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Objectives

Assess when the spatial variation of temperature is
negligible, and temperature varies nearly uniformly with
time, making the simplified lumped system analysis
applicable

Obtain analytical solutions for transient one-dimensional
conduction problems in rectangular, cylindrical, and
spherical geometries using the method of separation of
variables, and understand why a one-term solution is
usually a reasonable approximation

Solve the transient conduction problem in large mediums
using the similarity variable, and predict the variation of
temperature with time and distance from the exposed
surface

Construct solutions for multi-dimensional transient
conduction problems using the product solution approach.



LUMPED SYSTEM ANALYSIS

Interior temperature of some
bodies remains essentially
uniform at all times during a
heat transfer process.

The temperature of such
bodies can be taken to be a
function of time only, T(i).

(a) Copper ball

Heat transfer analysis that
utilizes this idealization is
known as lumped system
analysis.

A small copper ball
can be modeled as a
lumped system, but
a roast beef cannot. (/) Roast beef




Heat transfer into the body | _
during dt

hA(T, — T) dt = mc, dTl

m=pV dT=dT—-T,)
d(T o Tm) hAS
= — dt
T—T, pVc,

Integrating with

A

The increase in the / $
energy of the body 4
during dt h
SOLID BODY T,
m = mass
V = volume
P = density

T; = initial temperature

I T=T0)

Q=hA [T, - T(1)]

Tf T; at t= 9 The geometry and
T=T(t) at t=t parameters involved in the
T — T. hA. lumped system analysis.
In T, i - .,GV(.‘PI
() — T, hA time
4 = e b=—7 (175) c;onstant
T, — Tx ,U Vt F;;!



I(r)— T. - hA

= ¢ bt h — g

I, — T, pVc,
T(r) A
Ty

by>by> b,

I

The temperature of a lumped system
approaches the environment
temperature as time gets larger.

This equation enables us to
determine the temperature
T(t) of a body at time ¢, or
alternatively, the time ¢
required for the temperature
to reach a specified value T(¥).

The temperature of a body
approaches the ambient
temperature T, exponentially.

The temperature of the body
changes rapidly at the
beginning, but rather slowly
later on. A large value of b
indicates that the body
approaches the environment
temperature in a short time



O(f) = hA[T(t) — T, (W) The rate of convection heat
transfer between the body
and its environment at time ¢

0 = mc ITW — T (kJ) The fofal amount of heat transfer |
between the body and the surrounding
medium over the time interval t =0 to ¢

O  =me(T. —T) (kJy The maximum heat transfer between
R SRR the body and its surroundings

Heat transfer to or froma 7,
body reaches its B
maximum value when the
body reaches the
environment temperature.
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Criteria for Lumped System Analysis

Convection ~ V  Characteristic
L. = I length
h |
) Conduction & I . L. Biot number
Bi = —
k
SOLID Lumped system analysis
BODY % is applicable if

ﬁ’ 4 \ Bi < 0.1

When Bi < 0.1, the temperatures

l within the body relative to the
surroundings (i.e., T —T,) remain
Rj — heat convection within 5 percent of each other.

" heat conduction

h AT Convection at the surface of the body
 kIL.AT Conduction within the body

Bi

L./k Conduction resistance within the body
[/h  Convection resistance at the surface of the body

Bi =



h=15W/m2.°C

T,=20°C

Spherical
copper
ball

k=401 W/m-°C

Small bodies with high
thermal conductivities
and low convection
coefficients are most
likely to satisfy the
criterion for lumped
system analysis.

85°C

[10°C
130°C

3
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Bi = hL, _ 15 x0.02 — 0.00075 < 0.1 Convection
k 401
h = 2000 W/m?2-°C
Lo . Boat When the convection coefficient h is
g ‘% high and k is low, large temperature
S AN~ —~ differences occur between the inner
- ‘ = and outer regions of a large solid.
— X £ "_:__";" Analogy between heat
y & S transfer to a solid and 8

— passenger traffic to an island.



4-110 Consider two 2-cm-thick large steel plates (kK =
43 W/m - °C and a = 1.17 X 107> m?%s) that were put on top of
each other while wet and left outside during a cold winter night

Hot gases

at —15°C. The next day, a worker needs one of the plates, but l l l i l

the plates are stuck together because the freezing of the water

between the two plates has bonded them together. In an effort
to melt the ice between the plates and separate them, the

worker takes a large hair dryer and blows hot air at 50°C all
over the exposed surface of the plate on the top. The convection

heat transfer coefficient at the top surface is estimated to be 40
W/m? - °C. Determine how long the worker must keep blowing

hot air before the two plates separate.

Analysis The characteristic length of the plates *md the Biot number are

v
L,=—=L=002m
A,
hL, (40 W/m”.°C)(0.
Bie M _ (40 W/m _C)(O 02m) 0.019<01
k (43 W/m.°C)

Since Bi< 0.1. the lumped system analysis 1s applicable. Therefore,

hA h 40 W/m?.°C

h=—5 = — — =0.000544 s
pe,¥  pe,L, (3.675x10° J/m® .°C)(0.02m)
TO-To _ or [ 0=50 _ —oovossss™ 1 48568 0min

I.-T, o —11—30

3W/m.°C _
where pc _k__43Wm C,, : =3.675x10° J/m°> °C

Pa 1.17x10"° m

Steel plates
I;=-15°C




: EXAMPLE 4-2 Predicting the Time of Death

: A person is found dead at 5 PM in a room whose temperature is 20°C. The tem-
m berature of the body is measured to be 25°C when found, and the heat trans-
m fer coefficient is estimated to be h = 8 W/m? . °C. Modeling the body as a
m 30-cm-diameter, 1.70-m-long cylinder, estimate the time of death of that per-
= son (Fig. 4-10).
Properties The average human body is 72 percent water by mass, and thus we
can assume the body to have the properties of water at the average tempera-
ture of (37 + 25)/2 = 31°C; k = 0.617 W/m - °C, p = 996 kg/m3, and ¢, =
4178 J/kg - °C (Table A-9).
Analysis The characteristic length of the body is

v wrg L 7(0.15 m)*(1.7 m)
L.=—= > = > = 0.0689 m
Ay 2ar, L+ 27wr,  2m(0.15 m)(1.7 m) + 277(0.15 m)~
Then the Biot number becomes
g o MLe _ (B W - °C)Y0.0689m) _ o0 FIGURE 4-10
YTk T T 0617W/m-°C '
potd b _ 8 W/m® - °C
PCpV pcpLe (996 kg/m")(4178 J/kg - °C)(0.0689 m)
=279 X 1073 s~!
We now substitute these values into Eq. 4-4,
r@e)— T, _ e—bt ; 25 —-20 _ e—(279 X 1075 s~y
T,—T, 37-20

hich yield
which yields 10



TRANSIENT HEAT CONDUCTION IN LARGE PLANE
WALLS, LONG CYLINDERS, AND SPHERES WITH

SPATIAL EFFECTS

T,
We will consider the variation of temperature
with time and position in one-dimensional
problems such as those associated with a large T,
plane wall, a long cylinder, and a sphere.
h

T. Initially T, T.

(a) A large plane wall

Initially
=T,

(b) A long cylinder

O—r

3 -t — ®
0 L X
Initially T,
T=T, L

|
Transient temperature profiles in a
plane wall exposed to convection
from its surfaces for T, >T.,.

I,
h

"o

Schematic of the

simple geometries in
which heat transfer is
one-dimensional. 11



Nondimensionalized One-Dimensional Transient
Conduction Problem

, , O*T 10T
Differential equation: —5 =——
.. dx” « or
T, Initially T,
T=T. e
h ! h Boundary conditions:
al(0, 1) dT(L, 1)
. : =0 and —k— = h|T(L.t) — 1,]
ObD— ¢——» ax ax
L x
| Initial condition: I(x,0) =T,
@ =klpc, X = xL O(x, 1) =[T(x, 1) — TJIT, — T,]

| 29 L[*00 00(1. 1) hL
%= —(— and X )= k B(1. 1)

(a) A large plane wall J @ ol 0

. . . . . 28 af
Dimensionless differential equation: LA

mensionle iffere eq ( X or

_ , » d6(0, 7) (1, 1) .
Dimensionless BC's: - =0 and - = —Bif(l.7)

X dX

Dimensionless initial condition: HX.0)=1 12



0X,. 1) =

X

Bi

—
i

I(x,t) — T,

T.—T,
_ X
L
B hlL
k
174

Dimensionless temperature
Dimensionless distance from the center
Dimensionless heat transfer coefficient (Biot number)

Dimensionless time (Fourier number)

(a) Original heat conduction problem:

J*T
ox?
d7(0, 1)

dax

_ 14T

o dt’

T(x,0) =T,

' dT(L. 1)

-

ox

T=Fx.Ltk o hT)

(b) Nondimensionalized problem:

o (-)

a2 n
ad

o P H(X, 0)=

a0(0, 1) _ do(1, 1) _
ax ax

0 = fiX, Bi, 7)

Nondimensionalization
reduces the number of

l independent variables in one-
dimensional transient
conduction problems from 8 to
3, offering great convenience
in the presentation of results.

Bio(1, 7)

13



Exact Solution of One-Dimensional
Transient Conduction Problem

TABLE 18-1

Summary of the solutions for one-dimensional transient conduction in a plane wall of
thickness 2L, a cylinder of radius r, and a sphere of radius r, subjected to convention from
all surfaces.”

Geometry Solution A,’s are the roots of
* 4 sin A 2
Plane wall # = oM cos (A x/L A, tan A, = Bi
22,«1;? + sin(2A,) (Apx /L) : :
= 2 Ji (A 2 J, (A
. h=>-——" ( ”)2 e M J (A rir) A, — M) _ g
Cylinder =Ny J3 (A, + JE(A) Jo (Ap)
h= S 4(sin A, —.An COS A,) p—Air Sin (A, x/L) | — A cot A, =Bi
Sphere =1 2A,—sin(2A,) ApX /L
*Here 68 = (T — T)/T, — T) is the dimensionless temperature, Bi = hL/k or hr, /k is the Biot number, Fo =+ = =at/?

or ar/r? is the Fourier number and J, and J; are the Bessel functions of the first kind whose values are gwen In
Table 18-3.

14



Qn - An E_AET CDS()’L” X)
4sin A,
A, = :
2A, + sin(2A,)

A, tan A, = Bi

ForBi=5 X=1.,and = 0.2;

The analytical solutions of
transient conduction problems
typically involve infinite series,
and thus the evaluation of an

infinite number of terms to
n determine the temperature at a

0.22321 specified location and time.

000835 |heterm in the series solution of
transient conduction problems decline

0.00001 rapidly as n and thus A, increases

n A, A, 0

l [.3138 1.2402

2 4.0336 —0.3442

3 6.9096 0.1588

4 0.8928 —0.876 0.00000

because of the exponential decay

function with the exponent —A 7.

15



Approximate Analytical and Graphical Solutions

The terms in the series solutions converge rapidly with increasing time,
and for T > 0.2, keeping the first term and neglecting all the remaining

terms in the series results in an error under 2 percent.
Solution with one-term approximation

T(x, 1) —T, |
Plane wall: 0 ] = T —T. = Ae” NG cos (A /L), 7>0.2

Cylinder: 0. = 1 ~ - = A e~ N7 J (A, iy ), 7>0.2
, cyl T.—T, 1 o\,

Sphere: Oon = T{; T}:Fx = A]f?_fﬁ" Hi[j)f]’}';ff“} , 7>0.2

Center of plane wall (x = 0): 00, wal = ]]rr — ;:: = Alf?_‘ﬁ'”

Center of cylinder (r = 0): 0o, eyt = % = A]f’_"ﬁ'_

) | | Iy — T, 2_
Center of sphere (r = 0): 0. sph = Tﬂj = A e 16
r' o0



TABLE 18-2 TABLE 18-3

Coefficients used in the one-term approximate solution of transient one-
dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hlik
for a plane wall of thickness 2L, and Bi = fir,/k for a cylinder or sphere of

The zeroth- and first-order Bessel
functions of the first kind

radius r, )
Piane Wall Cylinder Sphere

Bi A A, A A, Ay Ay
0.01 0.0998 1.0017 0.1412 1.0025  0.1730 1.0030
0.02  0.1410 1.0033  0.1995 1.0050  0.2445 1.0060
0.04 0.1987 1.0066  0.2814  1.0099  0.3450 1.0120
0.06  0.2425 1.0098  0.2438 1.0148  0.4217 1.0179
0.08 0.2791 1.0130 0.3960 1.0197  0.4860 1.0239
0.1 0.3111 1.0161 0.4417 1.0246  0.5423 1.0298
0.2 0.4328 1.0311 0.6170  1.0483  0.7593 1.0592
0.3 0.5218 1.0450  0.7465 1.0712  0.9208 1.0880
0.4 0.5932 1.0580  0.8516 1.0931 1.0528 1.1164
0.5 0.6533 1.0701 0.9408  1.1143 1.1656 1.1441
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713
0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1450  1.1724 1.4320 1.2236
0.9 0.8274 1.1107 1.2048  1.1902 1.5044  1.2488
1.0 0.8603 1.1191 1.2558  1.2071 1.5708 1.2732
2.0 1.0769 1.1785 1.5995 1.3384  2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698  2.4556 1.7202
5.0 1.3138 1.2403 1.9898 15029 25704 1.7870
6.0 1.3496 1.2479  2.0490  1.5253  2.6537 1.8338
7.0 1.3766 1.2532  2.0937 1.5411 2.7165 1.8673
8.0 1.3978 1.2570  2.1286 1.5626  2.7654  1.8920
9.0 1.4149 1.2598  2.1566 1.5611 2.8044  1.9106
10.0 1.4289 1.2620  2.1795 1.5677  2.8363 1.9249
20.0 1.4961 1.2699  2.2880  1.5919%9  2.9857 1.9781
30.0 1.5202 1.2717  2.2261 1.5973  3.0372 1.9898
40.0 1.5325 1.2723  2.3455 1.5993  3.0632 1.9942
50.0 1.5400 1.2727  2.3572 1.6002  3.0788 1.9962
100.0 1.5552 1.2731 2.3809 1.6015  3.1102 1.9990
@® 1.5708 1.2732 24048  1.6021 3.1416  2.0000

1 Jylm) Jy(n)
0.0 1.0000 0.0000
0.1 0.9975 0.0499
0.2 0.9200 0.0995
0.3 0.9776 0.1483
0.4 0.9604 0.1960
0.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.2290
0.8 0.8463 0.2688
0.9 0.8075 0.4059
1.0 0.7652 0.4400
1.1 0.71%96 0.4709
1.2 0.6711 0.4983
1.3 0.6201 0.5220
1.4 0.5669 0.5419
1.5 0.5118 0.5579
1.6 0.4554 0.5699
1.7 0.3980 0.5778
1.8 0.3400 0.5815
1.9 0.2818 0.5812
2.0 0.2239 0.5767
2.1 0.1666 0.5683
2.2 0.1104 0.5560
2.3 0.0555 0.5399
2.4 0.0025 0.5202
2.6 —0.0968 —-0.4708
2.8 —0.1850 —0.4097
3.0 —-0.2601 —-0.3391
3.2 —-0.3202 —0.2613

17



(a) Midplane temperature
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Transient temperature and heat transfer charts T Initila]]y T
. o o
(Heisler and Grober charts) for a plane wall of thickness T=T, |h
2L initially at a uniform temperature T, subjected to 04—t—
convection from both sides to an environment at |
: : . 2L — 18
temperature T, with a convection coefficient of h. |
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(b) Temperature distribution
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The dimensionless temperatures anywhere in a plane wall,
cylinder, and sphere are related to the center temperature by

9\.&-1’!“ )l 11’ 93}!] /\] I QSIJh Si n ()'ll F/F(}J
= cos|—|. =Jo|— ), and =
00, wail L / 00, sph MiTr,

o

9(}, cyl

h — o

(a) Finite convection coefficient (b) Infinite convection coefficient

The specified surface temperature corresponds to the case of convection

to an environment at T, with with a convection coefficient h that is infinite.
21



Omax = me (T, = T;) = pVe (T, = T;)

Pl [l ( ¢ )
ane wall: — =
Ormax/ a
Q )
Cvlinder: (— =
‘ Qma}; eyl
Q )
Sphere: ( : —
! Qmax sph
Q]'.I'.Iﬂx

g-]ra'

(a) Maximum heat transfer (f — =)

The fraction of total heat transfer
Q/Qmax UP to a specified time tis
determined using the Grober charts.

(kJ)

.‘-‘.i[] )'ll

| — 6 —
0, wall
Wil A]

_"
| — 26, cyl

I

=1

Ji(A))
A
y sin Ay — A, COS A,
=20, sph 3
I /}-L]
0
h
T
Bi:. Q
h~r;}zr RiZr — O max

(Graber chart)

(b) Actual heat transfer for time ¢

22



The physical significance of the Fourier number

The rate at which heat 1s conducted
af  KL* (1/L) AT across L of a body of volume L’
oy pe, L/t AT ~ The rate at which heat is stored
in a body of volume L’

T

e The Fourier number is a L
measure of heat L | I
conducted through a body :

relative to heat stored.

|
| .
e A Iarge value of the Q : QCOH{'LIC[U{_'

Fourier number indicates - -

faster propagation of heat
through a bodly. Ju

A -
/ ®
. . -~
Fourier number at time ¢ - L /

can be viewed as the

ratio of the rate of heat + ot mehmd
conducted to the rate of Fourier number: 7 = 2 - )
heat stored at that time. Cstored

23



4-110 Consider two 2-cm-thick large steel plates (kK =

43 W/m - °C and a = 1.17 X 107> m%/s) that were put on top of Hot gases
each other while wet and left outside during a cold winter night T..=50°C

at —15°C. The next day, a worker needs one of the plates, but

the plates are stuck together because the freezing of the water l l l i l

between the two plates has bonded them together. In an effort
to melt the ice between the plates and separate them, the
worker takes a large hair dryer and blows hot air at 50°C all
over the exposed surface of the plate on the top. The convection
heat transfer coefficient at the top surface is estimated to be 40 L _
W/m? - °C. Determine how long the worker must keep blowing Steel plates
hot air before the two plates separate. i =-15°C

hL. (40 W/m~.°C)(0.02 m)

Bi= =0.019
k (43 W/m.°C)
; - 0(;19 =320
i : art
r=—=15>02
I, -T. -5 2
0% _ 0-50 =0.769 "o
T.-T, -15-50 |
Then.
2 15)(0.02 m)>
T (15)(0.02 m) 5135

=5 2.
o  (1.17x107" m~/s) 24



EXAMPLE 4-3  Boiling Eggs

An ordinary egg can be approximated as a 5-cm-diameter sphere (Fig. 4-21).
The egg is initially at a uniform temperature of 5°C and is dropped into boil-
ing water at 95°C. Taking the convection heat transfer coefficient to be
h = 1200 W/m? . °C, determine how long it will take for the center of the egg
to reach 70°C.

Analysis The temperature within the egg varies with radial distance as well as
time, and the temperature at a specified location at a given time can be deter-
mined from the Heisler charts or the one-term solutions. Here we use the latter
to demonstrate their use. The Biot number for this problem is

gi = e _ (1200 W/m® - °C)(0.025 m)
'k~ 0627Wm-°C

47.8

which is much greater than 0.1, and thus the lumped system analysis is not
applicable. The coefficients A, and A, for a sphere corresponding to this Bi are,
from Table 4-2,

A = 3.0754, A, = 1.9958
Substituting these and other values into Eq. 4-28 and solving for = gives

TO—TOO
T,—- T,

70 — 95

s o5 = 199587 0T —— £ =0.209

2
= Al(’_MT

which is greater than 0.2, and thus the one-term solution is applicable with an
error of less than 2 percent. Then the cooking time is determined from the de-
finition of the Fourier number to be

_7rZ _ (0.209)(0.025 m)?

@ 0151 X 10-°m¥Ys 865 s =~ 14.4 min

Therefore, it will take about 15 min for the center of the egg to be heated from
5°C to 70°C.

h= 1200 W/m2.°C
T, = 95°C
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4-53 A person puts a few apples into the freezer at —15°C to
cool them quickly for guests who are about to arrive. Initially,
the apples are at a uniform temperature of 20°C, and the heat
transfer coefficient on the surfaces is 8 W/m? - °C. Treating the
apples as 9-cm-diameter spheres and taking their properties to be
p = 840 kg/m’, ¢, = 3.81 kl/kg - °C, k = 0.418 W/m - °C, and
a = 1.3 X 1077 m?s, determine the center and surface tempera-
tures of the apples in 1 h. Also, determine the amount of heat
transfer from each apple.

Analysis The Biot number 1s

hr, (8 W/m?.°C)(0.045m)
ko (0418 W/m.°C)

Ailr

Bi= =0.861 T.=-15°C

The constants A, and 4, corresponding to this
Biot number are, from Table 4-2.

A, =1.476 and A4, =1.2390

Apple
1;=20°C

The Fourier number is

- -7 2/’. P 3
r=ﬁ= (1.3x107" m~/s)(1h x3600s/h) 0231~ 02

7 (0.045 m)>

o

Then the temperature at the center of the apples becomes

T, -T 2 T, —(-15
O =212 = i T T
P T, 20— (-15)

(1.239)e™ (4707 03) _g 749y —11.2°C
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The temperamre at the surface of the apples 1s

9(3*0‘5)31};? _ Vg I) T _ ‘,ile_)'l:r Eillf/l-l?fj I‘Q) _ (1239} -1 _|_‘.',5| "(0.231) 511].(] A7 '61('—1(1} —0.505
' T T, A, 17, 1.476
I'(r,.t)—(-15
To-D=C19 6505 70, .1y =2.7¢
20—(-15)
The maximum possible heat transter 1s
m=pV = pimj — (840 kg/m”) — i 7(0.045m)* | =0.3206kg
2
Opax =M, (T, T, ) = (0.3206 kg)(3.81 kJ.-'kg.C'C.}[EU— (-15)PC =42.75k]
Then the actual amount of heat transfer becomes
o _1_130 sin(A; ) — A, cos(4;) _1-3(0.749) sin(1.4761ad)—(1.476) cos(1.476 rad) 0402

QID,HK s /113 (14?6)”
0=0.4020, . =(0.402)(42.75k]) =17.2kJ
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TRANSIENT HEAT CONDUCTION IN SEMI-
INFINITE SOLIDS

o0

Plane
surface

o0

Schematic of a semi-infinite body.

Semi-infinite solid: An idealized
body that has a single plane surface
and extends to infinity in all directions.

The earth can be considered to be a
semi-infinite medium in determining
the variation of temperature near its
surface.

A thick wall can be modeled as a
semi-infinite medium if all we are
interested in is the variation of
temperature in the region near one of
the surfaces, and the other surface is
too far to have any impact on the
region of interest during the time of
observation.

For short periods of time, most bodies
can be modeled as semi-infinite
solids since heat does not have
sufficient time to penetrate deep into
the body. 28



Analytical solution for the case of constant temperature T, on the surface

e _ #*T 10T
Differential equation: S =
ox o dr
Boundary conditions: 100, nH =71, and T(x -, =T,
Initial condition: I(x,0) =T,
o . X *T 10T X
Similarity variable: n = —=——" and n=——7x=
’ \/ At x> @ of /
V dat 2 V 4at
d’T __ dT oTf dTon  x dT
h — T AT o -
dn” m at  dy ot 2 \/4ar A
T dTon 1 dT
I0)=17, and T(n—ox) =T, ox  dnox  ~/qapdn
T - TS“ Z K 2 o . n2 - 2
. T =——| e “du=erf(n) =1 — erfc(n) ST _d (d?) onp_ 1 dT
itV ax2  dn\ox) ax  4at dn?
1 2 (7 _, [ Transformation of variables
ertf(n) = ——= | e du o & in the derivatives of the
Vil unction _ ;
heat conduction equation
2 (" . by the use of chain rule.
erfe(n) = 1 — —— | &~ “du complementary y
Vo error function 29



|

/ _

The complementary error function®

0.08 0.9099 046 05153 | 0.84 0.2349
0.10 0.8875 0.48 04972 | 086 0.2239
0.12 0.8652 0.50 04795 | 0.88 0.2133
0.14 0.8431 0.52 04621 | 090 0.2031
— 0.16  0.8210 0.54 0.4451 | 092 0.1932
0.18 0.7991 0.56 04284 | 094 0.1837
2.0 2.5 3.0 0.20 D.?E’E’B 0.58 04121 | 096 0.1746

0.22  0.7557 0.60 0.3961 | 098 0.1658
n 0.24 0.7343 062 0.3806 | 1.00 0.1573

. . 0.26 0.7131 0.64 0.3654 | 1.02 0.1492
Error function is a standard 0.28 0.6921 066 0.3506 | 1.04 0.1413

o ©
o N
|
\
|

Q Vi
'§ 0.8 n erfc () 7 erfc (n) 7 erfc (1)
o 0.00 1.00000 | 0.38 05910 | 0.76 0.2825
g 0.6 % ST 0.02 09774 | 0.40 05716 | 0.78 0.2700
= s \_/erf(n):;-j e—u du | 0.04 09549 | 0.42 05525 | 0.80 0.2579
= / Jm 1o 0.06 09324 | 0.44 05338 | 0.82 0.2462
=
S
=
M

o
o

=
o
o
W
o
hn

mathematical function, just like the 0.30 06714 | 068 03362 | 1.06 0.1339
sine and cosine functions. whose 0.32 0.6509 0.70 0.3222 | 1.08 0.1267

) 0.34 0.6306 0.72 0.3086 | 1.10 0.1198
value varies between 0 and 1. 0.36 0.8107 0.74 02953 | 1.12 0.1132
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Case 1: Specified Surface Temperature, I, = constant Analytical
solutions for
Tx,t) — T, | x k(T, — T) different

= erfc and ¢g 1) =
I, — 1T, " 2Vat 0 \V Tat boun_d.ary
conditions on

Case 2: Specified Surface Heat Flux, ¢ = constant. the surface
1l [dar X ‘ X
I(x,t) =T, = as exp | — | — xertc —
(| N7 P\ Nt
Case 3: Convection on the Surface, {?s(r) = h|T_ — T(0,0)].
T(x,t) — T, ) X hx  hat , X h\/;r
= erfc — exp + —— |erfc + :

I, — 1, 2V at k k* 2V at k

Case 4: Energy Pulse at Surface, e, = constant.
v

e °
i
k' mitla dat 31

I(x, 1) =T, =



/\ erfc(n)

Dimensionless
temperature distribution
for transient conduction
in a semi-infinite solid
whose surface is
maintained at a constant
temperature T..
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100

2 0.4 0.6 0.8
/_.. Distance from surface x, m

T;=0°C

0.6
/—- Distance from surface x, m

T;=0°C

g, = 7000 W/m?

() Specified surface temperature, T, = constant. (b) Specified surface heat flux, ¢, = constant.

Variations of temperature with position and time in a large cast iron block (a = 2.31 X 107> m%/s,
k = 80.2 W/m - °C) initially at 0 °C under different thermal conditions on the surface.
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100

80

r°c

T, =100°C
h=220W/m?2-°C

0.2 0.4 0.6 0.8
Distance from surface x, m

T;=10°C

(c¢) Convection at the surface

100

1%
~
0.4 0.6 0.8
/» Distance from surface x, m
T;=10°C

e,= 1.7x107 J/m?

(d) Energy pulse at the surface, ¢, = constant

Variations of temperature with position and time in a large cast iron block (a = 2.31 X 107> m%/s,
k = 80.2 W/m - °C) initially at 0 °C under different thermal conditions on the surface.
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Variation of temperature with position and time in a semi-infinite
solid initially at temperature T; subjected to convection to an 35

environment at T.. with a convection heat transfer coefficient of h.



Contact of Two Semi-Infinite Solids

When two large bodies A and B, initially at
uniform temperatures T,;and Tg; are
brought into contact, they instantly achieve
temperature equality at the contact
surface.

If the two bodies are of the same material,
the contact surface temperature is the
arithmetic average, Ts = (T4 i+Tg,)/2.

If the bodies are of different materials, the
surface temperature T will be different
than the arithmetic average.

Contact of two semi-infinite solids of
different initial temperatures.

+ + ka(Ty — Ty kp(Ty —Tpy) Ty, — T [(kpc,)p
dsAa = 4sB = — — = — P

| | - = [
\/'IW[T‘._J \/ETETBT T-‘i o TBJ' \ (kpi .I”JA'

i c

/i1 . /i1 . The interface temperature of two bodies
- Wl s+ NV (kpc,)pTn
— V kpepalai + V (kpcy)pl, brought into contact is dominated by the
V (kpe,)a + V (kpc,)p body with the larger kpc,.

I

EXAMPLE: When a person with a skin temperature of 35°C touches an aluminum
block and then a wood block both at 15°C, the contact surface temperature will be
15.9°C in the case of aluminum and 30°C in the case of wood.



4-111 Consider a curing kiln whose walls are made of
30-cm-thick concrete whose properties are k = 0.9 W/m - °C
and a = 0.23 X 107> m?s. Initially, the Kiln and its walls are in
equilibrium with the surroundings at 6°C. Then all the doors
are closed and the Kkiln is heated by steam so that the tempera-
ture of the inner surface of the walls is raised to 42°C and is
maintained at that level for 2.5 h. The curing kiln is then
opened and exposed to the atmospheric air after the stream
flow is turned off. If the outer surfaces of the walls of the
kiln were insulated, would it save any energy that day during
the period the kiln was used for curing for 2.5 h only, or would
it make no difference? Base your answer on calculations.

Analysis We determine the temperature at a depth of x =
0.3 m in 2.5 h using the analytical solution.

T(x.t)-T. .
x0T, —E?fa[ L
T, -T, 2V at
Substituting.
x.1)— 3
T(x.1) 6_erfc 0.3m
42-6

21(0.23x107° m?/5)(2.5h ¥ 3600 /h)

= erfc(1.043) = 0.1402
T(x.t)=11.0°C

6°C

42°C

30 cm

FIGURE P4-111

42°C

AN

0

Kiln wall

30 cm

6°C

which is greater than the initial temperature of 6°C. Therefore, heat will propagate through the 0.3 m thick
wall in 2.5 h, and thus it may be desirable to insulate the outer surface of the wall to save energy.
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TRANSIENT HEAT CONDUCTION IN
MULTIDIMENSIONAL SYSTEMS

Using a superposition approach called the product solution, the transient
temperature charts and solutions can be used to construct solutions for the fwo-
dimensional and three-dimensional transient heat conduction problems
encountered in geometries such as a short cylinder, a long rectangular bar, a
rectangular prism or a semi-infinite rectangular bar, provided that all surfaces of
the solid are subjected to convection to the same fluid at temperature T, with the
same heat transfer coefficient h, and the body involves no heat generation.

The solution in such multidimensional geometries can be expressed as the

product of the solutions for the one-dimensional geometries whose intersection is
the multidimensional geometry.

T, T,

h h T, /—i\ The temperature in a short
Hea h cylinder exposed to

4 T(rpr) W :
ansfer Heat nvection from all surf
transfer - T convection from all surfaces

ransfer v gries in both the radial and
axial directions, and thus

\_t/ heat is transferred in both

directions. 38

(a) Long cylinder (b) Short cylinder (two-dimensional)



The solution for a multidimensional geometry is the product of the solutions of the
one-dimensional geometries whose intersection is the multidimensional body.

The solution for the two-dimensional short cylinder of height a and radius r, is
equal to the product of the nondimensionalized solutions for the one-dimensional

plane wall of thickness a and the long cylinder of radius r,.

I(r,x, 1) — T, - (T(x, 1) — T, [(r,0)— T,
T,- - T:c short o T{_ _ TI plane T{_ - T.-f infinite

cylinder wall cylinder

T,
~ Plane wall
h U I;“'/m
v
{1 A short cylinder of
l | radius r, and height a
— is the intersection of a
w-‘u Yo ‘ long cylinder of radius
“— Long r, and a plane wall of
cylinder thickness a.

39



T(x,v, 1) —T.
T — T rectangular — F)W““{,'\“ I)H‘akull[j‘“ ir)

i bar

_Plane ws T(x, 1) — T,
/ Plane wall 0. (x. 1) = ( (X _) )p]ﬂne

i wall
T
“ 0 (r 0) (T(r. Hn—T,
ulr. ) = o
h ! I, — T g;tllil:]lc[lfer

///—\-—ﬂ . . 1 (T(.X‘. [) — TI>
semi-inf\*s - semi-infinite
i t I, — T solid ot

( - Plane wall
~—a

A long solid bar of rectangular profile
a x b is the intersection of two plane
walls of thicknesses a and b.
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The transient heat transfer for a two-dimensional
geometry formed by the intersection of two one-
dimensional geometries 1 and 2 is

o I Vo R ol O e B
Ormax otal, 2D Qrnax 1 Oax 2 Oumax -

Transient heat transfer for a three-dimensional body
formed by the intersection of three one-dimensional
bodies 1, 2, and 3 is

Qm;m total. 3D Q)Jl‘m\' ] Qmux y) Qmux |
" Qnmx 3 - Qmux | Qm"‘l'\" 2




Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T; and exposed

to convection from all surfaces to a medium at T,

0

L

Birt) = E?C}_.l(r.lf]l
Infinite cvlinder

— X —_— ._i"

O(xr 1) =6 (11 Ogp e (X. 1)
Semi-infinite cylinder

=

B(xrt) =6, (r0) By (x1
Short cylinder

b
f
|
3 ~

Hl:""-‘ 1) = E,:}sr:'-mi- inf (X, 7)
Semi-infinite medium

L_\..\f,ﬂ__f -

H':-"'-*.T'” = H:E“I‘."Ii.-i.lll"l:'l"-‘ 1) tr’:]‘:;r:'-mi- it ':1‘ f)
Quarter-infinite medinm

Bx,vz,1) =
2] (x.) 8 V.18,

semi-inf semi-inf l:. semi-int (2.1)
Corner region of alarge medium



Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T; and exposed
to convection from all surfaces to a medium at T,

2L
(I)_‘L X

9(.\'. t) = 9“,3“(.\'. f)
Infinite plate (or plane wall)

o(x, wi = Owall (x. 1 Osk?mi-inr'(.“' 1)
Semi-infinite plate

N
~
h ~
\
\
\
N
\
\
3 ///\ —'=
-~
- -
~
~
X
O(x,v.2, 1) =
0\\‘ all (x, 1) esemi-'mt' (\ ) Qsemi-'mf (2,1

Quarter-infinite plate

I

-

R _
|
|
|

N

N
N\

9(.\-. '\‘. f) = 9\\‘3“('\.' ’) 9\

N

a0
Infinite rectangular bar

8(x,v,z,1) =
g\vall (x. 1) 9\\'all ) g“emi—int'(:-' )

S

Semi-infinite rectangular bar

f(x,v.z2,0) =
6 wat (%, D Oyan (0 1) Oy (2, 1)
Rectangular parallelepiped



4-113 A hot dog can be considered to be a [2-cm-long

cylinder whose diameter is 2 cm and whose properties are LMM

p = 980 kg/m?, ¢, = 3.9 kl/kg - °C, k = 0.76 W/m - °C, and - s ,
a =2 X 107" m?%s. A hot dog initially at 5°C is dropped into boil- @
ing water at 100°C. The heat transfer coefficient at the surface of

the hot dog is estimated to be 600 W/m? - °C. If the hot dog is | |~ Water, 100°C
considered cooked when its center temperature reaches 80°C, o
determine how long it will take to cook it in the boiling water.

_ AL (600 W/m®.°C)(0.06 m)

=4737 —— 4, =1.5380 and 4, =1.2726
I (0.76 W/m.°C)

Bi

hr, (600 W/m~.°C)(0.01m)

Bi = =7895 —— 4, =2.1249 and 4, =1.5514

k (0.76 W/m.*C)
6(0.0.7) p1ock = 6(0.7) 1,01 €(0.1) 1 Z(Ale_ifr )( A1€_}‘1_r) This hot dog can physically be
_7' 5 formed by the intersection of
i 1L, (1.2726) exp| —(1.5380)> M % an infinite plane wall of
5-100 (0.06)" thickness 2L =12 cm, and a
- long cylinder of radius ro = D/2
, 2x107) | a
x4(1.5514)exp| —(2.1249)> ———~ | =02105 =1 cm.
©0.on® |
which gives
[ =244s=4.1min
) =7 2. 2 .
r = ar _ (2x107" m~/s)(2445s) 049502 »

72 (0.01 111)2

o



: EXAMPLE 4-11 Refrigerating Steaks while Avoiding Frosthite

® |n a meat processing plant, 3-cm-thick steaks initially at 25°C are to be cooled
B in the racks of a large refrigerator that is maintained at —15°C (Fig. 4-39). The
® steaks are placed close to each other, so that heat transfer from the 3-cm-thick
" edges is negligible. The entire steak is to be cooled below 8°C, but its temper-

ature is not to drop below 2°C at any point during refrigeration to avoid “frost-
m bite.” The convection heat transfer coefficient and thus the rate of heat transfer
m from the steak can be controlled by varying the speed of a circulating fan inside.
m Determine the heat transfer coefficient h that will enable us to meet both tem-
®m perature constraints while keeping the refrigeration time to a minimum. The steak
® can be treated as a homogeneous layer having the properties p = 1200 kg/m?, Steak
: c, = 4.10 kl/kg - °C, k = 0.45 W/m - °C, and @ = 9.03 X 1078 m?fs. N\

Analysis The lowest temperature in the steak occurs at the surfaces and |
the highest temperature at the center at a given time, since the inner part is
the last place to be cooled. In the limiting case, the surface temperature at
x =L = 1.5 cm from the center will be 2°C, while the midplane temperature
is 8°C in an environment at —15°C. Then, from Fig. 4-15b, we obtain

—15°C

l=l.5cm=1
L 15cm L=L=15
T.O-T, _2-15_q7,(Bi K

T,-T, 8—(—15)

which gives

. .0
1 k_045W/m-°C — 20 W/m? .°C

h= i
1.5 L 1.5(0.015m)

Discussion The convection heat transfer coefficient should be kept below this

value to satisfy the constraints on the temperature of the steak during refriger-

ation. We can also meet the constraints by using a lower heat transfer coeffi- 45
cient, but doing so would extend the refrigeration time unnecessarily.
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