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Objectives

To understand multidimensionality and time dependence of heat
transfer, and the conditions under which a heat transfer problem
can be approximated as being one-dimensional.

To obtain the differential equation of heat conduction in various
coordinate systems, and simplify it for steady one-dimensional
case.

To identify the thermal conditions on surfaces, and express them
mathematically as boundary and initial conditions.

To solve one-dimensional heat conduction problems and obtain the
temperature distributions within a medium and the heat flux.

To analyze one-dimensional heat conduction in solids that involve
heat generation.

To evaluate heat conduction in solids with temperature-dependent
thermal conductivity.



Introduction

Although heat transfer and temperature are closely
related, they are of a different nature.

Temperature has only magnitude
it is a scalar quantity.
has direction as well as magnitude
> It I1s a quantity.
We work with a coordinate system and indicate direction
with plus or minus signs.

>




The driving force for any form of heat transfer is the temperature
difference.

The larger the temperature difference, the larger the rate of heat
transfer.

Three prime coordinate systems:
- rectangular (T(x,vy, z, 1)),
- cylindrical (T(r, f, z, 1)),
- spherical (T(r, f,q,t)). 7=~~~ 3T




Classification of conduction heat transfer problems:
steady versus transient heat transfer,
multidimensional heat transfer,
heat generation.
15°C 7°C  15°C 7°C

Steady implies no \ / N /
change with time at

any point within the summmg) 0 S ) -0

medium

Transient implies Time = 2 M Time = 5 PM
variation with time 1500 . 500
or time dependence N / \J /

) ) ) ) -0




Multidimensional Heat Transfer

Heat transfer problems are also classified as being:
- one-dimensional,
- two dimensional,
- three-dimensional.

In the most general case, heat transfer through a medium is three-
dimensional. However, some problems can be classified as two- or one-
dimensional depending on the relative magnitudes of heat transfer rates
in different directions and the level of accuracy desired.

The rate of heat conduction through a medium in a specified direction
(say, in the x-direction) is expressed by Fourier's law of heat conduction

for one-dimensional heat conduction as:
T4

. {

O cona = —.{f-‘[% (W) slopeg<0
Heat is conducted in the direction of To)
decreasing temperature, and thus the |
temperature gradient is negative when %
heat is conducted in the positive x - Heat flow
direction.




Multidimensional Heat Transfer

+ One-dimensional if the temperature in the medium varies in one
direction only and thus heat is transferred in one direction, and the
variation of tfemperature and thus heat transfer in other directions
are negligible or zero.

- Two-dimensional if the temperature in a medium, in some cases, varies
mainly in two primary directions, and the variation of tfemperature in
the third direction (and thus heat transfer in that direction) i
negligible.

|
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heat transfer Tix, ﬂl
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Frimary BO°C » I
direction of | = TF05C
heat transfer ‘ J‘

FIGURE 2-6 Q

Heat transfer through the window
of a house can be taken to be FIGURE 2-5

one-dimensional. Two-dimensional heat transfer
in a long rectangular bar.



General Relation for Fourier's Law of
Heat Conduction

The heat flux vector at a point Pon the surface of the figure must

be perpendicular to the surface, and it must point in the direction

of decreasing temperature )

If nis the normal of the isothermal ” A,
surface at point #, the rate of heat conduction

at that point can be expressed by Fourier's law

s 5=l w

dn

i

In rectangular coordinates,
the heat conduction vector

—— An isotherm

can be expressed in terms O = A ar
of its components as : " Ox X

= e e s . oT

Q,=0i+0,j+0k 10 =-k4, ™

which can be determined Y

from Fourier's law as 0. =—kA or

k z z aZ




Heat Generation

Examples:

- electrical energy being converted to heat
at a rate of I2R,

- fuel elements of nuclear reactors,
- exothermic chemical reactions.
Heat generation is a vo/lumetric phenomenon, FIGURE 2-9

Heat is generated in the heating coils

The rate of heat generation units : W/m? or oo o el ooty 1o hoat
Btu/h - f13.

The rate of heat generation in a medium may

vary with time as well as position within the Solar
medium.

The fofa/rate of heat generation in a medium
of volume V' can be determined from

S~ Solar energy

absorbed by
water

Water

- _ | éenlX) = 4, (%)
Epp=[édV (W) )=
14
FIGURE 2-10
The absorption of solar radiation by
water can be treated as heat

generation. 10



EXAMPLE 2-2 Heat Generation in a Hair Dryer

The resistance wire of a 1200-W hair dryer is 80 cm long and has a diameter
of O = 0.3 cm (Fig. 2-12). Determine the rate of heat generation in the wire
per unit volume, in W/em?, and the heat flux on the outer surface of the wire
as a result of this heat generation.

SOLUTION The power consumed by the resistance wire of a hair dryer is
given. The heat generation and the heat flux are to be determined.
Assumptions Heat is generated uniformly in the resistance wire.

Analysis A 1200-W hair dryer converts electrical energy into heat in the wire
at a rate of 1200 W. Therefore, the rate of heat generation in a resistance wire
Is equal to the power consumption of a resistance heater. Then the rate of heat
generation in the wire per unit volume is determined by dividing the total rate
of heat generation by the volume of the wire,

, _Em _ Ew 1200 W

= = = 212 W/em®
=" Vo  (#DYH)L  [7(0.3 cm)/4](80 cm) e

Similarly, heat flux on the outer surface of the wire as a result of this heat gen-
eration is determined by dividing the total rate of heat generation by the sur-
face area of the wire,

6. = Een 1 __ 1200W
T Avie  —— (0.3 cm)(80 cm)
mDL

= 15.9 W/cm?

Discussion Note that heat generation is expressed per unit volume in W/cm?
or Btu/h - ft3, whereas heat flux is expressed per unit surface area in W/cm? or
Btu/h - ft2.

Hair dryer
1200W

FIGURE 2-12
Schematic for Example 2-2.
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One-Dimensional Heat Conduction
Equation - Plane Wall

Rate of heat| | Rate of heat Rate of heat Rate of change of
conduction | =| conduction | +|generation inside | —| the energy content
at x at x+Ax the element of the element
- \
| EEE‘I‘I Volume
N { v._a]ement
e o gy
s ~— I
— e | |~
Q element - T r
— — g | | | e
x4 Ax gen element B~ I =
At — [ I : IH-'-‘.
x o B : I e
Vg -‘Q _;:-h B ™ I : I‘_\-'\-h.
[ i = A - i
o TR e T
~e | P e S bt
P MNIA
o Tl e
D“-\-\_\_‘_‘__\_ . -\-"E&_:_
x E-_'
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|

L] . I L]

I I | element |

— [ =

=X Qx+Ax|+|Egen,element p | A |

LT A
| / /7

e The change 1 m thé energy content and the rate of heat
generatmn cdn be expressed as

& I
:AEelemeI}t’w_ t+At - Ez‘ = mc (Tt+Az - Tz) _“OCAAX(THN Tt)
il el Rl > T T P e — ===
Ifzgez e_lezfze_nt_;_ eger‘ll/element Ifg_en_l‘A_A_x_ _; :

. Subst1tut1ng mto. above eguatlon/We get
T —T \
' Q Q +Ax'i|+egenAAx ‘_'IOCAAX HZZ‘ : ‘l
* Dividing by‘AAx ,t’aklng the’ lmut as Ax—> O and A= 0,
and from Fourier’s law: S
|, oT oT
— 214 5 = pe——
y Gx( 8xj ~ 13



The area A is constant for a plane wall - the one dimensional
transient heat conduction equation in a plane wall is

o(,o0T oT
. L] L] : e k— + . :
Variable conductivity ax( ax) o = PE—
y OT & 10Tk
Constant conductivity: P .

The one-dimensional conduction equation may be reduces to the
following forms under special conditions

i 1) Steady-stat d2T+égen 0
eady-state: _
’ dx* k
i : T 10T
< 2) Transient, no heat generation: 27 :;aa_t
. d’T
_ 3) Steady-state, no heat generation: =0

14



One-Dimensional Heat Conduction
Equation - Long Cylinder

Rate of heat| | Rate of heat Rate of heat Rate of change of
conduction | =| conduction | +|generation inside | —| the energy content
at r at r+Ar the element of the element
Q element
r+Ar gen element A {

’Q

r+ &\_/ ~ Volume element

~



|
| element |
=
'Q Qr+Ar gen element | | |
—-— e - ‘— —-— e , ————— I At I
| L - -

e The change 1 m thé energy content and the rate of heat
generation cdn be expressed as

— e — I—;A ————————————————————————————

AE, = E gy~ B, =me (T, = T)) —.pcAAr(THN )
E s Regane T
. Subst1tut1ng mto.Eq 2 18, we get’ - 1\\\
0.-0. v pean e
* Dividing by‘AAr Iak1ng the 11m1t as Ar-> O and A= 0,
and from Fourier’s law: NS

1 8(. or oT
= Y114 S e
A@r( arj ~ P 16



Noting that the area varies with the independent variable »
according to A=2nrL, the one dimensional transient heat
conduction equation in a long cylinder becomes

Variable conductivity: lﬁ(rk‘ij- :pca_T
or - ot

o e
Constant conduc’nvn’ry: la(r 8Tj+ gen :la_T
ror\ or k a Ot

The one-dimensional conduction equation may be reduces
to the following forms under special conditions

a 1 d( dT) é,,
1) Steady-state: Pl Lol il

< | L lofer_ver
2) Transient, no heat generation: 27" 3" |7 5,

d (| dT
\3) Steady-state, no heat generation: . (’” 7 ) =0 17



One-Dimensional Heat Conduction
Equation - Sphere

18



EXAMPLE 2—-4 Heat Conduction in a Resistance Heater

A 2-kW resistance heater wire with thermal conductivity K = 15 W/m - K, di-
ameter 0 = 0.4 cm, and length L = 50 cm is used to boil water by immersing
it in water (Fig. 2-19). Assuming the variation of the thermal conductivity of
the wire with temperature to be negligible, obtain the differential equation that
describes the variation of the temperature in the wire during steady operation.

SOLUTION The resistance wire of a water heater is considered. The differen-
tial equation for the variation of temperature in the wire is to be obtained.
Analysis The resistance wire can be considered to be a very long cylinder
since its length is more than 100 times its diameter. Also, heat is generated
uniformly in the wire and the conditions on the outer surface of the wire are
uniform. Therefore, it is reasonable to expect the temperature in the wire to
vary in the radial r direction only and thus the heat transfer to be one-
dimensional. Then we have T = T(r) during steady operation since the tem-
perature in this case depends on ronly.

The rate of heat generation in the wire per unit volume can be determined
from

B Egm 2000 W
o = - = 5
U Wi (wDM4L [7(0.004 m)¥4](0.5 m)
MNoting that the thermal conductivity is given to be constant, the differential

equation that governs the variation of temperature in the wire is simply
Eq. 2-27,

= 0.318 X 10° W/m’

1 d ( dT\ . €wa
- = — |+ =
Idr lr dr J k 0

which is the steady one-dimensional heat conduction equation in cylindrical
coordinates for the case of constant thermal conductivity.

Discussion MNote again that the conditions at the surface of the wire have no
effect on the differential equation.

L+ Resistance
heater

FIGURE 2-19

Schematic for Example 2—4.
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General Heat Conduction Equation

Rate of heat  Rate of heat Rate of heat  Rate of change

conduction = conduction | generation — of the energy
atx,y, and z at x+A4x, y+4y, inside the content of the
l and 7+Az element element

\\\

{Q + Q + Q \ éx y+Ay gen element — eAletment

20



Repeating the mathematical approach used for the one-
dimensional heat conduction the three-dimensional heat
conduction equation is determined to be

Two-dimensional

(

\
0T OT OT € 10T
ox” 8y2 oz k a ot

Constant conductivity:

\ J
Y
Three-dimensional
& O’T 0T o°T é,,
+—+—+- =
1) Steady-state: ox> oy 028k
o°T 8 T 8 I _ 1 oT
< 2) Transient, no heat generation: 32 * o) =Y
3\ Stead ’ 0T OT oT
k) teady-state, no heat generation:  — > ay T

21



Cylindrical coordinates

10 or\y 10r(,0r\) o(,oT) . oT
——\rhk— |+ |k |+ | k— |+é,., = pc—
r or or) r-og\ 0¢) 0Oz\ 0Oz ot

Spherical coordinates

%E(krza—Tj+ - _12 9 ka—T + 21_ i(ksin@a—T)ﬂégen=,oc
r- or or) rsin"@0¢\ 0¢) r sinf 00 00



EXAMPLE 2-6

A short eylindrical metal billet of radius R and height / is heated in an oven to
a temperature of 800°F throughout and is then taken out of the oven and al-
lowed to cool in ambient air at 7., = 65°F by convection and radiation. As-
suming the billet is cooled uniformly from all outer surfaces and the variation
of the thermal conductivity of the material with temperature is negligible, ob-
tain the differential equation that describes the variation of the temperature in
the billet during this cooling process.

Heat Conduction in a Short Cylinder

SOLUTION A short cylindrical billet is cooled in ambient air. The differential
equation for the variation of temperature is to be obtained.
Analysis  The billet shown in Fig. 2-25 is initially at a uniform temperature
and is cooled uniformly from the top and bottom surfaces in the z-direction as
well as the lateral surface in the radial r-direction. Also, the temperature at any
point in the ball changes with time during cooling. Therefare, this is a two-
dimensional transient heat conduction problem since the temperature within
the billet changes with the radial and axial distances rand z and with time £.
That is, T= T(r, z, t).

The thermal conductivity is given to be constant, and there is no heat genera-
tion in the billet. Therefore, the differential equation that governs the variation

of temperature in the billet in this case is obtained from Eq. 2-43 by setting
the heat generation term and the derivatives with respect to & equal to zero. We

obtain
aT\ @ a_)_ a7
( ﬂ] :[ az | = Pt

In the case of constant thermal conductivity, it reduces to

| —

li( ﬂ_T') #T _ 1T
rar\"aor) T oz “aat

which is the desired equation.

Discussion MNote that the boundary and initial conditions have no effect on the
differential equation.

| Heat
‘{oﬁ
Metal | 600°F T, =65F
billet 1

FIGURE 2-25
Schematic for Example 2—6.
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Boundary and Initial Conditions

» Specified Temperature Boundary Condition
- Specified Heat Flux Boundary Condition

- Convection Boundary Condition

» Radiation Boundary Condition

* Interface Boundary Conditions

* Generalized Boundary Conditions

24



Specified Temperature Boundary
Condition

For one-dimensional heat transfer
through a plane wall of thickness
L, for example, the specified e T
temperature boundary conditions 1°0°C ez, 4 10°C
can be expressed as

T(O, t) — Tl
1L, t)=T1, T(0, 1) = 150°C
T(L, t) = 70°C

The specified temperatures can be constant, which is the case
for steady heat conduction, or may vary with time.

25



Specified Heat Flux Boundary Condition

Heat
flux | Conduction

The heat flux in the positive x-
direction anywhere in the medium,
including the boundaries, can be
expressed by Fouriers law of heat
conduction as

dT Heat flux in the
q =—k—= positive x-
dx direction

o =

K d7(0, 1)
dx

Conduction

ox

The sign of the specified heat flux is determined by
inspection: positive if the heat flux is in the positive
direction of the coordinate axis, and negative if it is in

the opposite direction.

Heat
flux

g

LD _

.-

26



Two Special Cases

Insulated boundary

0 "
Insulation T(x, 1) 60°C
Ole ‘L :’(
a7, 1) _
ox 0

T(L, r) =60°C

L0100 o
Ox Ox

oT(0,1) _

0

Thermal symmetry

|,,—-— Center plane

Zero |
slope |

- — Temperature
| distribution
(symmetric

|

about center
| plane)
|

) * >
( £ I X
2

ALI2.1) _
dx

ity

Ox -

0
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EXAMPLE 2-7 Heat Flux Boundary Condition

Consider an aluminum pan used to cook beef stew on top of an electric range.
The bottom section of the pan is L = 0.3 cm thick and has a diameter of D =
20 cm. The electric heating unit on the range top consumes 800 W of power
during cooking, and 90 percent of the heat generated in the heating element
is transferred to the pan. During steady operation, the temperature of the inner
surface of the pan is measured to be 110°C. Express the boundary conditions
for the bottom section of the pan during this cooking process.

oy Waer

(110°C
I IOIJ 1]

FIGURE 2-32
Schematic for Example 2-7.

SOLUTION An aluminum pan on an electric range top is considered. The
boundary conditions for the bottom of the pan are to be obtained.

Analysis  The heat transfer through the bottom section of the pan is from the
bottom surface toward the top and can reasonably be approximated as being
one-dimensional. We take the direction normal to the bottom surfaces of the
pan as the x axis with the origin at the outer surface, as shown in Fig. 2-32.
Then the inner and outer surfaces of the bottom section of the pan can be rep-
resented by x = 0 and x = L, respectively. During steady operation, the tem-
perature will depend on x only and thus T = Ti(x).

The boundary condition on the outer surface of the bottom of the pan at
x = 0 can be approximated as being specified heat flux since it is stated that
90 percent of the 800 W (i.e., 720 W) is transferred to the pan at that surface.
Therefore,

dT0)
- dx

do

where

do = Heat transfer rate 0.720 KW
0

= _ _ o
Bottom surface area (0.1 m)° 22.9 kW/m

The temperature at the inner surface of the bottom of the pan is specified to
be 110°C. Then the boundary condition on this surface can be expressed as

L) = 110°C

where L = 0.003 m.
Discussion  Mote that the determination of the boundary conditions may re- 78
quire some reasoning and approximations.



Convection Boundary Condition

Heat conduction Heat convection
at the surface in | _ at the surface in
a selected - the same
direction direction
6T 0,1 ; i
é ) — h1 [T 1 —T(O, t)] Convection | Conduction h,
I,
b (T, — T, 0] = BT(O )]
OT(L,1) .
_k ") h2 [T(L, t) — TOO2 ] n Conduction | Convection
., e [
KD Ly - T,
Oe¢ T_‘L T




EXAMPLE 2-8 Convection and Insulation Boundary Conditions

Steam flows through a pipe shown in Fig. 2-35 at an average temperature of
I, = 200°C. The inner and outer radii of the pipe are r, = B cm and r, =
8.5 cm, respectively, and the outer surface of the pipe is heavily insulated. If
the convection heat transfer coefficient on the inner surface of the pipe is
= 65 W/m2 - K, express the boundary conditions on the inner and outer sur-
faces of the pipe during transient periods.

SOLUTION The flow of steam through an insulated pipe is considered. The
boundary conditions on the inner and outer surfaces of the pipe are to be
obtained.
Analysis  During initial transient periods, heat transfer through the pipe mate-
rial predominantly is in the radial direction, and thus can be approximated as
being one-dimensional. Then the temperature within the pipe material changes
with the radial distance rand the time t. That is, T = Tir, t).

It is stated that heat transfer between the steam and the pipe at the inner sur-
face is by convection. Then taking the direction of heat transfer to be the posi-
tive r direction, the boundary condition on that surface can be expressed as

aT(r. 1)
—k ar = h[T, — T(r))]

The pipe is said to be well insulated on the outside, and thus heat loss through

the outer surface of the pipe can be assumed to be negligible. Then the bound-
ary condition at the outer surface can be expressed as

dlirs. t)
ar B

Discussion Note that the temperature gradient must be zero on the outer sur-
face of the pipe at all times.

[nsulation
I
)

FIGURE 2-35
Schematic for Example 2-8.
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Radiation Boundary Condition

Heat conduction
at the surface in a
selected direction

Radiation exchange
at the surface in
the same direction

—k

T (0,1
—k (,g ) — G |:T;urr1 —T71(0,¢) } Radiation | Conduction
X
- ¢ d710. 1)
oT(L,t) €0 [T, — T00: 0] =k ===
=&0| T(L,t) — e,
ax 2 |: ( ) surr 2:| Tsu"-,l

am f)
=€ O [T(L. 1)* - Tiw N

e
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Interface Boundary Conditions

At the interface the requirements are:

(1) two bodies in contact must have the same temperature at the area of

contact,

(2) an interface (which is a
surface) cannot store any
energy, and thus the /eaf flux
on the two sides of an
interface must be the same.

D(x()a t) = TB(x()a t)

5TA(x0,t)__k 0T} (xy,1)
= Kp

—k
4 Ox Ox

Generalized boundary condition

Heat transfer
to the surface

Interface

Material
A

TAI;:.I, r
Conduction

i T, (x; 1)
A dx

N

./

-k ATy (%, 1)

i

T (xy 1) = Tplxg 1)

Ql

Conduction

B

Material
B

dx

Heat transfer

from the surface
in all modes In all modes

IE

L x
FIGURE 2-37

Boundary conditions at the interface

of two bodies in perfect contact.
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EXAMPLE 2-11 Heat Conduction in a Plane Wall

Consider a large plane wall of thickness L = 0.2 m, thermal conductivity & =
1.2 W/m - °C, and surface area 4 = 15 mZ2. The two sides of the wall are main-
tained at constant temperatures of T, = 120°C and T, = 50°C, respectively, as
shown in Fig. 2-41. Determine (&) the variation of temperature within the wall
and the value of temperature at x = 0.1 m and (b) the rate of heat conduction
through the wall under steady conditions.

SOLUTION A plane wall with specified surface temperatures is given. The
variation of temperature and the rate of heat transfer are to be determined.
Assumptions 1 Heat conduction is steady. 2 Heat conduction is one-
dimensional since the wall is large relative to its thickness and the thermal

conditions on both sides are uniform. 3 Thermal conductivity is constant.
4 There is no heat generation.

Properties The thermal conductivity is given to be k = 1.2 W/m - °C.
Analysls (&) Taking the direction normal to the surface of the wall to be the
x-direction, the differential equation for this problem can be expressed as

d2T=
dx*

0

with boundary conditions

T0) =T, = 120°C
L) =T,= 50°C

The differential equation is linear and second order, and a quick inspection of
it reveals that it has a single term involving derivatives and no terms involving
the unknown function T as a factor. Thus, it can be solved by direct integration.
Noting that an integration reduces the order of a derivative by one, the general
solution of the differential equation above can be obtained by two simple suc-
cessive integrations, each of which introduces an integration constant.
Integrating the differential equation once with respect to xyields

dar
ax = ©

where C, is an arbitrary constant. Notice that the order of the derivative went
down by one as a result of integration. As a check, if we take the derivative of
this equation, we will obtain the original differential equation. This equation is
not the solution yet since it involves a derivative.

Integrating one more time, we obtain

Tx) = Cix+ C3

Planz
wall
P [
T,
. L
FIGURE 2-41
Schematic for Example 2-11.
Differential equation:
o
ax
Irbegrate:
£ = C]
el
Imiegrate again:
:n:.l'] = CJJ.' =+ C!
Ceneral bitrary
solution constants
FIGURE 242

Obtaining the general solution of a

simple second order differential

equation by integration.
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which is the general solution of the differential equation (Fig. 2-42). The gen-
eral zolution in this case resembles the general formula of a straight line whoze
slope is ) and whese value at x = O is £, This is not surprising since the sec-
ond derivative represents the change in the slope of a function, and a zero sec-
ond derivative indicates that the slope of the function remains constant.
Therefare, any straight line i= a solution of this differential equation.

The general solution contains two unknown constants C; and C;, and thus
we nead two equations to determine them uniquely and obtain the specific so-
lution. These equations are obtained by forcing the general solution to satisfy
the specified boundary conditions. The application of 2ach condition yields one
equation, and thus we need to specify two conditions to determine the con-
stantz &) and Cy.

When applying a boundary condition to an equation, all eccurrences of the
dependent and independent vanables and any denivatives are replaced by the
specified values. Thus the only unknowns in the resulting equations are the ar-
bitrary constants.

The first boundary condition can be interpreted as in the general solution, re-
place all the x's by zero and Tix) by Ty, That is (Fig. 2-43),

Bowmdary condition:
nmn=T
Creneral solufion:
Tixy = Cyx + &
Applping the bowndary condition:
Tix)=Cx + 15y
T T

0 0

-

FIGURE 2-43 T,

When applying a boundary condition
to the general solution at a specified
point, all occurrences of the dependent
and independent variables should be
replaced by their specified values

at that point.

Subafirusing.:
T]=E'|_.':-CC|]+C': —F EE=T]

It cannot imvolve x or Tix) after the
boundary condition i=s applied.

The =econd boundary condition can b= interpreted as in the general solution,
replace all the x5 by L and Tix) by T.. That is,

;-1
Substituting the &) and C; exprassions into the general solution, we obtain
2=
Tixy = T x+ T {2-56)

which is the desired salution since it satisfies not anly the differential equation
but alza the two specified boundary conditions. That is, differentiating Eq.
2_56 with respect to x twice will give d®T/dx?, which is the given differential
equation, and substituting x = O and x = [ into Eq. 2-5& gives T(0O) = T, and
TiL) = Ty, respectively, which ars the specified conditions at the boundaries.

Substituting the given infarmation, the value of the temperature at x = 0.1 m
iz determined to be

_ (50 — 1200°C
B 0.2 m

(6) The rate of heat conduction anywhers in the wall i= determingd from
Fourier's law to be

T0.1 m) (0.1 m) + 120°C = 857 C

TR Y YL bkl SR Sl (2-57)
Quan = —hA G = —KAC, = —kA == = k4 =7
The numerical valus of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be
* Tl - I-'_. 5
0 =kdA T = = (1.2 Wfm - "Ci15 m~)
Discussion  Mote that under steady conditions, the rate of heat conduction
through a plane wall i= constant.

(120 — 500 C
0.2 m

= (MK W
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EXAMFLE 2-15 Heat Loss through a Steam Pipe

Consider a steam pipe of length L = 20 m, inner radius i, = & cm, outer radius
rz = 8 cm, and thermal cenductivity k = 20 Wim - °C, as shown in Fig. 2-50. g
The inner and outer surfaces of the pipe are maintained at average tempera- g
tures of T; = 150°C and T: = 60°C, respectively. Obtain a general relation for m

the temperature distribution inside the pipe under steady conditions, and
determine the rate of heat loss from the steam through the pipe.

SOLUTION A steam pipe is subjected to specified temperatures on its
surfaces. The variation of temperature and the rate of heat transfer are to be
determined.

Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer i= one-dimensional since there is thermal symmetry about the

FIGURE 2-50

centerline and no variation in the axial direction, and thus T= Tir). 3 Thermal Schematic for Example 2-15.
conductivity i= constant. 4 There is no heat generation.

Properties  The thermal conductivity is given to be & = 20 Wim - °C,

Analysis  The mathematical formulation of this problem can be expressed as

a7 ) =°
with boundary conditions
T(r)) = T, = 150°C
Tirs) = Ty = 60°C
Integrating the differential equation once with respect to rgives

dar
fﬁ = '|"_-'|_
where Cy is an arbitrary constant. We now divide both sides of this equation by
rto bring it to a readily integrable form,

ar _ o6
dr —



Again integrating with respect to r gives (Fig. 2-51)
Tiry=Clnr+ G, (a)

We now apply both boundary conditions by replacing all occurrences of rand
Tirdin Eq. (2) with the specified values at the boundaries, We get

Tiri=T7) = Cilan+G =T
T(I3]=T3 — Cl]ﬂfz‘l"l:'::Tj

which are two equations in two unknowns, € and Ca. Solving them simultans-
ously gives

o =2-h 4 =120,
VS Ty M 2= T injrgr)

Substituting them into Eq. (&) and rearranging, the variation of temperature
within the pipe iz determined to be

lni i) )

10 = i)

(T,— T+ T, (2-58)
The rate of heat loss from the steam is simply the total rate of heat conduction
through the pipe, and is determined from Fourier's law to b=

1 TZ

In{rafr)

: dT c,
Ocyinger = —KA G- = —K(2mrL) & = —27kLC, = 2wk

(2-59)

The numerical value of the rate of heat conduction through the pipe is deter-
mined by substituting the given values
. (150 — 60)°C

= 2m 2 I - — =K L
0 = 27(20 Wim - "C)(20 m) e = 786 kY

Discussion Mote that the total rate of heat transfer through a pipe is con-
stant, but the heat flux § = Q12=rL) is not since it decreases in the direction

of heat transfer with increasing radius.

INfereniial equalion:

d |[r£]|=lll

E L dr)
Imiegrais:

f‘f;r= CJ

Divicke by r (r # O)c
ar G

ar T
Irlegrate again:
:n?'] = IL-'] Inr+ 'L-'!

which iz the pereral solifion.

FIGURE 2-51

Basic steps involved in the solution
of the steady one-dimensional

heat conduction equation in
cylindrical coordinates.
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Heat Generation in Solids-
The Surface Temperature

Rate of Rate of energy
heat transfer — generation
rom the soli within the solid

O=¢.V (W)
O=h4(T,-T,) (W)

Examples of
heat generation

.
egenV At steady conditions, the entire heat
T; =T o + generated in a solid must leave the
hAs solid through its outer surface.
. . Nucle:
For alarge plane wall of thickness _p oy Gk fuel rods
2L (A S=2Awall and V:2LAW311) s.plane wall *
For'a long solid cy/inder of 7 g Ceald —
radius r) (4,=27mL and V=rr2L) = solinder =T Ty g
. . FIGURE 2-54

FOI" a solid 5',0/7@/"@ Of r'CldIUS Fo e enl0 Heat generation in solids is
(AS=4727,~02 and V:4/37Z7"03) T;,Sphere = TOO + ‘;h commonly encountered in practice.
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Heat Generation in Solids -The maximum
Temperature in a Cylinder (the Centerline)

The /eat generated within an inner
cylinder must be equal to the seat
conducted through its outer surface.
kd Lo v
r dl" gen’ r
Substituting these expressions
into the above equation and

separating the variables, we get

dr €gen
—k(2zrL)—=¢é,, (71'1"2L) —dT =— 2gk rdr

dr

Integrating from » =0 where 7(0) =7, to =7,

CYlindet“ ‘i-"rm . cylinder — :'r.. - T, — {Ig-:n"-::-

4k
Plane wall Sphere
. Lx:_:-:n‘r-: . L’:_J._xn:"a:
AT ax, planc wall — T A "rm.n:. sphere 6k

FIGURE 2-56

Heat conducted through a cylindrical
shell of radius r is equal to the heat
generated within a shell.

_ To = Tmax
/ AT
L T,
w Tx
|
Heat generation
|
" Symmetry
line
FIGURE 2-57

The maximum temperature in
a symmetrical solid with uniform
heat generation occurs at its center.
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EXAMPLE 2-19 Heat Conduction in a Two-Layer Medium

Consider a long resistance wire of radius r; = 0.2 cm and thermal conductiv-
ity kyre = 15 Wim - °C in which heat is generated uniformly as a result of g
resistance heating at a constant rate of €., = 50 W/em? (Fig. 2-61). The wire w
is embedded in a 0.5-cm-thick layer of ceramic whose thermal conductivity is m
Keaesmi: = 1.2 W/m - °C. If the outer surface temperature of the ceramic layer ™
is measured to be T, = 45°C, determine the temperatures at the center of the ™
resistance wire and the interface of the wire and the ceramic layer under ™
steady conditions. :

SOLUTION The surface and interface temperatures of a resistance wire cov-
ered with a ceramic layer are to be determined.

Assumptlons 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since this two-layer heat transfer problem
possesses symmetry about the centerline and involves no change in the axial
direction, and thus T = T(r). 3 Thermal conductivities are constant. 4 Heat
generation in the wire is uniform.

Propertles It is given that k. = 15 W/m - °C and K.ergmic = 1.2 W/m - ° C. FIGURE 2__5]
Schematic for Example 2—-19.

Ceramic layer

Analysis Letting T; denote the unknown interface temperature, the heat trans-
fer problem in the wire can be formulated as

1 d ( dTwiu') €aea

rar\"ar)t k=0
with
Tiinln) =T,
AT il 0)
ar - °

This problem was solved in Example 2-18, and its solution was determined
to be
39
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Moting that the ceramic layer does not involve any heat generation and its
outer surface temperature is specified, the heat conduction problem in that
layer can be expressad as

ﬂf '-. 'I‘ﬂ-::erlml.l:ll — |:|

dr -"r dr

with
r-:emm.i: ':'rj:l = I—I
Leramic (F2) = T, = 45°C

This problem was solved in Example 2-15, and its solution was determined
to be

Inirir)
lni /iy )

T eramic (F) = (I —-Tn+T; ()
We have already utilized the first interface condition by setting the wire and
ceramic layer temperatures equal to T; at the interface r = . The interface
temperature T; iz determined from the second interface condition that the heat
flux in the wire and the ceramic layer at r = r; must be the same:

_i Tyie (1) 0 0T i (1) Cgenll _ L-Ty

wie T gp | Ceesmk o 7 Tz T T Reramic Jnrmrj:.Lrl.

Salving for T; and substituting the given values, the interface temperature is
determined to be

l-".‘g\!'lil'r.] ]
Ty = Iny + T,
! 2J;'I:\!'rl.l:l:l|.I:I:::lll-:‘ .
(50 3¢ 10° Wim*)(0.002 my  0.007 m
- 59 C = 149.4°C
12Wm-°C)  Ppooam T C = 1R

Knowing the interface temperature, the temperature at the centerline (r = 0)
i obtained by substituting the known quantities into Eq. (s8],

T Eqenli _ luo.4oc (50 % 10° Wimy0.002 my* .
wi (U) = Tr+ o = O+ — s wWim o~
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Variable Thermal Conductivity, &(7)

» The thermal conductivity of a
material, in general, varies with
temperature.

* An average value for the thermal
conductivity is commonly used
when the variation is mild.

- This is also common practice for
other temperature-dependent
properties such as the density and
specific heat.
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FIGURE 2-62
Variation of the thermal conductivity
of some solids with temperature.
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Variable Thermal Conductivity for One-
Dimensional Cases

T4
When the variation of thermal conductivity with
temperature i(7) is known, the average value of the Plane wall
thermal conductivity in the temperature range K(T) = k(1 + BT)
between 7, and 7, can be determined from >0
7, r { B=0
kave - : T
-1 B<0 )
The variation in thermal conductivity of a material 0 —
with can often be approximated as a linear function
and expressed as The variation of emper FIGURE 2-63
1e variation of temperature in a plane
= wall during steady one-dimensional
k(T)=k,(1+ pBT) g stead
heat conduction for the cases of
B is the temperature coefficient of thermal constant and variable

conductivi TY thermal conductivity.
For a plane wall the temperature varies linearly during steady one-
dimensional heat conduction when the thermal conductivity is constant.

This is no longer the case when the thermal conductivity changes with
temperature (even linearly). 42



Concluding Points

¢ One-Dimensional Heat Conduction
¢ General Heat Conduction Equation
¢ Boundary and Initial Conditions

¢ Solution of Steady One-Dimensional Heat Conduction
Problems

¢ Heat Generation in a Solid
¢ Variable Thermal Conductivity A(T)
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