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Objectives
• To understand multidimensionality and time dependence of heat

transfer, and the conditions under which a heat transfer problem
can be approximated as being one-dimensional.

• To obtain the differential equation of heat conduction in various
coordinate systems, and simplify it for steady one-dimensional
case.

• To identify the thermal conditions on surfaces, and express them
mathematically as boundary and initial conditions.

• To solve one-dimensional heat conduction problems and obtain the
temperature distributions within a medium and the heat flux.

• To analyze one-dimensional heat conduction in solids that involve
heat generation.

• To evaluate heat conduction in solids with temperature-dependent
thermal conductivity.
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Introduction

• Although heat transfer and temperature are closely 
related, they are of a different nature.

• Temperature has only magnitude
it is a scalar quantity.

• Heat transfer has direction as well as magnitude 
it is a vector quantity.

• We work with a coordinate system and indicate direction 
with plus or minus signs. 
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• The driving force for any form of heat transfer is the temperature 
difference.

• The larger the temperature difference, the larger the rate of heat 
transfer.

• Three prime coordinate systems:
– rectangular (T(x, y, z, t)) ,
– cylindrical (T(r, f, z, t)),
– spherical (T(r, f, q, t)).
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Classification of conduction heat transfer problems:
• steady versus transient heat transfer,
• multidimensional heat transfer,
• heat generation.

• Steady implies no 
change with time at 
any point within the 
medium

• Transient implies 
variation with time 
or time dependence
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Multidimensional Heat Transfer
• Heat transfer problems are also classified as being:

– one-dimensional,
– two dimensional,
– three-dimensional.

• In the most general case, heat transfer through a medium is three-
dimensional. However, some problems can be classified as two- or one-
dimensional depending on the relative magnitudes of heat transfer rates
in different directions and the level of accuracy desired.

• The rate of heat conduction through a medium in a specified direction
(say, in the x-direction) is expressed by Fourier’s law of heat conduction
for one-dimensional heat conduction as:

Heat is conducted in the direction of
decreasing temperature, and thus the
temperature gradient is negative when
heat is conducted in the positive x -
direction.
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Multidimensional Heat Transfer
• One-dimensional if the temperature in the medium varies in one

direction only and thus heat is transferred in one direction, and the
variation of temperature and thus heat transfer in other directions
are negligible or zero.

• Two-dimensional if the temperature in a medium, in some cases, varies
mainly in two primary directions, and the variation of temperature in
the third direction (and thus heat transfer in that direction) is
negligible.



9

General Relation for Fourier’s Law of 
Heat Conduction

• The heat flux vector at a point P on the surface of the figure must 
be perpendicular to the surface, and it must point in the direction 
of decreasing temperature

• If n is the normal of the  isothermal 
surface at point P, the rate of heat conduction 
at that point can be expressed by Fourier’s law
as       (W)n

dTQ kA
dn

= -!

In rectangular coordinates, 
the heat conduction vector 
can be expressed in terms 
of its components as

which can be determined 
from Fourier’s law as
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Heat Generation
• Examples:

– electrical energy being converted to heat 
at a rate of I2R,

– fuel elements of nuclear reactors,
– exothermic chemical reactions.

• Heat generation is a volumetric phenomenon.
• The rate of heat generation units : W/m3 or 

Btu/h · ft3.
• The rate of heat generation in a medium may 

vary with time as well as position within the 
medium.  

• The total rate of heat generation in a medium 
of volume V can be determined from

     (W)gen gen
V

E e dV= ò! !
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One-Dimensional Heat Conduction 
Equation - Plane Wall

xQ!

Rate of heat
conduction

at x

Rate of heat
conduction

at x+Dx

Rate of heat
generation inside 

the element

Rate of change of 
the energy content 

of the element
- + =

,gen elementE+ !x xQ +D- ! elementE
t

D
=

D
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• The change in the energy content and the rate of heat 
generation can be expressed as

• Substituting into above equation, we get

( ) ( )
,

element t t t t t t t t t

gen element gen element gen

E E E mc T T cA x T T

E e V e A x

r+D +D +DìD = - = - = D -ï
í

= = Dïî
! ! !

,
element

x x x gen element
E

Q Q E
t+D

D
- + =

D
! ! !

x x xQ Q +D-! !
gene A x+ D! t t tT T

cA x
t

r +D -= D
D

1
gen

T T
kA e c

A x x t
r¶ ¶ ¶æ ö+ =ç ÷¶ ¶ ¶è ø

!

• Dividing by ADx, taking the limit as Dxà 0 and Dtà 0,   
and from Fourier’s law:
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The area A is constant for a plane wall à the one dimensional 
transient heat conduction equation in a plane wall is

gen
T T

k e c
x x t

r¶ ¶ ¶æ ö+ =ç ÷¶ ¶ ¶è ø
!Variable conductivity:

Constant conductivity:
2

2

1    ;   geneT T k
x k t c

a
a r

¶ ¶
+ = =

¶ ¶

!

1) Steady-state:

2) Transient, no heat generation:

3) Steady-state, no heat generation:

2

2 0gened T
dx k

+ =
!

2

2

1T T
x ta
¶ ¶

=
¶ ¶

2

2 0d T
dx

=

The one-dimensional conduction equation may be reduces to the 
following forms under special conditions 
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One-Dimensional Heat Conduction 
Equation - Long Cylinder

rQ!

Rate of heat
conduction

at r

Rate of heat
conduction

at r+Dr

Rate of heat
generation inside 

the element

Rate of change of 
the energy content 

of the element
- + =

,gen elementE+ ! elementE
t

D
=

Dr rQ +D- !



16

• The change in the energy content and the rate of heat 
generation can be expressed as

• Substituting into Eq. 2–18, we get

( ) ( )
,

element t t t t t t t t t

gen element gen element gen

E E E mc T T cA r T T

E e V e A r

r+D +D +DìD = - = - = D -ï
í

= = Dïî
! ! !

,
element

r r r gen element
EQ Q E
t+D

D
- + =

D
! ! !

r r rQ Q +D-! !
gene A r+ D! t t tT TcA r

t
r +D -= D

D

1
gen

T TkA e c
A r r t

r¶ ¶ ¶æ ö+ =ç ÷¶ ¶ ¶è ø
!

• Dividing by ADr, taking the limit as Drà 0 and Dtà 0,   
and from Fourier’s law:
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Noting that the area varies with the independent variable r
according to A=2πrL, the one dimensional transient heat 
conduction equation in a long cylinder becomes

1
gen

T Trk e c
r r r t

r¶ ¶ ¶æ ö+ =ç ÷¶ ¶ ¶è ø
!

1 0gened dTr
r dr dr k

æ ö+ =ç ÷
è ø

!

The one-dimensional conduction equation may be reduces 
to the following forms under special conditions 

1 1geneT Tr
r r r k ta
¶ ¶ ¶æ ö+ =ç ÷¶ ¶ ¶è ø

!

1 1T Tr
r r r ta
¶ ¶ ¶æ ö =ç ÷¶ ¶ ¶è ø

0d dTr
dr dr
æ ö =ç ÷
è ø

Variable conductivity:

Constant conductivity:

1) Steady-state:

2) Transient, no heat generation:

3) Steady-state, no heat generation:
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One-Dimensional Heat Conduction 
Equation - Sphere

2
2

1
gen

T Tr k e c
r r r t

r¶ ¶ ¶æ ö+ =ç ÷¶ ¶ ¶è ø
!

2
2

1 1geneT Tr
r r r k ta

¶ ¶ ¶æ ö+ =ç ÷¶ ¶ ¶è ø

!

Variable conductivity:

Constant conductivity:
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General Heat Conduction Equation

x y zQ Q Q+ +! ! !

Rate of heat
conduction

at x, y, and z

Rate of heat
conduction

at x+Dx, y+Dy, 
and z+Dz 

Rate of heat
generation
inside the
element

Rate of change
of the energy
content of the 

element

- + =

x x y y z zQ Q Q+D +D +D- - -! ! !
,gen elementE+ elementE

t
D

=
D



21

Repeating the mathematical approach used for the one-
dimensional heat conduction the three-dimensional heat 
conduction equation is determined to be

2 2 2

2 2 2

1geneT T T T
x y z k ta
¶ ¶ ¶ ¶

+ + + =
¶ ¶ ¶ ¶

!

2 2 2

2 2 2 0geneT T T
x y z k
¶ ¶ ¶

+ + + =
¶ ¶ ¶

!

2 2 2

2 2 2

1T T T T
x y z ta
¶ ¶ ¶ ¶

+ + =
¶ ¶ ¶ ¶

2 2 2

2 2 2 0T T T
x y z
¶ ¶ ¶

+ + =
¶ ¶ ¶

Two-dimensional

Three-dimensional

1) Steady-state:

2) Transient, no heat generation:

3) Steady-state, no heat generation:

Constant conductivity:
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Cylindrical coordinates

2

1 1
gen

T T T T Trk k k e c
r r r r z z t

r
f f
æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶æ ö æ ö+ + + =ç ÷ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è øè ø

!

2
2 2 2 2

1 1 1 sin
sin sin gen

T T T Tkr k k e c
r r r r r t

q r
q f f q q q

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶æ ö æ ö+ + + =ç ÷ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è øè ø
!

Spherical coordinates
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Boundary and Initial Conditions

• Specified Temperature Boundary Condition
• Specified Heat Flux Boundary Condition
• Convection Boundary Condition
• Radiation Boundary Condition
• Interface Boundary Conditions
• Generalized Boundary Conditions
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Specified Temperature Boundary 
Condition

For one-dimensional heat transfer 
through a plane wall of thickness 
L, for example, the specified 
temperature boundary conditions 
can be expressed as

T(0, t) = T1
T(L, t) = T2

The specified temperatures can be constant, which is the case 
for steady heat conduction, or may vary with time.
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Specified Heat Flux Boundary Condition

dT
q k

dx
= - =!

Heat flux in the 
positive x-
direction

The sign of the specified heat flux is determined by 
inspection: positive if the heat flux is in the positive 
direction of the coordinate axis, and negative if it is in 
the opposite direction.

The heat flux in the positive x-
direction anywhere in the medium, 
including the boundaries, can be 
expressed by Fourier’s law of heat 
conduction as
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Two Special Cases

Insulated boundary Thermal symmetry

(0, ) (0, )
0     or     0 

T t T t
k

x x
¶ ¶

= =
¶ ¶

( ),2 0
LT t

x

¶
=

¶
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Convection Boundary Condition

[ ]1 1
(0, ) (0, )T t

k h T T t
x ¥

¶
- = -

¶

[ ]2 2
( , ) ( , )T L t

k h T L t T
x ¥

¶
- = -

¶

Heat conduction
at the surface in 

a selected 
direction

Heat convection
at the surface in 

the same 
direction

=
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Radiation Boundary Condition

Heat conduction
at the surface in a
selected direction

Radiation exchange 
at the surface in

the same direction
=

4 4
1 ,1

(0, ) (0, )surr
T t

k T T t
x

e s¶ é ù- = -ë û¶

4 4
2 ,2

( , ) ( , ) surr
T L t

k T L t T
x

e s¶ é ù- = -ë û¶
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Interface Boundary Conditions

0 0( , ) ( , )A B
A B
T x t T x t

k k
x x

¶ ¶
- = -

¶ ¶

At the interface the requirements are:
(1) two bodies in contact must have the same temperature at the area of 

contact,
(2) an interface (which is a 

surface) cannot store any 
energy, and thus the heat flux
on the two sides of an 
interface must be the same.

TA(x0, t) = TB(x0, t) 

Heat transfer
to the surface
in all modes

Heat transfer
from the surface

In all modes
=

Generalized boundary condition
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Heat Generation in Solids-
The Surface Temperature

For a large plane wall of thickness
2L (As=2Awall and V=2LAwall) ,  

gen
s plane wall

e L
T T

h¥= +
!

For a long solid cylinder of 
radius r0 (As=2pr0L and V=pr02L)

0
, 2

gen
s cylinder

e r
T T

h¥= +
!

For a solid  sphere of radius r0
(As=4pr02 and V=4/3pr03)

0
, 3

gen
s sphere

e r
T T

h¥= +
!

Rate of
heat transfer
from the solid

Rate of energy 
generation

within the solid=
     (W)genQ e V=! !

( )      (W)s sQ hA T T¥= -!

gen
s

s

e V
T T

hA¥= +
!

Examples of 
heat generation
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Heat Generation in Solids -The maximum 
Temperature in a Cylinder (the Centerline)

The heat generated within an inner 
cylinder must be equal to the heat 
conducted through its outer surface. 

r gen r
dTkA e V
dr

- = !

Substituting these expressions 
into the above equation and 
separating the variables, we get

( ) ( )22
2
gen

gen

edTk rL e r L dT rdr
dr k

p p- = ® = -
!

!

Integrating from r =0 where T(0) =T0 to r=ro

Plane wall

Cylinder

Sphere
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Variable Thermal Conductivity, k(T)

• The thermal conductivity of a 
material, in general, varies with 
temperature.

• An average value for the thermal 
conductivity is commonly used 
when the variation is mild.

• This is also common practice for 
other temperature-dependent 
properties such as the density and 
specific heat.
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Variable Thermal Conductivity for One-
Dimensional Cases

2

1

2 1

( )
T

T
ave

k T dT
k

T T
=

-
ò

When the variation of thermal conductivity with 
temperature k(T) is known, the average value of the 
thermal conductivity in the temperature range 
between T1 and T2 can be determined from

The variation in thermal conductivity of a material 
with can often be approximated as a linear function 
and expressed as

0( ) (1 )k T k Tb= +

β is the temperature coefficient of thermal 
conductivity.

For a plane wall the temperature varies linearly during steady one-
dimensional heat conduction when the thermal conductivity is constant. 
This is no longer the case when the thermal conductivity changes with 
temperature (even linearly). 
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Concluding Points

One-Dimensional Heat Conduction 
General Heat Conduction Equation 
Boundary and Initial Conditions 
Solution of Steady One-Dimensional Heat Conduction 

Problems
Heat Generation in a Solid 
Variable Thermal Conductivity k (T )


