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Example 5.4
In the rectangular toroid of Figure 5.7, w = 5 mm, /= 15 mm, the mean path length
£, = 18 cm, j, = 5000, and N = 100 tums. Calculate the coil inductance L,,, assuming

that the core is unsaturated.
Solution  From Equation 5.8,

n 0.18

4
= =382x10*
Pmdm 5000 X 47 X 10 7 X 5% 10 > X 15X 10 3 Wb

R, =

Therefore, from Equation 5.20,

2

N
Ly = g = 2618 mil
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Example 5.5
In Example 5.3 part (a), calculate the energy stored in the core and in the air gap and
compare the two.

Solution Tn Example 5.3 part (a), B, = B, = 1.35 T. Therefore, from Equation 5.23,

=161.1 J/m* and

=0.725X10° J/m.

We
Therefore, —£ =y, = 4500.
Wm
Based on the given cross-sectional areas and lengths, the core volume is 200 times

larger than that of the air gap. Therefore, the ratio of the energy storage is

We _we (volume), _ 4500 _ 225
Wy  wa  (volume), 200
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Example 5.6
In the structure of Figure 5.8, the flux ¢, (=, sinwr) linking the coil is varying sinu-
soidally with time, where N =300 turns, /' = 60 Hz, and the cross-sectional area
An = 10 cmr?. The peak flux density B, = 1.5 T. Calculate the expression for the induced
voltage with the polarity shown in Figure 5.8. Plot the flux and the induced voltage as
functions of time.

Solution  From Equation 5.6, ¢,, =BuAm = 15X 10X 10 * =1.5X 10 > Wb. From
Faraday’s Law in Equation 524, e(t) =wN¢m coswr = 21X 60X 300X 1.5 X
10 3 X coswt = 169.65 coswr V. The waveforms are plotted in Figure 5.9.

Example 5.6 illustrates that the voltage is induced due to d¢/ds, regardless of
whether any current flows in that coil. In the following subsection, we will establish the
relationship between e(r), ¢(t), and i(t).
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Example 5.7
In Example 5.6, the coil inductance is 50 mH. Calculate the expression for the current

i(1) in Figure 5.10b.

300
Solution From Equation 5.27,i(1) = ¥é(1) = S1.5% 10 ? sin wr = 9.0sin wr A

5010

o)
i) e ¢, i)
i
elr) N
(@)

FIGURE 5.10 Voltage, current, and flux.
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Example 5-1

A 50-kVA, 400,/2000 V, single-phase transformer has the following
parameters:

R, =0.02 ohm R,=0.5 ohm
X, = 0.06 ohm X,=1.50hm
G.=2mS B,=—-6mS

Note that G, and B,, are given in terms of primary reference. The trans-
former supplies a load of 40 kVA at 2000 V and 0.8 PF lagging. Calculate
the primary voltage and current using the equivalent circuits shown in
Figure 5-5 and that of Figure 5-4.

Solution
Let us refer all the data to the primary (400 V) side:
R, =0.02 ohm X, =0.06 ohm

L, 400 \?
05( 2000) Xi= 1‘5( 3000
=0.02 ohm =0.06 ohm

R,
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Thus,
X =X, +X;
=0.04 ohm =0.12 ohm

The voltage V, =2000 V; thus

_ 400 | _
v =2000( ) =400 v
The current I is thus
. 40X10%
= =100 A

‘The power factor of 0.8 lagging implies that

I;=100/-36.87° A

For ease of computation, we start with the simplest circuit of Figure
5-5(d). Let us denote the primary voltage calculated through this circuit by
V), It is clear then that

Vi, = Vi HiL( X))

=400/0+ {100/ —36.87°)(0.12)
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Figure 5-5. Approximate Equivalent Circuits for the Transformer.
Thus,
W, =407.31 /1.35° v

1,,=100/—36.87° A
‘Comparing circuits (c) and (d) in Figure 5-5, we deduce that

V= Vi + (R +1X ) = Vi, + I( Rey)
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V,, = 407.31/1.35°+ (100/—36.87)(0.04)
=410.46/1.00° V
I, =I;=100/—3687° A
Let us consider circuit (a) in Figure 5-5. We can see that
V,, =V, =410.46/1.00° V
But
L, =L+ (G.+jB,)V,,
=100/-36.87°+ (210 — j6 X 10~){410.46 /1.00)

=102.17/-37.68° A

Circuit (b) is a bit different since we start with V; impressed on the
shunt branch. Thus

1, =L+ (G.+jB,)V;
=100/ —36.87°+ (210"~ j6 10~°)(400/0)
=102.09/ —37.68° A
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Now
V= Vit L (R iX)
=400/0+(102.09/ —37.68°)(0.04 + j0.12)
=410.78/1.00°

The exact equivalent circuit is now considered as shown in Figure
5-4(b). We first calculate E,:

E, =V, + (R, +X;)
=400/0+ {100/ —36.87°)(0.02 +0.06)
=405.22/0.51°

Now
L=1+E\(G.+jB,)
=100/ —36.87°+ (405.22/0.51)(2X 1072 ~j6 X 10%)

=10213/-37.68° A
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V=B, +L(R, +jx,)
=405.22/0.51+ (102.13/ — 37.68) (0.02 +0.06)

=41063/1.01°V

The values of V, and I, calculated using each of the five circuits are
tabulated in Table 5-1 with the angle of V, denoted by 6, and the angle of I,
denoted by y,. The largest error in percent is 0.8085 percent in calculating
| V| using circuit (d) as opposed to the exact circuit. This confirms our
earlier statements about common practice in taking equivalent circuits for
power transformers.
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Example 5-2
Find the P.V.R. and efficiency for the transformer of Example 5-1.

Let us apply the basic formula of Eq. (5.14). We have from Example
5-1:
V, = 2000V
I,,=20A

2

R, =004 200)" o
2

Xy =012( 20} =3 ohms

Thus substituting in Eq. (5.14), we get

_ . [20[1(0.8) +3(0.6)] , 1] 20[3(0.8) - 1(0.6)] ]*
e - o[ M0 0] 1 309 s00)]

= 2.600 percent
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Let us compare this with the result of applying Eq. (5.13) with no
approximations. Using the results of circuit (c) for Example 5-1, we have for
load conditions,

V,=410.46V
V; =400 V

Referred to secondary, we have
vi=110.46( 200 ) = 205230 v

This is V, on no-load. Thus,

2052.30 - 2000
P.VR, = 100 22220200

= 2.62 percent
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To calculate the efficiency we need only to apply the basic definition.
Take the results of the exact circuit. The input power is

P, = Vi1 cos$,
= (410.63)(102.13) (c0s38.69)

= (400)(100)(0.8)
=32,000 W
Thus,
32,000
"= 32,733.99
The efficiency of a transformer varies with the load current I,. It
attains a maximum when

=0.97758

oy _
Frald

Using Eq. (5.15) the derivative is

T G
P|=57) PR
o _ ‘(aIIL| RIA

o, p?
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Thus the condition for maximum power is

P,
P _ 1L
B, op,
AL

Using Eq. (5.16) we get
P _ |Vafcosgy 2|1 | Ry
B [Valcos ¢,

This reduces to
P=P,+ 2| (Re)

Thus for maximum efficiency we have
B=P.+|LP(R,)
As a result, the maximum efficiency occurs for
P=(LP(Ry) (517)

That is, when the I?R losses equal the core losses, maximum efficiency is
attained.
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Example 5-3
Find the maximum efficiency of the transformer of Example 5-1 under
the same power factor and voltage conditions.

Solution
We need first the core losses. These are obtained from the exact
equivalent circuit as
P.=|E,(G,)
= (405.22)*(2X107%)
=32841W
For maximum efficiency,
P.=I}(Ryg)
Referred to the primary, we thus have
328.41 = 12(0.04)
Thus for maximum efficiency,
1,=90.61A

__ Vil |eos e,
e = VT, Jeosg + 2P
_ (400)(90.61)(0.8)
"~ (400)(90.61)(0.8) + 2(328.41)
=097785
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Example 5-4

Consider a three-winding transformer with the particulars shown in
the equivalent circuit referred to the primary side given in Figure 5-11.
Assuming V, is the reference, calculate the following:

A. The secondary and tertiary voltages referred to the primary side.

B. The apparent powers and power factors at the primary, secondary,

and tertiary terminals.
C. The transformer efficiency.

Assume that
1,= 50/ —30°
I,=50/-35°
Solution
The primary current is

L=h+1,

=99.9048 { —32.5°
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Z, =002+ 0068

7,=002 + 006 &

Figure 5-11, Circuit for Example 5-4.
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Now the voltage at point 0 is
Vo=V,- 1z,
=400 - (99.9048)( / —32.5°) (0.02 +0.06)
= 395114/ -0571°V
The secondary voltage is obtained referred to the primary as
V=Vo-LZ,
395114/ —0.577°— (50/-30°)(0.02 +0.06)
=392.775/—0.887°
The tertiary voltage is obtained referred to the primary as
Vo= Vo- 12,
=395.114/-0.577°— (50/—35°) (0.02 +0.06)
= 392,598/~ 0.8%°

The apparent power into the load connected to the secondary winding
isthus

s=vL

=19$9.75{E,ll3°

Asa result,
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Similarly for the tertiary winding, we get
8=V1

=19629.9/34.144°

As a result
PE, = cos(34.144°) = 0.82763
The apparent power at the primary side is
S =Wl

= 39961.92/32.5°

As a result,
PF, = cos(32.5°) = 0.84339
The active powers are

P,=19638.75 c0s29.113°
=17157.627T W




image27.png
P,=19629.9 cos 34.144°

=16246.285 W
P, = 39961.92 cos 32.5°
=33703.5415 W
The efficiency is therefore
_hth
n= PI

=0.99111
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Example 5-5

A30-kVA, 2.4/0.6-kV transformer is connected as a step-up autotrans-
former from a 2.4-kV supply. Calculate the currents in each part of the
transformer and the load rating. Neglect losses.

Solution
With reference to Figure 5.12, the primary winding rated current is

L=

The secondary rated current is

Thus the load current is

The load voltage is

V=V, +V,=3kV
As a result, the load rating is

S, =V,I,=150kVA

Note that
L+ 1,
625A
V;=V,=24kV
Thus,

§,=(2.4)(62.5) =150 kVA
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Figure 5-13. Three-Phase Transformer Connections.




image30.png
Example 5-6

A threephase bank of three single-phase transformers steps up the
three-phase generator voltage of 138 kV (line-to-line) to a transmission
voltage of 138 kV (line-to-line). The generator rating is 41.5 MVA. Specify
the voltage, current, and kVA ratings of each transformer for the following

connections:
A. Low-voltage windings , high-voltage windings Y.
B. Low-voltage windings Y, high-voltage windings A.
C. Low-voltage windings Y, high-voltage windings Y.
D. Lowvoltage windings A, high-voltage windings 4.
Solution
The low voltage is given by
V,=138kV (line-toline)
The high voltage is given by
V, =138 kV (line-to-line)
The apparent power is
|S|= 415 MVA
A Consider the situation with the low-voltage windings connected in
A, as shown in Figure 5-15. Each winding is subject to the full
line-to-line voltage. Thus

E,=138kV
‘The power per winding is | S|/3; thus the current in each winding
is
41.5x10°

(3)(138%10° = 1002424
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Figure 5-15. (a) A-Y Transtormer with Variables Indicated. (b) Single Trans-
former Loading.
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With the secondary connected in Y, the voltage on each winding is
the line-to-ground value

E=28_2967kv

=5
‘The current in each winding is obtained as

415 x10°

= Bverxio)  TR2A

The kVA rating of each transformer is thus
8,[=E,I,=E,I,=13.83 MVA
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Figure 5-16. (a) Y-A Transformer with Variables Indicated for Example 5-6. (b)
Single Transtormer Loading.
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B. When the low-voltage windings are connected in Y, the voltage on
each winding is the line-to-ground value

The current is

415X10°
(3)(7.97)(10%)

With the secondary windings connected in 4, the voltage on

=1736.23 A

each wil

E,=18LkV
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The current is calculated as

415x10°

== 10024A
3(138 X 10%)

The kVA rating of each transformer is therefore
[8,]= E, I, = E,1, = 1.83 MVA.
The arrangement is shown in Figure 5-16.

C. With low-voltage windings connected in Y, from the solution to
part (b) we have
E,=797kV

1,=1736.23 A
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Figure 5-17. (a) Y-Y Transformer with Variables Indicated for Example 5-6. (b)
Single Transformer Loading.
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Example 5.1

Consider the coil in Figure 5.2, which has N = 25 turns, The toroid on which the coil is
wound has an inside diameter /D = S cm and an owside diameter OD = 5.5 cm. For a
current 7 =3 A. calculate the field intensity #/ along the mean-path length within the
foroid.

Solution  Due to symmetry, the magnetic field intensity #,, along a circular contour
within the toroid is constant. In Figure 5.2, the mean radius r,, = L(22H2) Therefore, the
mean path of length £, (= 275, = 0.165 m) encloses the current i N-fimes, as shown in
Figure 5.2b. Therefore, from Ampere’s Law in Equation 3.1, the field intensity along this
mean path is

Ni
M =%, (

W
i

which for the given values can be calculated as

P
"0.165

= 4545 A/m.

If the width of the toroid is much smaller than the mean radius r,,, i is reasonable fo
assume a uniform /,, throughout the cross-section of the toroid.

The field intensity in Equation 5.2 has the units of [A/m], noting that “tums™ is a
unit-less quantity. The product N/ is commonly referred to as the ampere-turns or mmf /~
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Figure 5-18. (a) A-A Transformer with Variables Indicated for Example 5-5. (b)
Single Transtormer Loading.
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With high-voltage windings connected in Y, from the solution to
part (a) we have

E,=7967kV

L=17362A

This arrangement is shown in Figure 5-17.

TABLE 5-2

Comparison of Single Transformer Ratings
for Different Three-Phase Connections

53 ¥4 YY a4
E, (kV) 138 797 7.97 138
I,(A) 100242 173623 173623 100242
E, (kV) 79.67 138 7967 138
L&) 7362 0024 7362 00,24
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Figure 5-19. Schemalc Diagram of a Three-Winding Autotransformer.
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D. With low-voltage windings connected in A, from the solution to
part (a) we get

E,=138kV
1,=1002.42 A
With high-voltage windings connected in A, from the solution to
part (b) we get
E,=138kV
1,=100.24 A

The situation is shown in Figure 5-18. Table 5-2 summarizes the
voltage and current ratings for the single-phase transformers asso-
ciated with each transformer connection.

Three-phase autotransformers are usually Y-Y connected with the neutral
grounded. A third (tertiary) A-connected set of windings is included to carry
the third harmonic component of the exciting current. A schematic diagram
of a three-phase autotransformer with a A-tertiary is shown in Figure 5-19.
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Problem 5-A-1

The equivalent impedance referred to the primary of a 2300,/230-V,
500-kV A, single-phase transformer is

Z=02+j0.6 ohm

Calculate the percentage voltage regulation (P.V.R.) when the transformer
delivers rated capacity at 0.8 power factor lagging at rated secondary
voltage. Find the efficiency of the transformer at this condition given that
core losses at rated voltage are 2 kW.

Solution

The secondary current referred to the primary side is
500 p 10‘

Iy= o =217.39/ — 36.87°

Thus the primary voltage at rated load is
Vi=Vi+LZ
=2300/0+ {217.39/—36.87)(0.2+,0.6)

224145111.8{? \4
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As a result, we calculate
Vi

v 81—
P.VB.zlm( ?’=1m(_m—m)=55

v 2300
The efficiency is calculated as
(500 % 10°)(0.8)

n=
(500 X 10° X 0.8) +(217.39)%(0.2) +2 X 10°
=09722
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Problem 5-A-2
A 500/100 V, two-winding transformer is rated at 5 kVA. The follow-
ing information is available:
A. The maximum efficiency of the transformer occurs when the out-
put of the transformer is 3 kVA.

B. The transformer draws a current of 3 A, and the power is 100 W
when a 100-V supply is impressed on the low-voltage winding with
the high-voltage winding open-circuit.

Find the rated efficiency of the transformer at 0.8 PF lagging.

The core losses are 100 W from the specifications of part (b). From
part (a), the I’R loss at 3-kVA load is thus 100 W. For a 5-kVA load, the
IR loss is

IR, =100(3)° = 21778 W
The efficiency is
Fou
IR+ Py,
- 5X10° X 0.8
5X10° X 0.8+ 277.78 + 100
=0.9137
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Problem 5-A-3

The no-load input power to a 50-kVA, 2300,/230-V, single-phase trans-
former is 200 VA at 0.15 PF at rated voltage. The voltage drops due to
resistance and leakage reactance are 0.012 and 0.018 times rated voltage
when the transformer operates at rated load. Calculate the input power and
power factor when the load is 30 kW at 0.8 PF lagging at rated voltage.




image45.png
Solution
The rated load current is

_ 50x10°
L=""

=217.39A

The no-load current from the specifications of the problem is

200 _
L=/~ c0s™'015
=0.87{*8137°

‘We will assume that the equivalent circuit of Figure 5-5(a) applies and that
variables are referred to the secondary side. The resistive voltage drop is

AV, = LR o= (0.012)(230)
Thus,
(21739)R = 2.76
As a result
R,,=0.0127 ohm
Similarly, we obtain
X,,=0.0190 ohm
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The primary voltage referred to the secondary is
Vi=V,+12,

For 30 kW at a 08 PF, we have

_ 30%10°

=350 08L 220808

I

Thus we calculate
V; =233.52/0.3°

The primary current referred to the secondary is
L=I+1,
=163.67/—37.08°
Consequently, the phase angle at the primary side is

$,= 0.3 +37.08=37.38°
cos, =0.7946
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FIGURE 5.2 Tomid.
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The input power is

P=Vilicoss,
= 30.3708 kW
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Problem 5-A-4

To identify the equivalent circuit parameters of a 100-kVA, 4-kV /1-kV
transformer, a short-circuit test is performed with the power input of 25
kW at

25 A

V=224V and I

Determine the parameters R,, and X, of the transformer referred to the
primary.

Solution

With a short-circuit on the secondary winding, we have with reference
to Figure 5-27

B =L(Bs)
2500 = (25)°(R.,)
This yields

R, =4 0hms
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Figure 5-27. Equivalent Circuit for Problem 5-A-4.
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We also have

But

Vilcos ¢,
2500 = (224)(25)cos ¢,
¢, = —63.49°
X,
tan = ¢, =7

ea
X.q= 4tan63.49°
=8 ohms
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6.2.1 Example
Suppose we have the following problem to solve:

A balanced three-phase wye-connected resistor is connected to the delta side of a
wye-delta transformer with a nominal volfage ratio of

a_yN
or
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Figure 610 Example

What is the impedance looking into the wye side of the transformer, assuming
drive with a balanced source?

‘The situation is shown in Figure 6.10.
It is important to remember the relationship between the voltage ratio and the furns ratio,
which is:

so that:
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Next, the wye-delta equivalent transform for the load makes the picture look like Figure 6.11

Figure 6.1 Equivalent situation
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In this situation, each transformer secondary winding is connected directly across one of
the three resistors. Currents in the resistors are given by:

Vb
3R
Vbea

i=

i

Line currents are:

Solving for currents in the legs of the transformer A, subtract, for example, the second
expression from the first:

2uiba = Vbea — Vean

2ijp —ia —iza = 3R

Now, taking advantage of the fact that the system is balanced:

i1ati2a +iza

VabA + Vbea + Vear =
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to find:

Na . Na.
Vaba = Ny Vay lay FyllA

Na . Na.
Uhea = oy = iaa

Na . Na.
Vead = ——Vey fey = —1i3a
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so that:

‘The apparent resistance (that is, apparent were it to be connected in wye) at the wye terminals
of the transformer is:

Expressed in terms of voltage ratio, this

wmn( ) <n()
VRN
It is important to note that this solution took the long way around. Taken consistently

(uniformly on a line-neutral or uniformly on a line—line basis), impedances transform across.
transformers by the square of the voltage ratio, no matter what connection is used.
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that produces the magnetic field. The current in Equation 5.2 may be dc, or time varying.
1 the current is time varying, the relationship in Equation 5.2 is valid on an instantaneous
basis; that is, H,(t) is related to i(£) by N /0,,.
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512 EXAMPLES
Example 5-1 (Section 5-6)

A transformer is rated 10 kva, 2400/240 v, 60 Hz. The parameters for the ap-
proximate equivalent circutt of Fig. 5-9(a) are:

Yo, =G, +/ By, =125 - j28.6=31.2(-66.4° umhos

Z., =R, +j X, =84+]137=16.1/58.5 ohms
Find the voltage regulation for operation with rated load and power factor of
0.8 lagging.
Solution

We plan to use Eq. 5-48 to find ¥;. For this purpose, we first have to find the
rated current.

Dyated = i atea = 10,000/2400 = 4.17 amp
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Choose I; as the reference. Either this or ¥, may be chosen. It is a matter of
personal preference.

Lja=1; =4.17/0° =417+ 0 amp
‘The power factor angle is
6= cos™ (0.8) = 36.9°
‘The voltage ¥; leads the current I, by this angle.
aV, =2400/36.9° = 1920 + 1440 volts
‘The voltage across the equivalent impedance is
Z,, 1y =(8:4+/13.7) (417 +/0) =35 +/ 57 volts

The terminal voltage on side 1 is found from Eq. 5-48.

Vi =aV, +Z,, 1; = 1955 +; 1497 = 2462[37.4° volts
Use only the magnitudes in Eq. 5-50 to find the voltage regulation.

V- -
= aVy _ 2462 2400=0.0258
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Example 52 (Section 5-7)

The transformer of Example 5-1 is operated with rated load and power factor
of 0.8 leading. Find the efficiency.

Solution

We plan to use Eq. 1-4 to find the efficiency. We do not solve for all of the
values in Fig. 5-9(a). We work with rated quantities as being close enough for
this computation of efficiency. The rated load current is

0 rated = Daratea = 10,000/240 = 41.7 amp
The output power is
Poyt = Va1 cos 0 = (240) (41.7) (0.8) = 8000 w

Use Eq. 5-52 to find the copper losses. Since R, is given, it is convenient to
use

Iy ~I; =I/a=4.17 amp
Pp=IR,, =(417) (8.4)= 146w
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A measured value of core losses is often available and can be used. In this prob-
lem, G, is given so we use Eq. 5-53 to find the core losses. We use ¥; = Viyiq-

P, =G, V}=(125X 107) (400" =72 w
The summation of losses is
Piog =Pg +P.=146+72=218 w
Use Eq. 1-4 to find the efficiency.

o8
8000 +218

=0973
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Example 5-3 (Section 5-7)

All-day efficiency is defined to be the ratio of energy output to energy input
for a 24-hour period. The 10kva transformer of Example 5-1 is operated for
24 hours a day. Loads during the day are: 10 kva at 1.0 P.F. for 3 hours; 6 kva
at 0.8 P.F. lag for § hours; no load for 16 hours. Find the all-day efficiency.
Solution

The given conditions of this problem make it simple to evaluate the integrals in
Eq.5-57. The output energy is

Wou =(10X 1.0)X 3+ (6X 0.8) X 5+0X 16 =54 kwh
The core losses are constant for the full 24 hours. The energy into core losses is
W, =(72/1000) X 24 = 1728 kwh
During 3 hours, the copper loss is

2
P = (‘Zz'ggo) (8.4)/1000 = 0.146 kw

During § hours, the copper loss is

6000
Pr= (2400) (8.4)/1000 = 0,053 kw

During 16 hours, the copper loss is
Pr=0

The energy into copper losses is
Wg =(0.146) X 3+ (0.053) X 5 +(0) X 16=0.703 kwh




image62.png
The denominator of Eq. 557 is the energy input during the period.
Win = Wous + Wi + W, =54+ 1.728 +0.703 = 56 431 kwh

The energy efficiency for the full 24 hours is
N = Wout/ Win = 54/56.431 =0.957
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Example 5-4 (Section 5-9)

Test data for a 10kva, 2400/240-v, 60-Hz transformer are as follows: open-
circuit test, with input to the low side, 240 v, 0.75 amp, 72 w; short-circuit test,
with input to the high side, 80.5 v, 5.0 amp, 210 w. Find the parameters for
the approximate equivalent circuit in Fig. 5-9(a).
Solution
Tums ratio =4 = 2400/240 = 10

Tizatea = 10,000/2400 = 4.17 amp

Tyrytea = 10,000/240 = 41.7 amp

Since the input for the open-circuit test is measured into the low side, it is con-
venient to work with Fig. 5-9(d). The admittance is

62 = aocl Vaoe = 0.75/240 = 3.12 X 10 mho
The angle of the admntance is found by
€08 0 = Poc/(Vaocl200) = 72/(240 X 0.75) = 04
04 =cos™! (04) = -66.4°
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The conductance is

G,

c0s 0y =125 X107 mho
The susceptance is
By, =Y, sin 0 =-286 X 10~ mho
In Fig. 5-9(a) these quantities are referred to the high side.
Yo, = Yo, a* =312[-664° =12.5 - 28.6 umho

Since the measurements for the short-circuit test are made into the high side
winding, Fig. 5-9(b) is applicable. The impedance is

Zo, = Vil =80.5/5 = 16.1 2
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‘The angle of the equivalent impedance is found by
<08 0, = Pye/Vise L1 sc = 210/(80.5) (5) = 0.522
0, = cos™ (0522) = 58.5°
The equivalent resistance is
Re, =2, cos0, =840
The equivalent reactance is
X., =Z,, sinf,=137Q
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Example 55 (Section 5-10)
(a) Repeat Example 5-4, using per-unit values. (b) Find the regulation for a
power factor of 0.8, this time leading. () Find the efficiency at half load and a
power factor of 0.8.
Solution
First establish the bases: Pygse = Py pase = 10,000 va.
Vipase = 2400V, Vypee =240 v
T1psse = 10,000/2400 = 4.17 amp
Tnpase = 10,000/240 = 41.7 amp
Convert all test data into per-unit values
Vo =240/240= 1 pu
Ioc =0.75/41.7=0018 pu
Py =72/10,000 = 0.0072 pu
Ve =80.5/2400 = 0.0335 pu
1o =50/4.17=12pu
P, =210/10,000 =0.021 pu

Note that there are no subscripts indicating “primary” or “secondary” for per-
unit values.

(a) The procedures of Example 5-4 are repeated with pu values.
Y5 =0018/1=0018 pu
cos 5 =0.0072/(1 X 0.018) = 0.4
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Example 5.2
Tn Example 5.1, the core consists of a material with i, = 2000. Calculate the flux density

B, and the flux ¢,

Solution In Example 5.1, we calculated that H,, = 454.5 4/m. Using Equations 5.4a
and 5.4b, B, =47 X 10 7 X 2000 X 454.5 = 1.14 T. The toroid width is %:
0.25X 10 2 m. Therefore, the cross-sectional area of the toroid is

A, :%(o.zs X10 22 =49% 10 *m?

Hence, from Equation 5.6, assuming that the flux density is uniform throughout the cross-
section,

6, =1.14X49%10 © =559% 10 * Wb
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Being a dimensionless number, it must be the same as that obtained in the
previous example. So are

6,=-66.4° and sin 6, =-09165
G, =0018X 0.4=00072 pu
By, =-0018 X 09165 =-0.0165 pu
Y, =0.018/-66.4° = 00072 - j 0.0165 pu
Z,=00335/12=00279 pu
cos 0 =0.021/(0.0335 X 1.2) = 0522
6,=58.5,sin 6, =0853
R =00279 X 0522 = 0.01456 pu
X, =00279 X 0.853=0.0238 pu
Z,=00279/58.5° = 0.01456 +; 00238 pu

These values can be checked against those obtained in the previous example
by using the admittance and/or impedance bases. For instance

Zipue =2400/4.17=576 2

and

Ze, =16.1/576 =0.0279, etc
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(b) Use the method of Example 5-1
L, =1/0° pu
V2 =1/-369° pu
(For a “leading” power factor, the voltage lags the current), thus V, =
0.8-;0.6 pu.
Z,1, =0.0146 +70.0238 pu

Add these two phasors to get V, = 08146 - j 0.576 = 09876/-353°, So the
regulation is (0.9876 -1)/1 = -0.0124 (negative, due to the leading load).
(0) Athalfload,

5L=05pu
Pou=1X0.5X0.8=04pu
P, =0018 X 12 =0018 pu (equals G,)
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Pg =0.01456 X 0.5 =0.00364 pu
Piogs =0018 +0.00364 = 0.02164 pu

So the efficiency s
7=0.4/(0.4 +0.02164) = 0949
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Example 5.3
In the structure of Figure 5.5, all flux lines in the core are assumed to cross the air gap.
The structure dimensions are as follows: core cross-sectional area 4, = 20 cm?, mean
path length £, = 40 cm, £, =2 mm, and N =75 tums. In the lincar region, the core
permeability can be assumed to be constant, with |1, = 4500. The coil current i (= 30 A)
is below the saturation level. Tgnore the flux fringing effect. Calculate the flux density in
the air gap, (a) including the reluctance of the core as well as that of the air gap and (b)
ignoring the core reluctance in comparison to the reluctance of the air gap.

Solution  From Equation 5.8,

e 40%10 2
T i An 47X 10 7 X4500X 20X 10 *

R

4
:3.54><10"Wb, and

by 2x10 3
Ay 4mx10 Tx20x10 ¢

=79.57x 10 A
Wb

a. Including both reluctances, from Equation 5.16,

Ni
e

i X
p=le_ N 75%30 —135T

© T4, Rt R, (7957 13.54) X 10° X 20X 10 *
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b. Ignoring the core reluctance, from Equation 5.16,

Ni
=g
_%_ N 75 %30 aiT

B,=-£= e
T4, WA, 7957X10°x20%10 °

and

This example shows that the reluctance of the air gap dominates the flux and the flux
density calculations; thus we can often ignore the reluctance of the core in comparison to

that of the air gap.




