥𝑥10−3𝑠𝑠𝑜𝑜(𝑑𝑑) 𝑝𝑝(𝑑𝑑) 𝑝𝑝 𝑑𝑑 − 𝑝𝑝1(𝑑𝑑)

𝑓𝑓𝑜𝑜 𝑑𝑑 = air flow in m3/min at 23°C and at the pressure of
the tank
𝑠𝑠𝑜𝑜(𝑑𝑑) = signal to fan, 0 – 1 fraction
𝑝𝑝(𝑑𝑑) = pressure in tank, kPa
𝑝𝑝1(𝑑𝑑) = downstream pressure from valve, kPa

6.11.2017
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The volume of the tank is 0.569 m3, and it can be
assumed that the process occurs isothermally at 23°C.

The initial steady-state conditions are the following:

𝑓𝑓𝑖𝑖 0 = 𝑓𝑓𝑜𝑜 0 = 0.2265 𝑑𝑑3/𝑑𝑑𝑚𝑚𝑚𝑚
𝑝𝑝 0 = 275.788 𝑘𝑘𝑃𝑃𝑎𝑎
𝑝𝑝1 0 = 101.325 𝑘𝑘𝑃𝑃𝑎𝑎
𝑠𝑠𝑖𝑖 0 = 0.5
𝑠𝑠𝑜𝑜 0 = 0.1825

6.11.2017
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Develop the mathematical model that relates the
pressure in the tank to changes in the signal to the fan,
si(t); in the signal to the valve, so(t); and in the
downstream pressure, p1(t).
An unsteady-state mass balance around the system,
defined as the fan, tank, and outlet valve, provides the
starting relation. That is,
𝑤𝑤𝑖𝑖 𝑑𝑑 − 𝑤𝑤𝑜𝑜 𝑑𝑑 = 𝑑𝑑𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑
or

𝜌𝜌𝑖𝑖𝑓𝑓𝑖𝑖 𝑑𝑑 − 𝜌𝜌𝑜𝑜𝑓𝑓𝑜𝑜 𝑑𝑑 = 𝑑𝑑𝑑𝑑(𝑑𝑑)
𝑑𝑑𝑑𝑑

1 equation, 4 unknowns[𝑓𝑓𝑖𝑖 𝑑𝑑 , 𝜌𝜌𝑜𝑜,𝑓𝑓𝑜𝑜 𝑑𝑑 , 𝑑𝑑(𝑑𝑑)]6.11.2017
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Because the pressure and temperature of the inlet air
are known, its density is also known and given as (the
molecular mass of air is 28.9 g/mol),

𝜌𝜌𝑖𝑖 = �𝜌𝜌𝑖𝑖 � 𝑑𝑑𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑢𝑢𝑎𝑎𝑎𝑎𝑟𝑟 𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠 =
𝑝𝑝𝑖𝑖 � 𝑑𝑑𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑢𝑢𝑎𝑎𝑎𝑎𝑟𝑟 𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠

𝑅𝑅𝑇𝑇𝑖𝑖

=
(101325 𝑃𝑃𝑎𝑎)(28.9 𝑘𝑘

𝑑𝑑𝑜𝑜𝑎𝑎)

(8.314 𝑃𝑃𝑎𝑎 � 𝑑𝑑3

𝑑𝑑𝑜𝑜𝑎𝑎𝑚𝑚)(296𝑚𝑚)

𝜌𝜌𝑖𝑖 = 1189.85 𝑘𝑘/𝑑𝑑3
6.11.2017
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The exit density,

𝜌𝜌𝑜𝑜 = 𝜌𝜌𝑜𝑜 � 𝑑𝑑𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑢𝑢𝑎𝑎𝑎𝑎𝑟𝑟 𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠 =
𝑝𝑝(𝑑𝑑) � 𝑑𝑑𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑢𝑢𝑎𝑎𝑎𝑎𝑟𝑟 𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠

𝑅𝑅𝑇𝑇

2 equations, 5 unknowns [p(t)]

The fan provides another equation:

𝑓𝑓𝑖𝑖 𝑑𝑑 = 0.453𝑠𝑠𝑖𝑖(𝑑𝑑)

3 equations, 5 unknowns6.11.2017
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The valve provides still another equation:

𝑓𝑓𝑜𝑜 𝑑𝑑 = 2.078𝑥𝑥10−3𝑠𝑠𝑜𝑜(𝑑𝑑) 𝑝𝑝(𝑑𝑑) 𝑝𝑝 𝑑𝑑 − 𝑝𝑝1(𝑑𝑑)

4 equations, 5 unknowns

Because the pressure in the tank is low, the ideal gas
equation of state can be used to relate the moles in the
tank to the pressure.

𝑝𝑝 𝑑𝑑 𝜌𝜌 = 𝑚𝑚 𝑑𝑑 𝑅𝑅𝑇𝑇

5 equations, 6 unknowns [n(t)]
6.11.2017
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Using

𝑚𝑚 𝑑𝑑 =
𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑜𝑜𝑎𝑎𝑒𝑒𝑒𝑒𝑢𝑢𝑎𝑎𝑎𝑎𝑟𝑟 𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠

6 equations, 6 unknowns

This set of equations constitutes the mathematical
model for this process. The solution describes how the
pressure in the tank responds to changes in si(t), so(t),
and p1(t).
The resulting equation will be a first-order ordinary
nonlinear differential equation. 6.11.2017
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Thermal Systems
Conservation of Energy

6.11.2017
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If we restrict ourselves to processes that do not involve
atomic fission, energy, like mass, is conserved.

� 𝑅𝑅𝑎𝑎𝑑𝑑𝑒𝑒 𝑜𝑜𝑓𝑓 𝐸𝐸𝑚𝑚𝑒𝑒𝑟𝑟𝑘𝑘𝑦𝑦
𝐸𝐸𝑚𝑚𝑑𝑑𝑒𝑒𝑟𝑟𝑚𝑚𝑚𝑚𝑘𝑘 𝑆𝑆𝑦𝑦𝑠𝑠𝑑𝑑𝑒𝑒𝑑𝑑 −�𝑅𝑅𝑎𝑎𝑑𝑑𝑒𝑒 𝑜𝑜𝑓𝑓 𝐸𝐸𝑚𝑚𝑒𝑒𝑟𝑟𝑘𝑘𝑦𝑦

𝐸𝐸𝑥𝑥𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑘𝑘 𝑆𝑆𝑦𝑦𝑠𝑠𝑑𝑑𝑒𝑒𝑑𝑑 =

�𝑅𝑅𝑎𝑎𝑑𝑑𝑒𝑒 𝑜𝑜𝑓𝑓 𝐶𝐶ℎ𝑎𝑎𝑚𝑚𝑘𝑘𝑒𝑒 𝑜𝑜𝑓𝑓 𝐸𝐸𝑚𝑚𝑒𝑒𝑟𝑟𝑘𝑘𝑦𝑦
𝜌𝜌𝑒𝑒𝑒𝑒𝑢𝑢𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑑𝑑𝑒𝑒𝑑𝑑 𝑚𝑚𝑚𝑚 𝑆𝑆𝑦𝑦𝑠𝑠𝑑𝑑𝑒𝑒𝑑𝑑

6.11.2017
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�̇�𝑞 = −𝑘𝑘𝜌𝜌 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Heat Conduction (Fourier’s Law)

�̇�𝑞 = ℎ𝜌𝜌(𝑇𝑇 − 𝑇𝑇𝑓𝑓) Heat Convection (Newton’s Law of
Cooling)

𝐸𝐸 = 𝑑𝑑𝐶𝐶(𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑓𝑓) Stored Internal Energy (non-reactive,
single phase, solid material)

Rate of change of energy accumulated in system =
dE/dt = mC dT/dt

6.11.2017
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Thermal Systems
Example 1: Convective Heat Transfer

6.11.2017
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Spherical steel pellets at a high initial temperature T0
are quenched by dropping them into a very large cooling
bath containing a fluid that is at temperature Tf.
Develop an expression for the temperature T of a pellet
as a function of time after it is dropped into the cooling
bath.
We will make two assumptions in solving this problem:
1. The bath temperature Tf remains constant.
2. The temperature within the pellet is uniform—it
depends on time but not on radial position within the
pellet. This is equivalent to treating the pellet as a
lumped parameter system. 6.11.2017
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Rate of Change of Rate of Rate of
Energy Accumulated = Energy Entering - Energy Exiting
in Pellet Pellet Pellet

𝑑𝑑𝐶𝐶
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 0 − ℎ𝜌𝜌(𝑇𝑇 − 𝑇𝑇𝑓𝑓)

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= −𝛼𝛼(𝑇𝑇 − 𝑇𝑇𝑓𝑓)
is a first-order equation, so we need one initial condition.
T(0) = T0

𝛼𝛼 =
ℎ𝜌𝜌
𝑑𝑑𝐶𝐶

6.11.2017
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�
𝑑𝑑𝑇𝑇

(𝑇𝑇 − 𝑇𝑇𝑓𝑓)
= −�𝛼𝛼𝑑𝑑𝑑𝑑

Integrating yields
ln 𝑇𝑇 − 𝑇𝑇𝑓𝑓 = −𝛼𝛼𝑑𝑑 + 𝐶𝐶1

Applying the initial condition T(0) = T0
ln 𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑓𝑓 = 𝐶𝐶1

Rearranging, yields

ln
𝑇𝑇 − 𝑇𝑇𝑓𝑓
𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑓𝑓

= −𝛼𝛼𝑑𝑑
6.11.2017
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𝑇𝑇 = 𝑇𝑇𝑓𝑓 + 𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑓𝑓 exp(−𝛼𝛼𝑑𝑑)

This solution is called a decaying exponential because
of the exponential to a negative power.

In particular, we note here that the quantity 𝛼𝛼 is simply
the reciprocal of the time constant 𝜏𝜏.

The time constant provides information about how long
it takes for a first-order process to occur.

6.11.2017
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A couple of useful points to consider are the values of T
at zero time and at infinite time. At t = 0, the exponential
goes to unity and equation simply becomes

𝑇𝑇 0 = 𝑇𝑇𝑓𝑓 + 𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑓𝑓 = 𝑇𝑇𝑜𝑜

Hopefully, this was no surprise because it was our initial
condition.
As t approaches infinity, the exponential goes to zero
and equation becomes

𝑇𝑇 ∞ = 𝑇𝑇𝑓𝑓
6.11.2017
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The exact graph of T versus t depends on the value of
𝛼𝛼 = ℎ𝐴𝐴

𝑑𝑑𝑚𝑚
. However, it will have the general characteristic

of starting at T0 and decaying to Tf, approaching it
asymptotically, as shown in figure for two different
values of 𝛼𝛼.

6.11.2017
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Graph of temperature vs time with two different values of 𝛼𝛼



Increasing the value of 𝛼𝛼 (decreasing the time constant)
will simply make the decay happen faster. Practically,
the decay will be complete after t = 5𝜏𝜏.

6.11.2017
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Thermal Systems
Example 2: Heating of a Liquid in a Jacketed, Stirred Vessel

6.11.2017
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A stirred tank (see figure) contains 30 m3 of water,
originally at 25°C.

6.11.2017
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Heating of water in a jacketed, stirred vessel



The water is heated by saturated steam condensing at
100°C in the jacket surrounding the vessel. The heat
transfer area of the jacket is 80 m2 and the overall heat
transfer coefficient between the condensing steam and
the water in the vessel is 500 J/m2s°C, The density and
heat capacity of water are 1000 kg/m3 and 4200 J/kg°C,
respectively. Determine how long it will take for the
water in the vessel to reach a temperature of 50°C.

6.11.2017
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We begin our development of a mathematical model by
writing an energy balance for the water in the vessel:

�𝑅𝑅𝑎𝑎𝑑𝑑𝑒𝑒 𝑜𝑜𝑓𝑓 𝐶𝐶ℎ𝑎𝑎𝑚𝑚𝑘𝑘𝑒𝑒 𝑜𝑜𝑓𝑓 𝐸𝐸𝑚𝑚𝑒𝑒𝑟𝑟𝑘𝑘𝑦𝑦
𝜌𝜌𝑒𝑒𝑒𝑒𝑢𝑢𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑑𝑑𝑒𝑒𝑑𝑑 𝑚𝑚𝑚𝑚 𝑑𝑑ℎ𝑒𝑒 𝑊𝑊𝑎𝑎𝑑𝑑𝑒𝑒𝑟𝑟

= �𝑅𝑅𝑎𝑎𝑑𝑑𝑒𝑒 𝑜𝑜𝑓𝑓 𝐸𝐸𝑚𝑚𝑒𝑒𝑟𝑟𝑘𝑘𝑦𝑦
𝑚𝑚𝑚𝑚𝑑𝑑𝑜𝑜 𝑑𝑑ℎ𝑒𝑒 𝑊𝑊𝑎𝑎𝑑𝑑𝑒𝑒𝑟𝑟

−� 𝑅𝑅𝑎𝑎𝑑𝑑𝑒𝑒 𝑜𝑜𝑓𝑓 𝐸𝐸𝑚𝑚𝑒𝑒𝑟𝑟𝑘𝑘𝑦𝑦
𝑜𝑜𝑢𝑢𝑑𝑑 𝑜𝑜𝑓𝑓 𝑑𝑑ℎ𝑒𝑒 𝑊𝑊𝑎𝑎𝑑𝑑𝑒𝑒𝑟𝑟

�̇�𝑞𝑖𝑖𝑛𝑛 = 𝑈𝑈𝜌𝜌(𝑇𝑇𝑠𝑠 − 𝑇𝑇)
A is the area of the jacket,TS is the temperature of the
condensing steam,T is the temperature of the water in
the vessel. 6.11.2017
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𝑑𝑑𝐶𝐶
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑈𝑈𝜌𝜌(𝑇𝑇𝑠𝑠 − 𝑇𝑇)

The initial condition is T(0) = T0 = 25°C.

𝛼𝛼 =
𝑈𝑈𝜌𝜌
𝑑𝑑𝐶𝐶

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= −𝛼𝛼(𝑇𝑇 − 𝑇𝑇𝑠𝑠)

6.11.2017
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�
𝑑𝑑𝑇𝑇

(𝑇𝑇 − 𝑇𝑇𝑠𝑠)
= −�𝛼𝛼𝑑𝑑𝑑𝑑

Integrating yields
ln 𝑇𝑇 − 𝑇𝑇𝑠𝑠 = −𝛼𝛼𝑑𝑑 + 𝐶𝐶1

Applying the initial condition T(0) = T0
ln 𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑠𝑠 = 𝐶𝐶1

Rearranging, yields

ln
𝑇𝑇 − 𝑇𝑇𝑠𝑠
𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑠𝑠

= −𝛼𝛼𝑑𝑑

6.11.2017
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The mass m is equal to the product of density ρ and
volume V and evaluate 𝛼𝛼 by

𝛼𝛼 =
𝑈𝑈𝜌𝜌
𝜌𝜌𝜌𝜌𝐶𝐶

=
500 𝐽𝐽

𝑠𝑠 � 𝑑𝑑2� ℃
80 𝑑𝑑2

1
𝑑𝑑3

1000 𝑘𝑘𝑘𝑘
1

30 𝑑𝑑3
℃ � 𝑘𝑘𝑘𝑘
4200 𝐽𝐽

= 0.00032 𝑠𝑠−1

6.11.2017
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The initial temperature T0 is 25°C, that the steam
temperature TS is 100°C, and that we wish to find the
time needed for the temperature T to reach 50°C.

ln
50 − 100
25 − 100

= −0.00032𝑑𝑑

Solving for t indicates that 1270 s (or approximately 21
min) are required for the water in the vessel to reach a
temperature of 50°C.

6.11.2017
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