
DSP
• Digital Signal Processing (DSP)

– Is the manipulation of digital signals in order to modify their characteristic or to extract
useful information. Why digital and not analog?

– Digital signal allow programmability,

– Digital circuit allow for stable output than analog

– Microprocessors and computers have become so powerful

– only digitized signal can be processed by computers.

• Digital Signal Processor (DSP)

– DSP is a specialized microprocessor optimized for signal processing.

– General purpose microprocessors such as Pentium series microprocessors that are used
in PC are not optimized for signal processing purposes.

A/D

converter

DSP

algorithms

D/A

converter
analog

signal

analog

signal

General Block Diagram of a DSP System

Hardware tools:

DSP (DSKs), evaluation modules (EVMs) and other DSP boards

 For real-time DSP experiments, a

DSK/EVM/Emu. is suitable along with a host

system, which can be a typical PC.

Software tools:

Assembly language tools, DSP simulator, C

compiler and C source debugger.

Code Composer Studio (CCS) IDE:

Simulates, C compiles and works with a DSK

DSP Software Development flow

C

Compiler

Assembler

Linker

Debugging

tools on a

PC

Cross-reference

lister

Absolute

lister

Hex

conversion

utility

Library

build utilityArchiver

To PC for

Emulatio

n

C

Source

file

Assemble

r Source

COFF

Object

file
Run time

supp.Library

Exec.

COFF file

Hexadecimal

Object file

To

TMS320CXX

target system

Library of

Object file

Software Life Cycle - Waterfall Method

Architectural

Design

Detailed

Design

Coding

Unit Test

Integration

Test

System Test

Requirements

Analysis

Texas Instruments’ TMS320 family

Lowest Cost

Control Systems

 Motor Control

 Storage

 Digital Ctrl Systems

C2000 C5000

Efficiency

Best MIPS per

Watt / Dollar / Size

 Wireless phones

 Internet audio players

 Digital still cameras

 Modems

 Telephony

 VoIP

C6000

 Multi Channel and Multi

Function App's

 Comm Infrastructure

 Wireless Base-stations

 DSL

 Imaging

 Multi-media Servers

 Video

Performance &
Best Ease-of-Use

TMS320 DSP Families
C2000

>50 Products
ASP: $3 - $15

World’s most code-efficient DSP

Advanced embedded control
applications

Leadership integration of analog
and high-speed Flash memory

C28x fully code compatible

>100 Products
ASP: $5 - $120

C5000 C6000

World’s most power-
efficient DSP

World’s most popular DSP

Heart of handheld solutions
in Internet era

C55x fully code compatible

>30 Products
ASP: $10 - $350

 World’s highest-
performance DSP

 Used in high-bandwidth
comms and video
equipment

 C64x fully code
compatible

Floating vs. Fixed point processors
• Applications which require:

– High precision.

– Wide dynamic range.

– High signal-to-noise ratio.

– Ease of use.

Need a floating point processor.

• Drawback of floating point processors:
– Higher power consumption.

– Can be more expensive.

– Can be slower than fixed-point counterparts and
larger in size.

Floating vs. Fixed point processors
• It is the application that dictates which device and platform to

use in order to achieve optimum performance at a low cost.

• For educational purposes, use the floating-point device (C6713)
as it can support both fixed and floating point operations.

• Fixed point processors:

• TMS320c2X, TMS320c5X and
TMS320c62X

• (Modulators, demodulators, carrier and clock
recovery etc.,)

• Floating point processors:

• TMS320c3X and TMS320c67X

• (Speech processing, control systems, equalization
etc.,)

Code Composer Studio

 DSP industry’s first
comprehensive, open
Integrated Development
Environment (IDE)

 Advanced visualization

 Intuitive ease-to-use

 Third-party plug-ins

 Visualization without
stopping the processor

The CCS is an integrated suite of DSP software development

tools

efficient 'C6000 C compiler, Assembly Optimizer with

the Code Composer IDE, Advanced Data Visualization,

standard open APIs, DSP/BIOS and Real-Time Data

Exchange(RTDX)

• Optimizing C compiler fully exploits the architecture's instruction-

level parallelism and orthogonal

instruction set

• Assembly optimization supports automatic scheduling, optimizing

and separation of parallel tasks from linear

assembly code

• Debugger Conditional or hardware breakpoints are based on full C-

expressions, local variables or CPU register

symbols.

• Real-Time Analysis Using RTDX technology, DSP/BIOS provides a

real- time window into the target system

Memory

map

Data

display

Graphics

Display

Dis-Assembly

window

(Assembly source)

C Source

file

Project

files

Code Composer Studio

Project Manager:
Source & object files
File dependencies
Compiler, Assembler &

Linker build options

Full C/C++ & Assembly
Debugging:
C & ASM Source
Mixed mode
Disassembly (patch)
Set Break Points
Set Probe Points

Editor:
Structure Expansion

Help
CPU

Window

Memory WindowGraph
Window

Status

Window

Watch Window

Menus or Icons

Real-Time Processing

• Real-time processing means:
– The processing of a particular sample must occur within a given time

period or the system will not operate properly.

– Real-time DSP is inherently an interrupt driven process. The input
samples should only be processed using interrupt service routines
(ISR).

• Hard real-time system
– The system will fail if the processing is not done in a timely manner.

• Soft real-time system
– The system will tolerate some failures to meet real-time targets and still

continue to operate, but with some degradation in performance.

• The performance demands and power constraints of real-time
systems often mandate specialized hardware.
– That may include the digital signal processor (DSP), programmable

logic devices, application specific integrated circuits (ASIC), and etc.

Real-time processing

• We can say that we have a real-time application if:
– Waiting Time 0

• DSP processors have to perform tasks in real-time,
so how do we define real-time?

• The definition of real-time depends on the
application.

Processing Time
Waiting Time

Sample Time

n n+1

A Setup for Non-real-time Experiments

Assembly language code and implementation flavor is present,

but real-time experiments cannot be carried out using this

setup.

Host PC

Code Composer Studio (IDE)

or

DSP Compiler / Assembler /

Linker / Simulator / Debugger

I/O through data

files

A Setup for Real-time Experiments

Assembly language code and implementation flavor is present.

Real-time experiments can be carried out using this setup.

O/PI/P

Signal

gen.

Head-

phones
Host PC

CRO

Code Composer Studio (IDE)

or

DSP Compiler / Assembler /

Linker / Simulator / Debugger

DSP EVM

mic

Hardware vs. Microcode multiplication
• DSP processors are optimized to perform

multiplication and addition operations.

• Multiplication and addition are done in hardware
and in one cycle.

• Example: 4-bit multiply (unsigned).

1011

x 1110

1011

x 1110

Hardware Microcode

10011010 0000

1011.

1011..

1011...

10011010

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Why Digital Control Techniques?
Controller

Analog
or

Digital ??

PWM

Sensor(s)

Analog Controller Digital Controller

+ High bandwidth

 High resolution

 Easy to understand / use

 Historically lower cost

 Insensitive to environment (temp, drift,…)

 S/w programmable / flexible solution

 Precise / predictable behavior

 Advanced control possible (non-linear, multi-variable)

 Can perform multiple loops and “other” functions

 Component drift and aging / unstable

 Component tolerances

 Hardwired / not flexible

 Limited to classical control theory only

 Large parts count for complex systems

 Bandwidth limitations (sampling loop)

 PWM frequency and resolution limits

 Numerical problems (quantization, rounding,…)

 AD / DA boundary (resolution, speed, cost)

 CPU performance limitations

 Bias supplies, interface requirements

Power Elec.

Benefits of Digital Control

Eliminate Components

PFC
Filter

Bridge
VV DC/DC

Aux P/S

Output

 Multiple chips for
control

 Micro-controller for
supervisory

 Dedicated design

Traditional Analog

Power Supply

V PFC
Filter

Bridge
VV

Aux P/S

V

DC/DC
Converter

Control

Multi-mode
Power control

MCU
Supervisory

Housekeeping
Circuits

Current/Load
Sharing
Control

DC/DC V

To Host

PFC Control

Interface
Circuit

Monitor
(MCU?)

Inrush/
Hot-plug
Control

I I I I Output

PFC Control

Interface
Circuit

Monitor
(MCU)

Inrush/
Hot-plug
Control

DC/DC
Converter

Control

Multi-mode
Power control

MCU
Supervisory

Housekeeping
Circuits

Current/Load
Sharing
Control

Reduce Manufacturing Cost

Variable DC Output

Better Performance Across Corners

Failure Prediction

One Device, Multiple DC Outputs

One Design, Multiple Supplies

Digital controller enables multi-threaded applications

8 4

5 1

Analog Control System

R1

C1

C2

R2

R

R

C
(controller)

P
(plant)

R Y
e

+
-

C

R

L

Energy
Storage
Elements

sCR

sCR

R

R
sC

22

11

1

2

1

1
)(

)()(
)()()(

012

2

23

3

tftyk
dt

tdy
k

dt

tyd
k

dt

tyd

Differential equations
1st, 2nd, 3rd,…order

Need to find:
R1, R2, C1, C2

Laplace Transform

“Analog Computation”
Differential equations

Digital Control System
Cd

(controller)
P

(plant)R Y
E

+
-

C

R

L

Energy
Storage
Elements

U D-A
ZOH

A-D
S&H

)()1()2(

)1()2()(

012

12

nEbnEbnEb

nUanUanU

)()()(nYnRnEwhere

)()(
)()()(

012

2

23

3

tftyk
dt

tdy
k

dt

tyd
k

dt

tyd

Differential equations
1st, 2nd, 3rd,…order

Difference equation

Need to find:
a1, a2, b0, b1, b2

Laplace Transform

Z Transform
OR

Time Sampled Systems

Ref

+

-
D-A

Control

Law
A-D

Digital Processor

Continuous

time signal

y(t)

t

y(n)

t

u(n)

t

u(t)

t

Discrete

time signal

sample

 period

T

Digitally Controlled Power Supply

DAC
(PWM)

ADC

DSC

0110101100

1011011101

0010100111

“Plant”

“High fidelity”

Translation boundary

System Mapping

DSP
32 bit core

60~100

MHz

F280xx

1A

ePWM1

Ch1

ADC
12 bit

(80nS)

ePWM2

ePWM8

ePWM3

1B

Ch2

Ch16

2A

2B

3A

3B

8A

8B

Vin VOUT

VIN
VOUT

PFC – 3ph Interleaved

Phase-Shifted Full Bridge

Software Library Approach

E
P
W
M

H
WDuty

MPIL
DRV

EPWM1A

EPWM2A

EPWM1B

EPWM2B

E
P
W
M

H
W

Duty

HHB
DRV

EPWMnA

EPWMnB

E
P
W
M

H
W

Duty

PFC
2PHIL
DRV

Adj

EPWMnA

EPWMnB

E
P
W
M

H
W

Duty

HR
Buck
Single
DRV

EPWMnA

E
P
W
M

H
W

Phase

Llegdb

Rlegdb

EPWMnA
PSFB
DRV

EPWMnB

EPWM(n+1)A

EPWM(n+1)B

E
P
W
M

H
W

Duty

Buck
Single
DRV

EPWMnA

A
D
C

H
WRslt

ADC

DRV
Ch4
Ch3
Ch1
Ch0

CNTL

2P2Z

Uout
Ref

FB

SSartSEQ

SinGen1

Freq

Gain Out

Offset

IIR-FILT

2P2Z

f

INV

SQR

In Out

CNTL

3P3Z

Uout
Ref

FB

OutIn

Delay

OutSlope

Target

IIR-FILT

3P3Z

f

OutIn

SGenHP1

Freq

Gain Out

Offset

E
P
W
M

H
W

In

DelLL

DelRL

IBM
FB

DRV

EPWMnA

EPWMnB

EPWM(n+1)A

EPWM(n+1)B

Control 2-pole / 2-zero Control 3-pole / 3-zero

2
nd

 order IIR filter 3
rd

 order IIR filter

Sine Wave generator High precision Sine Gen

Inverse Square function

Soft Start and Sequencing

Buck Single Output High Resolution Buck

Multi-Phase Interleaved

Power Factor 2-phase

Interleaved

Half H-Bridge

IBM method Full Bridge

Phase Shifted Full Bridge Analog-Digital Converter driver

Peripheral Drivers

E

P

W

M

H

W
In

BUCK

DRV

EPWM1A

A

D

C

H

W

ADC_A0

ADC

SEQ1

DRV

ADC_A1

ADC_A2

ADC_A3

Rslt0

CNTL

2P2Z

Out
Ref

Fdbk

Vref
(Q15)

Duty
(Q15)

Vout
(Q15)

Depends on:

• PWM frequency

• System clock frequency

Depends on:

• # ADC bits (10 / 12 ?)

• Unipolar, Bipolar ?

• Offset ?

CPU dependency only:

• Math / algorithms

• Per-Unit math (0-100%)

• Independent of Hardware

// pointer & Net declarations

int *CNTL_Ref1, *CNTL_Fdbk1, *CNTL_Out1;

int *BUCK_In1, *ADC_Rslt1;

int Vref, Duty, Vout;

// “connect” the modules

CNTL_Ref1 = &Vref;

CNTL_Out1 = &Duty; BUCK_In1 = &Duty;

CNTL_Fdbk1 = &Vout; ADC_Rslt1 = &Vout;

Dual Buck Example

Vref1

400 kHz

400 kHz

Vout1

Voltage
Controller

CNTL

2P2Z

UoutRef

FB

A
D
C

H
Wrslt0 Ch0

ADC

DRV

DutyCmd1

E
P
W
M

H
WDuty

BUCK
DRV

EPWM1A

Vin Vout1

BuckDRV

Single Power Stage

S-start / SEQ

Start / Stop trigger

S-start / SEQ

Vref2

Vout2

Voltage
Controller

CNTL

2P2Z

UoutRef

FB

A
D
C

H
Wrslt0 Ch1

ADC

DRV

DutyCmd2

E
P
W
M

H
WDuty

BUCK
DRV

EPWM2A

Vin Vout2

BuckDRV

Single Power Stage

400 kHz

400 kHz

400 kHz

400 kHz

BG ISR

Software Block Execution

Context Save

Context

Restore

ISR body

CNTL_2P2Z(1)

ADC_DRV(1)

BUCK_DRV(1)

CNTL_2P2Z(2)

ADC_DRV(2)

BUCK_DRV(2)

Loop-1

Loop-2

(400 kHz)

SStartSeq

Comms

Other....

Driving the Power Stage with PWM Waveforms

• Open-Loop System Block Diagram

• Generating PWM using the ePWM Module

• Power Stage Topologies and Software Library
Support

Simple Open-Loop Diagram

Vout1

A

D

C

H

WRslt Ch0

ADC

1CH

DRV

Duty1

E

P

W

M

H

WIn

HR

BUCK

DRV

EPWMnA

Vin1 Vout1

BuckDRV

Single Power Stage

Duty1

Watch Window

Duty2

Duty3

Vfdbk

Duty1

slider

Scaleable PWM Peripherals

PIE

TZ1n to TZ6n

VBus32

EPWM1

Module

EPWM2

Module

EPWM6

Module

SYNCO

SYNCI

SYNCI

SYNCO

SYNCI

SYNCO

ADC

GPIO

Mux

xSYNCI

xSYNCO

to ECAP1 module (sync in)

xSOC

EPWM6AO

EPWM6BO

EPWM2AO

EPWM2BO

EPWM1AO

EPWM1BO

EPWM1INTn

EPWM1SOC

EPWM2INTn

EPWM2SOC

EPWM6INTn

EPWM6SOC

SOC

 Resources allocated on a per channel basis

 Each channel (module) supports 2

independent PWM outputs (A&B)

 # Channels easily scaleable – software reuse

 Time-base synch feature for all channels

 6 modules (12 PWM outputs) on F2808

 Key features:

Phase & edge control

New counting modes

Independent deadband

Flexible trip-zones

High frequency chopper mode

ePWM Module Block Diagram

Action

Qualifier

(AQ)

Time-Base (TB)

Dead

Band

(DB)

Counter Compare (CC)

S0 S1

TBCTL[SYNCOSEL]

EPWMA

EPWMB

Trip

Zone

(TZ)

Event

Trigger &

Interrupt

(ET)

PWM

Chopper

(PC)

16

CMPB Active (16)

16

Sync

In/Out

Select

Mux

Phase

Control

EPWMxTZINTn

TZ1n to TZ6n

CMPA Active (16)

CMPA Shadow (16)

CMPB Shadow (16)

TBPRD Active (16)

TBPRD Shadow (16)

16

CTR=ZERO

CTR=CMPB

Disabled

TBCTL[CNTLDE]

CTR=PRD

CTR=ZERO

CTR=CMPA

CTR=CMPB

CTR_Dir

TBCTL[SWFSYNC]
(software forced sync)

CTR_Dir

CTR=ZERO

CTR=PRD

CTR=CMPA

CTR=CMPB

CTR=ZERO

EPWMxINTn

EPWMxSOCA

EPWMxSOCB

TBPHS Active (16)

Counter

UP / DWN

(16 bit)

TBCNT

Active (16)

EPWMxSYNCO

EPWMxSYNCI

EPWMxAO

EPWMxBO

16

16

16

Module Sync and Phase Control

0000

FFFFh

TBPRD

TBCTR

time

CTR=Zero

(SycnOut)

Master Module

Phase = 120o

0000

FFFFh

TBPRD

time

SyncIn

Slave Module

TBPHS

600 600

600 600

200 200

TBCTR

En SyncIn

SyncOut

CNT=Zero

CNT=CMPB

X

Phase Reg

Master

1

Ext Sync In

(optional)

EPWM1A

EPWM1B

En SyncIn

SyncOut

CNT=Zero

CNT=CMPB

X

1
Phase Reg

Slave

2

EPWM2A

EPWM2B

Action Qualifier Module (AQ)

 Multi event driven waveform generator

 Events drive outputs A and B independently.

 Full control on waveform polarity

 Full transparency on waveform construction

 S/W forcing events supported

 All events can generate interrupts & ADC SOC

Key Features

Action

Qualifier

Module

(AQ)

TBCTR = Period

TBCTR = Zero

TBCTR = Compare A

TBCTR = Compare B

SW force

TBCTR Direction

EPWMA

EPWMB

Zero
(ZRO)

Z

CMPA
(CAu)

CMPB
(CBu)

CA

CB

Period
(PRD)

CMPA
(CAd)

CMPB
(CBd)

CA

CB

P

TBCTR

(Up)

equals:

TBCTR

(Down)

equals:

S/W force
SW

Z

CA

CB

P

CA

CB

SW

Z

CA

CB

P

SW

CA

CB

Z

T

CB

T

P

T

CA

T

SW

T

CB

T

CA

T

Nothing Clear Lo Set Hi Toggle
Events

Actions

TBCTR

Period

CMPB

CMPA

Zero

PRD

CBu CBd

CAu CAd

ZRO

TBCTR

CA CB CA CB

EPWMA

EPWMB

TBPRD

value

Z

T

Z

T

Z

T

CB CB

CA CA

TBCTR

EPWMA

EPWMB

TBPRD

value

Z P CA Z P CA Z P

Z P Z P Z PCB CB

Simple Waveform Construction

EPWM1A

EPWM2A

EPWM1B

EPWM2B

TZ1

TZ2

TZ3

ECAP1

‘2808

I
1

I
2

I
in

I
setSD

I
setCL1

I
setCL2

CL1

CL2

ShutDown

I1

I2

Iin

IsetSD

IsetCL1

IsetCL2

EPWM1A

EPWM2A

EPWM1A

Vin Vout1

Vout2

Buck #1

Buck #2EPWM2A

I
1

I
2

I
in

HiZ

HiZ

Action on

Fault

Fault Management Support

Trip Zones:

6 independent zones (TZ1~TZ6)

Force High, Low or HiZ on trip

One-time trip catastrophic failure

Cycle-by-cycle current limit mode

TZ1~TZ6 can trigger interrupt

Multi-Phase Interleaved (MPI)
En SyncIn

SyncOut

CNT=Zero

CNT=CMPB

X

Phase Reg

Master

En SyncIn

SyncOut

CNT=Zero

CNT=CMPB

X

1
Phase Reg

Slave

En SyncIn

SyncOut

CNT=Zero

CNT=CMPB

X

Phase Reg

Slave

1

Ext Sync In

(optional)

2

3

EPWM1A

EPWM1B

EPWM2A

EPWM2B

EPWM3A

EPWM3B

Vout

Vin

EPWM1A

EPWM1B

EPWM2A

EPWM2B

EPWM3A

EPWM3B

Switching Requirements – MPI

INIT-time

• Period (1,2,3)

• CAu Action (1,2,3)

• PRD Action (1,2,3)

• Phase (2,3)

• PRD Interrupt (1)

• CBu ADC SOC (1,2,3)

• Dead-band

RUN-time

• CMPA (1,2,3)

• CMPB (1,2,3)

• Asymmetrical PWM case

• Complementary output

generated by dead-band unit

• CMPB triggers ADC SOCP CA P PCA

EPWM1A

CA P CAP

CACA P

CB

A

CB

A

CB

A

EPWM2A

EPWM3A

P

1

P

I

P

I

P

I

Pulse Center

Half H-Bridge (HHB)

En SyncIn

SyncOut

CNT=Zero

CNT=CMPB

X

Phase Reg

Master

1

Ext Sync In

(optional)

EPWM1A

EPWM1B

V
OUT

V
DC_bus

EPWM1A

EPWM1B

Switching Requirements – HHB
• Up/Down Count

• Asymmetrical PWM

• dead-band on A only

• 50 % max Modulation

(controlled by CMPA)

INIT-time

• ZRO Action (A,B)

• CAd Action

• CAu Action

• CBd ADC trigger

• CBd ADC trigger

• DBRED

RUN-time

• CMPA

• CMPB (optional)

Compare A modulation range:

0 < CMPA < (PRD – ½ x DBRED)

EPWM1A

EPWM1B

CA CA

CA CA

DBRED

Z

Z Z

Z

CMPA

modulation

range

DBRED

CMPA

modulation

range

CB

A

CB

A

Phase Shifted Full Bridge (PSFB)

En SyncIn

SyncOut

CNT=Zero

CNT=CMPB

X

Phase Reg

Master

En SyncIn

SyncOut

CNT=Zero

CNT=CMPB

X

Var

Phase Reg

Slave

1

Ext Sync In

(optional)

2

EPWM1A

EPWM1B

EPWM2A

EPWM2B

V
DC_bus

V
OUT

EPWM1A

EPWM1B

EPWM2A

EPWM2B

Switching Requirements – PSFB
• Asymmetrical PWM

• Using dead-band module

• Phase (Φ) is the control variable

• Duty fixed at ~ 50%

• RED / FED control ZVS trans.

i.e. via resonance

• CMPB can trigger ADC SOC

INIT-time

• Period (1,2)

• CMPA (1,2) ~ 50%

• CAu action (1,2)

• ZRO action (1,2)

• CBu trigger for ADC SOC

RUN-time

• Phase (2) – every cycle

• FED / RED (1,2) – slow loop

CA

Power

Phase

Power

Phase

CB

A

Z Z CACB

A

Z

RED

FED

CAZ Z CA Z

EPWM1A

EPWM1B

EPWM2A

EPWM2B

RED

FED

variable

Z

I

Z

I

Z

I

ZVS

transition

ZVS

transition

CB

A

CB

A

Software Driver Module – PSFB

E

P

W

M

H

W

phase

llegdb

rlegdb

EPWM1A
PSFB

DRV

Net1

Net2

Net3

EPWM1B

EPWM2A

EPWM2B

VDC_bus VOUT

EPWM1A

“Left leg” “Right leg”

EPWM1B

EPWM2A

EPWM2B

Power

Phase

Power

Phase

llegdbEPWM1A

phase

Left leg

dead-band

llegdb

rlegdb

right leg

dead-band

rlegdb

50% duty

EPWM1B

EPWM2A

EPWM2B

Software Driver Module – PFC2PHIL

E

P

W

M

H

W

Duty

EPWM1A

EPWM1B

PFC

2PHIL

DRV

Adj

Net1

Net2

EPWM1A EPWM1B

VDC_bus

EPWM1A

EPWM1B

1

+/-

Adj

+/-

Adj

