Electronic Devices and Circuit Theory

Boylestad

FET Biasing Chapter 7

ALWAYS LEARNING

Common FET Biasing Circuits

JFET Biasing Circuits

Fixed-Bias Self-Bias Voltage-Divider Bias

D-Type MOSFET Biasing Circuits

Self-Bias Voltage-Divider Bias

E-Type MOSFET Biasing Circuits

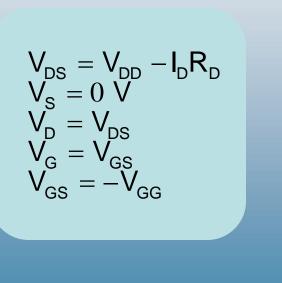
Feedback Configuration Voltage-Divider Bias

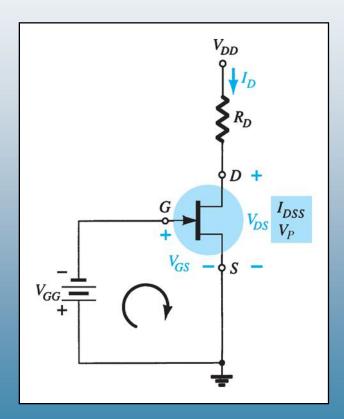
Electronic Devices and Circuit Theory Boylestad

Basic Current Relationships

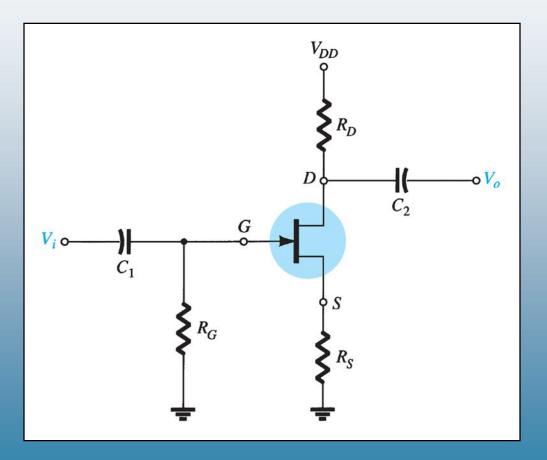
For all FETs: $I_G \cong 0 \text{ A}$ $I_D = I_S$

For JFETS and D-Type MOSFETs:


$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$


For E-Type MOSFETs:
$$I_D = k(V_{GS} - V_T)^2$$

Electronic Devices and Circuit Theory Boylestad

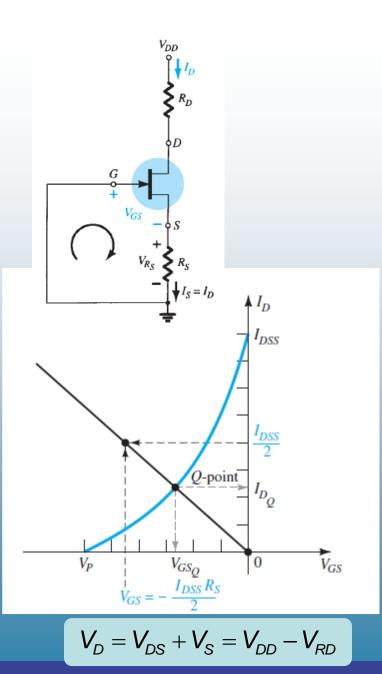

Fixed-Bias Configuration

Electronic Devices and Circuit Theory Boylestad

Self-Bias Configuration

Electronic Devices and Circuit Theory Boylestad

Self-Bias Calculations

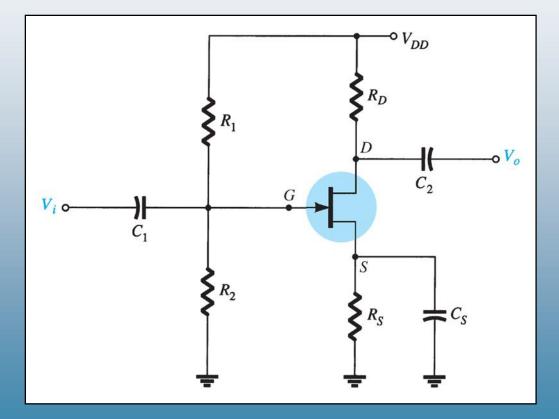

 $V_{\rm GS_Q} = -I_{\rm DQ}R_{\rm S}$

1. Select a value of $I_D < I_{DSS}$ and use the component value of R_S to calculate V_{GS} . Plot the point identified by I_{DQ} and V_{GSQ} and draw a line from the origin of the axis to this point. 2. Plot the transfer curve using I_{DSS} and V_P $(V_P = |V_{GSoff}|$ on spec sheets) and a few points such as $V_{GS} = V_P/4$ and $V_{GS} = V_P/2$ etc.

The Q-point is located where the first line intersects the transfer curve. Using the value of I_D at the Q-point (I_{DQ}):

$$V_{DS} = V_{DD} - I_D(R_S + R_D)$$

$$V_{\rm S} = I_{\rm D} R_{\rm S}$$



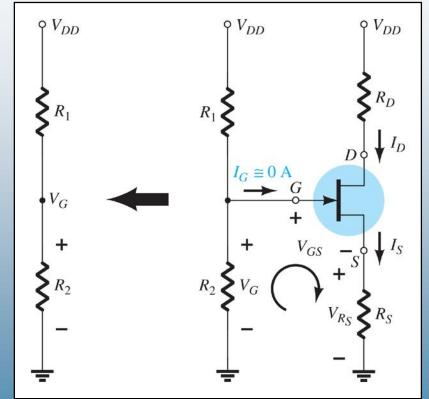
Electronic Devices and Circuit Theory Boylestad

Voltage-Divider Bias

 $I_G = 0 \text{ A}$

 I_D responds to changes in V_{GS} .

Electronic Devices and Circuit Theory Boylestad


Voltage-Divider Bias Calculations

 V_G is equal to the voltage across divider resistor R_2 :

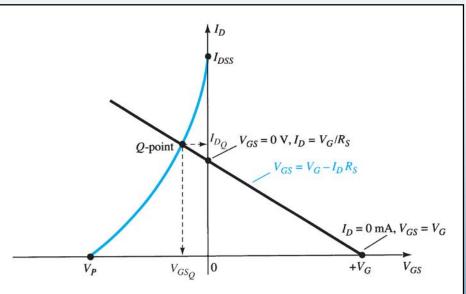
$$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$$

Using Kirchhoff's Law:

$$V_{\rm GS} = V_{\rm G} - I_{\rm D} R_{\rm S}$$

The Q-point is established by plotting a line that intersects the transfer curve.

Electronic Devices and Circuit Theory Boylestad

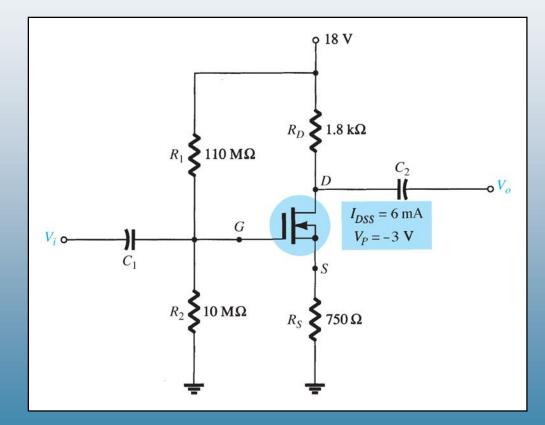

Voltage-Divider Q-Point

Plot the line that is defined by these two points:

$$V_{GS} = V_G, \ I_D = 0 \text{ A}$$

$$V_{\rm GS} = 0$$
 V, $I_D = V_G / R_S$

Plot the transfer curve by plotting I_{DSS} , V_P and the calculated values of I_D



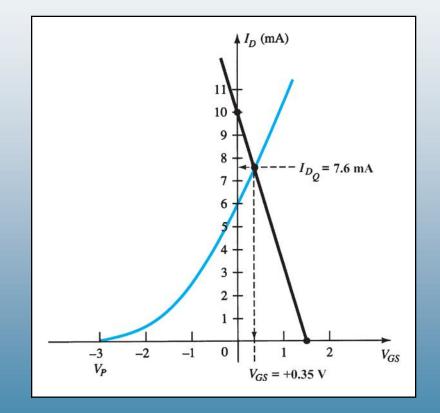
$$V_{DS} = V_{DD} - I_D (R_D + R_S)$$
$$V_D = V_{DD} - I_D R_D$$
$$V_S = I_D R_S$$

Electronic Devices and Circuit Theory Boylestad

D-Type MOSFET Bias Circuits

Depletion-type MOSFET bias circuits are similar to those used to bias JFETs. The only difference is that D-type MOSFETs can operate with positive values of V_{GS} and with I_D values that exceed I_{DSS} .

Self-Bias Q-Point (D-MOSFET)


$$V_{\text{GS}} = -I_{\text{D}}R_{\text{S}}$$

Plot the line that is defined by these two points:

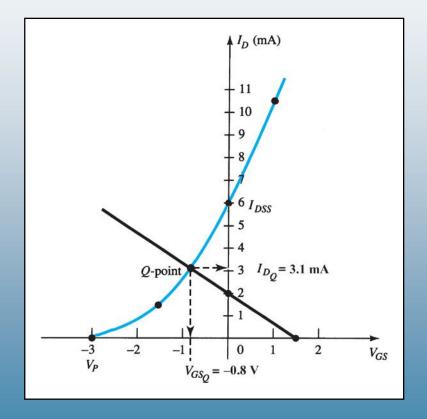
$$V_{GS} = V_G, I_D = 0 \text{ A}$$
$$I_D = V_G / R_S, V_{GS} = 0 \text{ V}$$

Plot the transfer curve using I_{DSS} , V_P and calculated values of I_D .

The Q-point is located where the line intersects the transfer curve. Use the value of I_D at the Q-point to solve for the other circuit values.

These are the same steps used to analyze JFET self-bias circuits.

Electronic Devices and Circuit Theory Boylestad

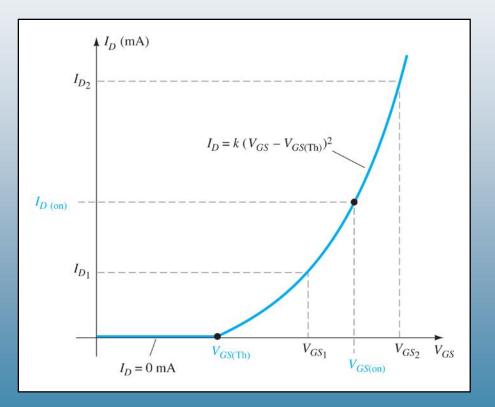

Voltage-Divider Bias (D-MOSFET)

Plot the line that is defined by these two points:

 $V_{GS} = V_G, I_D = 0 A$ $I_D = V_G/R_S, V_{GS} = 0 V$

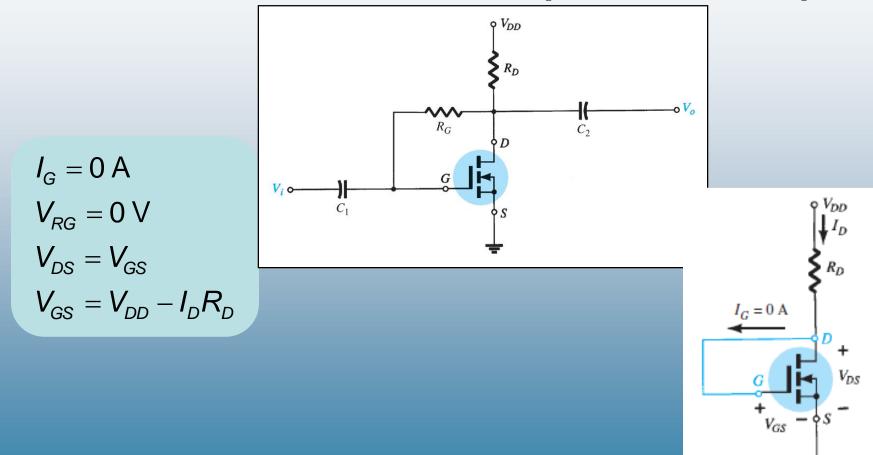
Plot the transfer curve using I_{DSS} , V_P and calculated values of I_D .

The Q-point is located where the line intersects the transfer curve. Use the value of I_D at the Q-point to solve for the other variables in the circuit.



These are the same steps used to analyze JFET voltage-divider bias circuits.

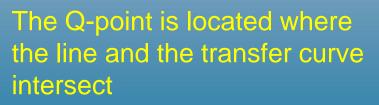
Electronic Devices and Circuit Theory Boylestad


E-Type MOSFET Bias Circuits

The transfer curve for the E-MOSFET is very different from that of a simple JFET or D-MOSFET.

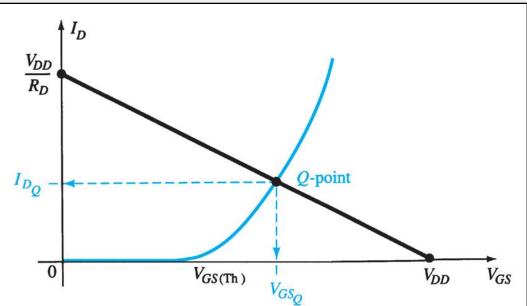
Electronic Devices and Circuit Theory Boylestad

Feedback Bias Circuit (E-MOSFET)


Electronic Devices and Circuit Theory Boylestad

Feedback Bias Q-Point (E-MOSFET)

Plot the line that is defined by these two points:

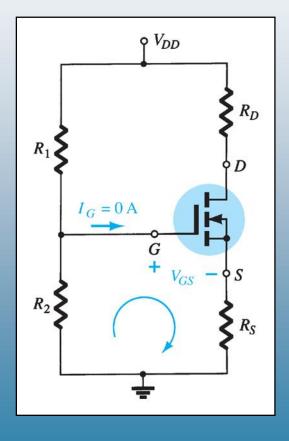

 $V_{GS} = V_{DD}, I_D = 0 \text{ A}$ $I_D = V_{DD} / R_D, V_{GS} = 0 \text{ V}$

Using these values from the spec sheet, plot the transfer curve:

Using the value of ${\rm I}_{\rm D}$ at the Q-point, solve for the other variables in the circuit

Electronic Devices and Circuit Theory Boylestad

Voltage-Divider Biasing

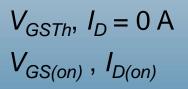

Plot the line and the transfer curve to find the Q-point using these equations:

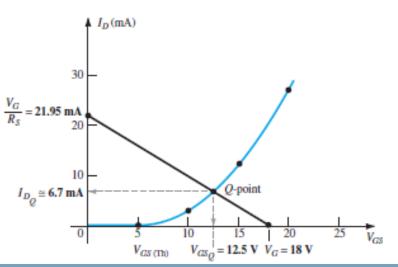
$$V_{G} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$$

$$V_{GS} = V_{G} - I_{D}R_{S}$$

$$V_{DS} = V_{DD} - V_{RS} - V_{RD}$$

$$V_{DS} = V_{DD} - I_{D}(R_{S} + R_{D})$$


Electronic Devices and Circuit Theory Boylestad


Voltage-Divider Bias Q-Point (E-MOSFET)

Plot the line using

$$V_{GS} = V_G , I_D = 0 A$$
$$I_D = V_G / R_S , V_{GS} = 0 V$$

Using these values from the spec sheet plot the transfer curve:

The point where the line and the transfer curve intersect is the Q-point.

Using the value of I_D at the Q-point, solve for the other circuit values.

Electronic Devices and Circuit Theory Boylestad

p-Channel FETs

For *p*-channel FETs the same calculations and graphs are used, except that the voltage polarities and current directions are reversed.

The graphs are mirror images of the *n*-channel graphs.

Electronic Devices and Circuit Theory Boylestad

Applications

Voltage-controlled resistor JFET voltmeter Timer network Fiber optic circuitry MOSFET relay driver

Electronic Devices and Circuit Theory Boylestad