
$\frac{V_{1}}{V_{2}}=\frac{+N_{1}}{N_{2}}$ (*noktalann yerinin issetine $g^{\text {sre belielenir.) }}$
$\frac{I_{1}}{I_{2}}=-\left(\frac{-N_{2}}{N_{1}}\right)=\frac{N_{2}}{N_{1}}$
(*) atimo ho 2 man $(\rightarrow$)ie basbair. Sonca vosisindtine geálic, nokbon aikers $(-)$, girerse (+ ypzilie)
(\%) $\quad \mathrm{N}_{1}: \mathrm{N}_{2}$

$$
\begin{aligned}
& \frac{V_{1}}{V_{2}}=\frac{N_{1}}{-N_{2}}(* \text { N'lode (V) Not } \\
& \frac{I_{1}}{I_{2}}=-\left(\frac{-N_{2}}{1 N_{1}}\right)=+\frac{N_{2}}{N_{1}}
\end{aligned}
$$

$$
\star \frac{I_{1}}{I_{2}} \Rightarrow-\left(\frac{I_{1}^{\prime} \text { in } k y \operatorname{sisin} d x t i}{I_{2} \operatorname{nin} k x \sin d a k i}\right) .
$$

4)

$$
\left.\begin{array}{ll}
- \\
V_{1} & V_{1}^{+} \\
+
\end{array}\right\} \begin{array}{ll}
V_{2} \\
-. I_{2} & \frac{V_{1}}{V_{2}}=\frac{N_{1}}{-N_{2}}=-\frac{N_{1}}{N_{2}} \\
& \frac{I_{1}}{I_{2}}=-\left(-\frac{N_{2}}{-N_{1}}\right)=-\frac{N_{2}}{N_{4}}
\end{array}
$$

Step up:

(1) V'leri orsto, V'ler asonde:: bagntiyl bul
(2) I'la, orde, Illor arasindali: bsgintiy bul.
(3) 1. gevreyi 21 , vileri bul. (v bakimindor aevre).
(4) 2, aerceyi 31, I 'ler bul. (I boluminds Gevre)

1) $\frac{V_{1}+V_{2}}{V_{2}}=\frac{+2+1}{1}=\frac{3}{1}$ (N ian noktsloin is Jetine bokyorduk)

$$
\begin{aligned}
& \frac{V_{1}+V_{2}}{V_{2}}=\frac{3}{1} \Rightarrow \quad 3 v_{2}=v_{1}+v_{2} \\
& V_{1}=2 V_{2}
\end{aligned}
$$

2) $\frac{I_{1}}{I_{2}}=-\left(\frac{-1}{2+1}\right)=\frac{1}{3} \quad I_{2}=3 I_{1}$
3)

$$
\begin{aligned}
& V_{1}+V_{2}=100 \\
& 10 I_{2}-V_{2}=0 \rightarrow 10 I_{2}=V_{2} \quad 2 V_{2}+V_{2}=100 \Rightarrow V_{2}=33,33 \mathrm{~V}
\end{aligned}
$$

4) $I_{2}=\frac{V_{2}}{10} \Rightarrow I_{2}=\frac{33,33}{10} \Rightarrow I_{2}=3,33$
5) $I_{1}=\frac{I_{2}}{3}=\frac{3,33}{3}=1,11 \mathrm{~A}$
6) $v_{1}=2 v_{2}=2,33,33=66,66 \mathrm{~V}$
7) $I_{1}=I_{2}+I_{3} \quad I_{3}=I_{1}-I_{2}=1,11-3,33=-2,22 \mathrm{~A}$

$$
\begin{aligned}
& N_{1}: 2 \\
& N_{2}: 3
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V_{1}}{V_{1}+V_{2}}=\frac{N_{1}}{N_{1}-N_{2}}=\frac{2}{2-3}=-2 \\
& V_{1}=-2 V_{1}-2 V_{2} \\
& 3 V_{1}=-2 V_{2} \quad \Rightarrow \frac{V_{1}}{V_{2}}=-\frac{2}{3}
\end{aligned}
$$

$$
\frac{I_{1}}{I_{2}}=-\left(\frac{-N_{1}+N_{2}}{N_{1}}\right) \Rightarrow \frac{I_{1}}{I_{2}}=-\left(\frac{1}{2}\right)=-\frac{1}{2} \quad I_{2}=-2 I_{1}
$$

$$
-100+V_{1}=0 \Rightarrow V_{1}=100 \mathrm{~V}
$$

$$
V_{2}=-\frac{3}{2} V_{1}=-\frac{3}{2}, 100=-150
$$

$$
-V_{1}-V_{2}+10 I_{2}=0
$$

$$
-100-(-150)+10 I_{2}=0
$$

$$
-100+150+10 I_{2}=0
$$

$$
10 I_{2}=-50
$$

$$
I_{2}=-5 A
$$

$$
I_{1}=-\frac{1}{2} I_{2}=2,5 \mathrm{~A}
$$

$$
\begin{aligned}
& \frac{V_{1}}{V_{1}+V_{2}}=\frac{4}{4+1}=\frac{4}{5} \\
& 5 V_{1}=4 V_{1}+4 V_{2} \quad V_{1}=4 V_{2} \\
& \frac{I_{1}}{I_{2}}=-\left(\frac{+N_{1}+N_{2}}{-N_{1}}\right)=-\frac{5}{-4}=\frac{5}{4} \quad 4 I_{1}=5 I_{2} \\
& -100-V_{1}=0 \\
& V_{1}=100 V \quad V_{2}=25 V
\end{aligned}
$$

$$
+V_{1}+V_{2}+10 I_{2}=0
$$

$$
125=-10 I_{2} \quad I_{2}=-12,5 \mathrm{~A} \quad I_{1}=\frac{5 I_{2}}{4}=15,625 \mathrm{~A}
$$

Step down:
$\mathrm{N}_{1} \cdot{ }^{4}$
$\mathrm{N}_{2}: 1$
(4)

100 V

$$
\begin{array}{ll}
V_{1}=80 \mathrm{~V} & I_{1}=2,5 \mathrm{~A}\left(2+\frac{2}{4}\right) \\
V_{2}=20 \mathrm{~V} & I_{2}=2 \mathrm{~A}
\end{array}
$$

(4)

$$
\begin{aligned}
& \frac{V_{1}+V_{2}}{V_{2}}=\frac{+N_{1}+N_{2}}{+N_{2}}=\frac{4+1}{1}=5 \Rightarrow V_{2}=V_{1}+V_{2} \\
& \frac{I_{1}}{I_{2}}=-\left(\frac{+N_{2}}{-N_{1}-N_{2}}\right)=-\left(\frac{1}{-4-1}\right)=\frac{1}{5} \quad 5 V_{1}=I_{2} \\
& -100-V_{1}-V_{2}=0 \\
& V_{1}+V_{2}=-100 \quad 5 V_{2}=-100 \mathrm{~V} V_{2}=-20 \mathrm{~V} \quad V_{1}=-80 \mathrm{~V} \\
& +V_{2}+10 I_{2}=0 \Rightarrow 10 I_{2}=20 \quad I_{2}=2 \mathrm{~A} \quad I_{1}=\frac{I_{2}}{5}=0,4 \mathrm{~A}
\end{aligned}
$$

$$
\begin{array}{ll}
V_{1}=-\frac{400}{3} & I_{1}=\frac{10}{9} \\
V_{2}=-\frac{100}{3} & I_{2}=-\frac{10}{3}
\end{array}
$$

$$
\begin{array}{ll}
V_{1}=\frac{400}{3} & I_{1}=\frac{10}{9} \\
V_{2}=\frac{100}{3} & I_{2}=-\frac{10}{3}
\end{array}
$$

Ornek:

$$
\begin{aligned}
& \frac{V_{1}+V_{2}}{V_{2}}=\frac{4+1}{1}=5 \quad 5 V_{2}=V_{1}+V_{2} \\
& \frac{I_{1}}{I_{2}}=-\left(\frac{+1}{+4-1}\right)=-\frac{1}{3} \quad I_{2}=-3 I_{1}
\end{aligned}
$$

$$
\begin{aligned}
& -100+V_{1}-V_{2}=0 \quad V_{1}-V_{2}=100 \quad 4 V_{2}-V_{2}=100 \quad 3 V_{2}=100 \quad V_{2}=33,33 \mathrm{~V} \\
& V_{2}+10 I_{2}=0 \cdot 10 I_{2}=-V_{2}=-33,33 \Rightarrow I_{2}=-3,33 \mathrm{~A} \Rightarrow I_{1}=1,11 \mathrm{~A}
\end{aligned}
$$

$I_{x}=I_{2}-I_{1}$ (yonlerine bakavk yozhic)

$$
I_{x}=-3,33-1,11=-4,44 \mathrm{~A}
$$

Ömet:

$$
\begin{gathered}
4 v_{1}+4 v_{2}=5 v_{1} \\
4 v_{2}=v_{1}
\end{gathered}
$$

$$
\frac{I_{1}}{I_{2}}=-\left(\frac{-4+1}{4}\right)=\frac{3}{4}
$$

$$
3 I_{2}=4 I_{1}
$$

$$
\begin{aligned}
& -100+V_{1}=0 \\
& V_{1}=100 \mathrm{~V} \Rightarrow V_{2}=25 \mathrm{~V} \\
& -V_{1}+V_{2}+10 I_{2}=0 \\
& -100+25+10 I_{2}=0 \\
& 10 I_{2}=75, I_{2}=7,5 \mathrm{~A} \Rightarrow I_{1}=\frac{3 . I_{2}}{4}=\frac{3,7,5}{4}=5,6
\end{aligned}
$$

Trafo : (indirici)

* Trafolarin primer, aekander, kaynak ve yik akimbarini bulunuz-

indirici ve Yükseltici Trafo

CDohs snceki bl kana yorliglitls tetror edildi) Indinici ve Youseltici Trofo:

* Boglontr rekti deģismeden 1 traponun keescini 1^{\prime} den büyüt y porsot indirici trofo yikueltici; yubeltici tr fo indirici slue.

$\leftarrow \begin{aligned} & \text { indirici } \\ & \text { (oundz inis) }\end{aligned}$
(*) Bagimi bynatbr aitistic. Giris suni kognatsa durum valbyi O 'dic. (1) Baghml, bayn>k (\langle) ciluztr. Önce kutulari ciz, aikestoni belink Ging ianse (—)) iffoin kos tor iam 11 , gen kaln diger aitlitian digor bxayg 2 I.

\Rightarrow yuikselt $\underset{\text { (skinds }}{\text { i }}$) (skindo 4)
* Bagimir kyynatlar cikistr. Giris suni kaynaksa dumny voltage o'dir.
* Bağmi kaynsi (λ) ailistir.
* Bağant seeli aegismedor trafonm kaznani I'den büyúk ypersie indirici trafo-yükselká; yükeltici trofo-indicíci olur.
- Ince kutular cie, sonca aikiplorini belíti Giris iain ise yukzidat: -4. ifodesini kersi torot iain al, geri koln diger aiklz icin diger bxeaga al.

$y^{\text {itseitrei }}$

Separation of Core Losses

The core loss of a transformer depends upon the frequency and the maximum flux density when the volume and the thickness of the core laminations are given. The core loss is made up of two parts (i) hysteresis loss $W_{h}=P B_{\max }^{1.6} f$ as given by Steinmetz's empirical relation and (ii) eddy current loss W_{e} $=Q B_{\text {max }}^{2} f^{2}$ where Q is a constant. The total core-loss is given by

$$
W_{i}=W_{h}+W_{e}=P B_{\max }^{1.6} f^{2}+Q B_{\max }^{2} f^{2}
$$

If we carry out two experiments using two different frequencies but the same maximum flux density, we should be able to find the constants P and Q and hence calculate hysteresis and eddy current losses separately.

Example 32.29. In a transformer, the core loss is found to be 52 W at 40 Hz and 90 W at 60 Hz measured at same peak flux density. Compute the hysteresis and eddy current losses at 50 Hz
(Elect. Machines, Nagpur Univ. 1993)
Solution. Since the flux density is the same in both cases, we can use the relation
Total core loss $W_{i}=A f+B f^{2} \quad$ or $\quad W_{i} / f=A+B f$
$\therefore \quad 52 / 40=A+40 B$ and $90 / 60=A+60 B ; \quad \therefore \quad A=0.9$ and $B=0.01$
At 50 Hz , the two losses are

$$
W_{h}=A_{f}=0.9 \times 50=45 \mathrm{~W} ; W_{e}=B f^{2}=0.01 \times 50^{2}=25 \mathrm{~W}
$$

Example 32.30. In a power loss test on a 10 kg specimen of sheet steel laminations, the maximum flux density and waveform factor are maintained constant and the following results were obtained:

Frequency (Hz)	25	40	50	60	80
Total loss (watt)	18.5	36	50	66	104

Calculate the eddy current loss per kg at a frequency of 50 Hz
(Elect. Measur. A.M.I.E.See B, 1991)
Solution. When flux density and wave form factor remain constant, the expression for iron loss can be written as

$$
W_{i}=A f+B f^{2} \text { or } W / f=A+B f
$$

The values of W_{i} / f for different frequencies are as under :

f	25	40	50	60	80
W_{i} / f	0.74	0.9	1.0	1.1	1.3

The graph between f and W / f has been plotted in Fig. 32.44. As seen from it, $A=0.5$ and $B=0.01$
\therefore Eddy current loss at $50 \mathrm{~Hz}=B f^{2}=0.01 \times 50^{2}=25 \mathrm{~W}$
\therefore Eddy current loss $/ \mathrm{kg}=25 / 10=2.5 \mathrm{~W}$

Example 32.31. In a test for the determination of the losses of a $440-\mathrm{V}, 50-\mathrm{Hz}$ transformer, the total iron losses were found to be 2500 W at normal voltage and frequency. When the applied voltage and frequency were 220 V and 25 Hz , the iron losses were found to be 850 W . Calculate the eddy-current loss at normal voltage and frequency.
(Elect. Inst, and Meas. Punjab Univ. 1991)

Fig. 32.44

Solution. The flux density in both cases is the same because in second case voltage as well as frequency are halved. Flux density remaining the same, the eddy current loss is proportional to f^{2} and hysteresis loss $\propto f$.

Hysteresis loss $\propto f=A f$ and eddy current loss $\propto f^{2}=B f^{2}$ where A and B are constants.

Total iron loss

$$
\begin{equation*}
W_{i}=A f+B f^{2} \quad \therefore \quad \frac{W_{i}}{f}=A+B f \tag{i}
\end{equation*}
$$

Now, when $\quad f=50 \mathrm{~Hz}: W_{i}=2500 \mathrm{~W}$
and when

$$
f=25 \mathrm{~Hz} ; \mathrm{W}_{i}=850 \mathrm{~W}
$$

Using these values in (i) above, we get, from Fig. 32.44

$$
2,500 / 50=A+50 B \text { and } 850 / 25=A+25 B \quad \therefore \quad B=16 / 25=0.64
$$

Hence, at normal p.d. and frequency

$$
\begin{aligned}
\text { eddy current loss } & =B f^{2}=0.64 \times 50^{2}=1600 \mathrm{~W} \\
\text { Hystersis loss } & =2500-1600=900 \mathrm{~W}
\end{aligned}
$$

Example 32.32. When a transformer is connected to a $1000-\mathrm{V}, 50-\mathrm{Hz}$ supply the core loss is 00 W , of which 650 is hysteresis and 350 is eddy current loss. If the applied voltage is raised to 100 V and the frequency to 100 Hz , find the new core losses.

Solution. Hysteresis loss $W_{h} \propto B_{\max }^{1.6} f=P B_{\max }^{1.6} f$
Eddy currentloss $W_{e} \propto B_{\text {max }}^{2} f^{2}=Q B_{\text {max }}^{2} f^{2}$
From the relation

$$
E=4.44 f N B_{\max } \mathrm{A} \text { volt, we get } B_{\max } \propto E / f
$$

Putting this value of $B_{\max }$ in the above equations, we have

$$
W_{h}=P\left(\frac{E}{f}\right)^{2} f=P E^{1.6} f^{-0.6} \text { and } W_{e}=Q\left(\frac{E}{f}\right)^{2} f^{2}=Q E^{2}
$$

In the first case,

$$
E=1000 \mathrm{~V}, f=50 \mathrm{~Hz}, W_{h}=650 \mathrm{~W}, W_{e}=350 \mathrm{~W}
$$

$$
\begin{array}{ll}
\therefore & 650=P \times 1000^{1.6} \times 50^{-0.6} \quad \therefore P=650 \times 1000^{-1.6} \times 50^{0.6} \\
\text { Similarly, } & 350=Q \times 1000^{2} \quad \therefore Q=350 \times 1000^{-2}
\end{array}
$$

Hence, constants P and Q are known.
Using them in the second case, we get

$$
\begin{aligned}
& W_{h}=\left(650 \times 1000^{-1.6} \times 50^{0.6}\right) \times 2000^{1.6} \times 100^{-0.6}=650 \times 2=1,300 \mathrm{~W} \\
& W_{e}=\left(350 \times 1000^{-2}\right) \times 2,000^{2}=350 \times 4=1,400 \mathrm{~W}
\end{aligned}
$$

\therefore Core loss under new condition is $=1,300+1,400=2700 \mathrm{~W}$
Alternative Solution
Here, both voltage and frequency are doubled, leaving the flux density unchanged.
With 1000 V at 50 Hz

$$
\begin{aligned}
& W_{h}=A f \text { or } 650=50 \mathrm{~A} ; A=13 \\
& W_{e}=B f^{2} \text { or } 350=B \times 50^{2} ; B=7 / 50
\end{aligned}
$$

With 2000 V at 100 Hz

$$
\begin{aligned}
W_{h} & =A f=13 \times 100=1300 \mathrm{~W} \text { and } \\
W_{e} & =B f^{2}=(7 / 50) \times 100^{2}=1400 \mathrm{~W} \\
\therefore \quad \text { New core loss } & =1300+1400=2700 \mathrm{~W}
\end{aligned}
$$

Example 32.33. A transformer with normal voltage impressed has a flux density of $1.4 \mathrm{~Wb} / \mathrm{m}^{2}$ and a core loss comprising of 1000 W eddy current loss and 3000 W hysteresis loss. What do these losses become under the following conditions?
(a) increasing the applied voltage by 10% at rated frequency.
(b) reducing the frequency by 10% with normal voltage impressed.
(c) increasing both impressed voltage and frequency by 10 per cent.
(Electrical Machinery-I, Madras Univ. 1985)
Solution. As seen from Ex. 32.32

$$
\begin{align*}
& \begin{aligned}
W_{h} & =P E^{1.6} f^{-0.6} \text { and } W_{e}=Q E^{2} \\
\text { From the given data, we have } 3000 & =P E^{1.6} f^{-0.6} \\
\text { and } \quad 1000 & =Q E^{2}
\end{aligned} .
\end{align*}
$$

where E and f are the normal values of primary voltage and frequency.
(a) Here voltage becomes $=E+10 \% E=1.1 E$

The new hysteresis loss is $\quad W_{h}=P(1.1 E)^{1.6} f^{-0.6}$
Dividing Eq. (iii) by ($\left(\right.$), we get $\frac{W_{h}}{3000}=1.1^{1.6} ; W_{h}=3000 \times 1.165=3495 \mathrm{~W}$

The new eddy-current loss is

$$
\begin{array}{ll}
& W_{e}=Q(1.1 . E)^{2} \therefore \frac{W_{e}}{1000}=1.1^{2} \\
\therefore & W_{e}=1000 \times 1.21=1210 \mathrm{~W}
\end{array}
$$

(b) As seen from Eq. (i) above eddy-current loss would not be effected. The new hysteresis loss is $W_{h}=\quad P E^{1.6}(0.9 f)^{-0.6}$
From (i) and (iv), we get $\frac{W_{h}}{3000}=0.9^{-0.6}, W_{h}=3000 \times 1.065=3,196 \mathrm{~W}$
(c) In this case, both E and f are increased by 10%. The new losses are as under :

$$
\begin{array}{rlrl}
W_{h} & =P(1.1 E)^{1.6}(1.1 f)^{-0.6} \\
\therefore & \frac{W_{h}}{3000} & =1.1^{1.6} \times 1.1^{-0.6}=1.165 \times 0.944 \\
\therefore & W_{h} & =3000 \times 1.165 \times 0.944=3,299 \mathrm{~W}
\end{array}
$$

As W_{e} is unaffected by changes in f, its value is the same as found in (a) above i.e. 1210 W

Example 32.34. A transformer is connected to $2200 \mathrm{~V}, 40 \mathrm{~Hz}$ supply. The core-loss is 800 watts out of which 600 watts are due to hysteresis and the remaining, eddy current losses. Determine the core-loss if the supply voltage and frequency are 3300 V and 60 Hz respectively.
(Bharathiar Univ. Nov. 1997)
Solution. For constant flux density (i.e. constant V/f ratio), which is fulfilled by $2200 / 40$ or 3300/60 figures in two cases,

$$
\text { Core-loss }=A f+B f^{2}
$$

First term on the right-hand side represents hysteresis-loss and the second term represents the eddy-current loss.

At $40 \mathrm{~Hz}, 800=600+$ eddy current loss.
Thus,

$$
\begin{aligned}
A f & =600, \text { or } A=15 \\
B f^{2} & =200, \text { or } B=200 / 1600=0.125 \\
\text { core-loss } & =15 \times 60+0.125 \times 60^{2} \\
& =900+450 \\
& =1350 \text { watts }
\end{aligned}
$$

At 60 Hz ,

Example 1.5. A single phase transformer is designed to operate at $240 / 120 \mathrm{~V}, 50 \mathrm{~Hz}$. Cal culate the secondary no load voltage and its frequency if the h.v. side of the transformer is connected to :
(a) $240 \mathrm{~V}, 40 \mathrm{~Hz}$;
(b) $120 \mathrm{~V}, 25 \mathrm{~Hz}$;
(c) $120 \mathrm{~V}, 50 \mathrm{~Hz}$;
(d) $480 \mathrm{~V}, 50 \mathrm{~Hz}$;
(e) $240 \mathrm{~V}, d \mathrm{c}$.

Solution. Primary voltage V_{1} at frequency f_{1} is

$$
V_{1}=\sqrt{ } 2 \pi f_{1} \phi_{\max 1} N_{1}
$$

Let the primary voltage at frequency f_{2} be V_{11} so that

$$
\begin{array}{ll}
\therefore & V_{11}=\sqrt{ } 2 \pi f_{2} \phi_{\max 2} N_{1} \\
& \frac{V_{11}}{V_{1}}
\end{array}=\frac{f_{2} \phi_{\max 2}}{f_{1} \phi_{\max 1}}\left(\text { a } \text { From Eq. (i), } \quad \frac{240}{240}=\frac{(40)\left(\phi_{\max 2}\right)}{(50)\left(\phi_{\max 1}\right)}\right.
$$

Secondary no load voltage at frequency f_{1} is
and at frequency f_{2} is $\quad \begin{aligned} E_{2} & =\sqrt{ } 2 \pi f_{1} \phi_{\max 1} N_{2} \\ E_{22} & =\sqrt{ } 2 \pi f_{2} \phi_{\max 2} N_{2}\end{aligned}$
$\therefore \quad E_{22}=\sqrt{ } 2 \pi f_{2} \phi_{\max 2} N_{2}$
$\therefore \quad \frac{E_{22}}{E_{2}}=\frac{f_{2} \phi_{\max 2}}{f_{1} \phi_{\max 1}}$
or

$$
\begin{align*}
& E_{22}=120\left(\frac{40 \times 1.25 \phi_{\max 1}}{50 \times \phi_{\operatorname{max1}}}\right)=120 \text { volts at } 40 \mathrm{~Hz} \text {. } \\
& \text { This shows that the magnitude of the } \tag{ii}
\end{align*}
$$ supply frequency changes.

(b) From Eq. (i), $\frac{120}{240}=\frac{(25)\left(\phi_{\max 2}\right)}{(50)\left(\phi_{\max 1}\right)}$ or $\phi_{\max 2}=\phi_{\max 1}$

From Eq. (ii),

$$
E_{22}=120 \times \frac{(25)\left(\phi_{\max }\right)}{(50)\left(\phi_{\max }\right)}=60 \text { volts at } 25 \mathrm{~Hz}
$$

(c) From Eq. (i), $\frac{120}{240}=\frac{(50)\left(\phi_{\max 2}\right)}{(50)\left(\phi_{\max 1}\right)}$ or $\phi_{\max 2}=0.5 \phi_{\max 1}$

From Eq. (ii), $\quad E_{22}=120 \times \frac{50 \times 0.5 \phi_{\max 1}}{(50) \times\left(\phi_{\max 1}\right)}=60 \mathrm{~V}$ at 50 Hz .
(d) From Eq. (i), $\frac{480}{240}=\frac{50 \times\left(\phi_{\max 2}\right)}{50 \times\left(\phi_{\max 1}\right)}$ or $\quad \phi_{\max 2}=2 \phi_{\max 1}$.

For the same core area, the flux density is doubled, the magnetizing current becomes quit large (refer to B-H curve) and the transformer may get damaged.
(e) The direct current is alternating current at zero frequency. In other words, there is n change of flux. As a result, secondary induced emf, $E_{22}=0$. Further the counter emf. E_{t}, which opposes the applied voltage V_{1} is also zero. Therefore, the primary no load current is limited only by the primary winding resistance r_{1}. Since r_{1} is quite small, the current $240 / r_{1}$ will be tremendously high and transformer will definitely get burnt.

Duncte 1.16. In a transformer, the core loss is 100 W at 40 Hz and 72 W at Find the hysteresis and eddy current losses at 50 Hz .
Socumon. $\quad \frac{P_{i}}{f}=a+b f$

$$
\begin{aligned}
& \frac{100}{40}=a+40 b \\
& \frac{72}{30}=a+30 b
\end{aligned}
$$

Solution of these equation gives

$$
a=2.1, \quad b=0.01
$$

Therefore, hysteresis loss at 50 Hz

$$
=a f=2.1 \times 50=105 \mathrm{~W}
$$

Eddy-current loss at 50 Hz

$$
=b f^{2}=0.01 \times(50)^{2}=25 \mathrm{~W}
$$

DXAMPLE 1.17. At 400 V and 50 Hz the total core loss of a transformer was found $=2500 \mathrm{~W}$. When the transformer is supplied at 200 V , and 25 Hz , the core loss is W. Calculate the hysteresis and eddy current loss at 400 V and 50 Hz .

SOLUTION. $\quad \frac{V_{1}}{f_{1}}=\frac{400}{50}=8$

$$
\frac{V_{2}}{f_{2}}=\frac{200}{25}=8
$$

Since

$$
\frac{V_{1}}{f_{1}}=\frac{V_{2}}{f_{2}}=8
$$

the flux density B_{m} remains constant. Hence
and

$$
\begin{array}{rlrl}
\frac{P_{i}}{f} & =a+b f \\
\therefore \quad & \frac{2400}{50} & =a+50 b \\
\frac{800}{5} & =a+25 b
\end{array}
$$

Solving these equations, we get

$$
a=16 \quad b=0.64
$$

Therefore, at 50 Hz

$$
\begin{aligned}
& P_{h}=a f=16 \times 50=800 \mathrm{~W} \\
& P_{e}=b f^{2}=0.64 \times(50)^{2}=1600 \mathrm{~W}
\end{aligned}
$$

Example 1.24. In a transformer, the core loss is found to be 52 watts at 40 Hz and 90 watts at 60 Hz ; both losses being measured at the same peak flux density. Compute the hysteresis and eddy current losses at 50 Hz .

Solution. From Eq. (1.47), the total core loss is

$$
P_{c}=K_{h} f B_{m}^{x}+K_{e} f^{2} B_{m}^{2}
$$

Por constant flux density $P_{c}=k_{h} f+k_{e} f$
where constant
\therefore At 40 Hz ,

$$
k_{h}=K_{h} B_{m}^{x} \text { and constant } k_{e}=K_{e} B_{m}^{2}
$$

and at 60 Hz ,

$$
52=k_{h}(40)+k_{e}(40)^{2}
$$

$$
90=k_{h}(60)+k_{e}(60)^{2}
$$

and

$$
52=40 k_{h}+1600 k_{e}
$$

$$
90=60 k_{h}+3600 k_{c} .
$$

Prom the above two equations, k_{h} and k_{c} are found to be

Thus at 50 Hz ,

$$
k_{h}=\frac{9}{10} \text { and } k_{e}=\frac{1}{100} .
$$

and eddy current loss

$$
P_{h}=k_{h} f=\frac{9}{10}(50)=45 \text { watts. }
$$

$$
P_{e}=k_{e} f^{2}=\frac{1}{100}(50)^{2}=50 \text { watts. }
$$

Example 1.25. A $220 \mathrm{~V}, 60 \mathrm{~Hz}$, single-phase transformer has hysteresis loss of 340 watts and eddy current loss of 120 watts. If the transformer is operated from $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply mains, then compute its total core loss. Assume Steinmetz's constant equal to 1.6.

$$
\begin{aligned}
& \text { Solution. The operating voltage } \\
& \qquad \begin{array}{lll}
V_{1}=\sqrt{ } 2 \pi f_{1} B_{m 1} A_{i} N & \text { and } V_{11}=\sqrt{ } 2 \pi f_{2} B_{m 2} A_{i} N \\
\therefore & \frac{V_{1}}{V_{11}}=\frac{f_{1} B_{m 1}}{f_{2} B_{m 2}} & \text { or } \quad \frac{220}{230}=\left(\frac{60}{50}\right)\left(\frac{B_{m 1}}{B_{m 2}}\right) \\
\therefore \quad & B_{m 2}=\frac{(60)(230)}{(50)(220)} B_{m 1}=1.255 B_{m 1} .
\end{array}
\end{aligned}
$$

From Eq. (1.46), hysteresis loss

$$
\therefore \quad \begin{aligned}
P_{h} & =K_{h} f B_{m}^{x} \\
\therefore \quad \frac{P_{h 2}}{P_{h 1}} & =\frac{f_{2} B_{m 2}^{x}}{f_{1} B_{m 1}^{x}}=\frac{50}{60}(1.255)^{1.6} \\
P_{h 2} & =(340)\left(\frac{5}{6}\right)(1.255)^{1.6}=(340)\left(\frac{5}{6}\right)(1.438)=408 \mathrm{~W} .
\end{aligned}
$$

or
From Eq. (1.46), eddy current $\operatorname{loss} P_{e}=K_{e} f^{2} B_{m}{ }^{2}$
or

$$
\begin{aligned}
& \frac{P_{e 2}}{P_{e 1}}=\left(\frac{f_{2}}{f_{1}}\right)^{2}\left(\frac{B_{m 2}}{B_{m 1}}\right)^{2}=\left(\frac{50}{60}\right)^{2}(1.255)^{2} \\
& P_{\mathrm{e} 2}=(120)\left(\frac{5}{6}\right)^{2}(1.255)^{2}=131.3 \mathrm{~W} \\
& P_{c 2}=P_{h 2}+P_{e 2}=408+131.3=539.3 \mathrm{~W}
\end{aligned}
$$

\therefore Total core loss

Example 1.26. The ohmic, hysteresis and eddy current losses in a transformer at 50 Hz are $1.6 \%, 0.9 \%$ and 0.6% respectively. For a Steinmetz's coefficient of 1.6 , find
(a) these losses at 60 Hz , for the same system voltage and current and
(b) the output at 60 Hz , for the total losses to remain the same as on 50 Hz .

Solution. (a) Subscripts 1 and 2 will be used to refer to 50 and 60 Hz quantities respectively.

Since the voltage and current at both the frequencies of 50 Hz and 60 Hz are the same, the output also remains the same.

The ohmic loss depends on the current and here it is given that the current at both the frequencies are equal. Therefore, ohmic losses in watts remain unchanged and for the same output, the percentage ohmic losses are again 1.6%. Thus

Ohmic loss at $50 \mathrm{~Hz}, P_{\text {oh1 }}=O h m i c$ loss at $60 \mathrm{~Hz}, P_{o h_{2}}=1.6 \%$.
As before $\quad \frac{V_{1}}{V_{2}}=\frac{f_{1} B_{m 1}}{f_{2} B_{m 2}} \quad$ or $1=\frac{50 B_{m 1}}{60 B_{m 2}}$ or $B_{m 2}=\frac{5}{6} B_{m 1}$
http://easyengineering.net
From Eq. (1.46), hysteresis loss, $P_{h}=K_{h} f B_{m}{ }^{x}$
or

$$
\begin{aligned}
& \therefore . \quad P_{h 2} \\
& P_{h 1}=\frac{f_{2}}{f_{1}}\left(\frac{B_{m 2}}{B_{m 1}}\right)^{x} \\
& P_{h 2}=P_{h 1}\left(\frac{60}{50}\right)\left(\frac{5}{6}\right)^{1.6}=P_{h 1}(0.833)^{0.6}=0.896 P_{h 1} . \\
& \frac{P_{h 2}}{\text { Output }}=0.896 \frac{P_{h 1}}{\text { Output }}=0.896(0.9)=0.806 \%
\end{aligned}
$$

From Eq. (1.46), eddy current loss,

$$
\begin{aligned}
P_{e} & =K_{e} f^{2} B_{m}^{2} \\
\frac{P_{e 2}}{P_{e 1}} & =\left(\frac{f_{2}}{f_{1}}\right)^{2}\left(\frac{B_{m 2}}{B_{m 1}}\right)^{2} \\
P_{e 2} & =P_{e 1}\left(\frac{60}{50}\right)^{2}\left(\frac{5}{6}\right)^{2}=P_{e 1}
\end{aligned}
$$

For the same output, percentage $P_{e 1}=$ percentage $P_{e 2}=0.6 \%$.
Thus the ohmic, hysteresis and eddy current losses at 60 Hz are $1.6 \%, 0.806 \%$ and 0.6% respectively.
(b) The core loss depends on voltage and frequency only. Therefore, $P_{c 1}=1.5 \%(=0.9+0.6)$ and $p_{c 2}=1.406 \%=(0.806+0.6)$ can't be changed for given values of voltage and frequency. For the total losses to remain the same, the ohmic loss alone can be varied.
\therefore Total losses at $50 \mathrm{~Hz}=$ Total losses at 60 Hz
or

$$
3.1(=1.6+0.9+0.6)=1.406+\text { New ohmic losses }
$$

\therefore Permissible value of ohmic losses at 60 Hz

$$
=3.1-1.406=1.694 \%
$$

Since the ohmic losses are proportional to the square of the current, we have
$\binom{\text { New permissible current }}{\text { Original current }}^{2}=\frac{\text { New ohmic losses }}{\text { Original ohmic losses }}=\frac{1.694}{1.60}$
\therefore New permissible current

$$
=\sqrt{\frac{1.694}{1.60}} \text { (original current) }=(1.028) \text { (original current) }
$$

For the same voltage, output at 60 Hz
$=(1.028)$ (output at 50 Hz)
It is, therefore, seen that output at a higher-frequency operation is increased for the same total loss.

Example 1.27. An $11 / 0.4 \mathrm{kV}, 25 \mathrm{~Hz}$, single phase transformer has ohmic, hysteresis and eddy current losses of $1.8,0.8$ and 0.3% respectively. What do these losses become if the transformer is operated from $22 \mathrm{kV}, 50 \mathrm{~Hz}$ supply system. The current is assumed to remain the same in both the cases.

Also calculate the efficiency in each case.
Solution. Subscripts 1 and 2 are used to denote $11 \mathrm{kV}, 25 \mathrm{~Hz}$ and $22 \mathrm{kV}, 50 \mathrm{~Hz}$ systems respectively.

At 50 Hz , the voltage is doubled $\left(=\frac{22}{11}\right)$. For the same current, therefore, the output P_{2} at 50 H_{2} is double the output P_{1} at 25 Hz , i.e. $P_{2}=2 P_{1}$. It is given that

$$
\frac{P_{o h 1}}{P_{1}}=1.8 \% ; \frac{P_{h 1}}{P_{1}}=0.8 \% ; \frac{P_{\mathrm{s} 1}}{P_{1}}=0.3 \%
$$

Ohmic loss. Since the current is same at both the frequencies and voltages, the ohmic losses in watts remain unaltered, i.e. $P_{\text {oh } 2}=P_{\text {oh } 1}$.

Percentage ohmic loss at higher frequency

$$
=\frac{P_{o h 2}}{P_{2}}=\frac{P_{o h 1}}{2 P_{1}}=\frac{1}{2}(1.8)=0.9 \% \text {. }
$$

Core loss. The voltage is related to f, B_{m} etc. by the expression
or

$$
\begin{aligned}
& V & =\sqrt{ } 2 \pi f B_{m} A_{i} N \\
\therefore & \quad \frac{V_{1}}{V_{2}} & =\left(\frac{f_{1}}{f_{2}}\right)\left(\frac{B_{m 1}}{B_{m 2}}\right) \text { or } \frac{11,000}{22,000}=\left(\frac{25}{50}\right) \frac{B_{m 1}}{B_{m 2}} \\
\therefore & \frac{1}{2} & =\frac{1}{2}\left(\frac{B_{m 1}}{B_{m 2}}\right) \\
\therefore & B_{m 2} & =B_{m 1}
\end{aligned}
$$

The hysteresis loss $P_{h}=K_{h} f B_{m}{ }^{x}$ watts

$$
\begin{array}{ll}
\therefore \quad & \frac{P_{h 2}}{P_{h 1}}=\left(\frac{f_{2}}{f_{1}}\right)\left(\frac{B_{m 2}}{B_{m 1}}\right)^{x} \\
& P_{h 2}=P_{h 1}\left(\frac{50}{25}\right)(1)^{x}=2(1)^{x} P_{h 1}=2 P_{h 1} .
\end{array}
$$

or
Percentage hysteresis loss at f_{2}, V_{2} is

$$
=\frac{P_{h 2}}{P_{2}}=\frac{2 P_{h 1}}{2 P_{1}}=0.8 \% .
$$

The eddy current loss $P_{e}=K_{e} f^{2} B_{m}^{2}$ watts

$$
\begin{array}{ll}
\therefore \quad & \frac{P_{e 2}}{P_{e 1}}=\left(\frac{f_{2}}{f_{1}}\right)^{2}\left(\frac{B_{m 2}}{B_{m 1}}\right)^{2} \\
P_{e 2}=P_{e 1}\left(\frac{50}{25}\right)^{2}(1)^{2}=4 P_{e 1}
\end{array}
$$

or
Percentage eddy current loss at f_{2}, V_{2} is $\frac{P_{e 2}}{P_{2}}=\frac{4 P_{e 1}}{2 P_{1}}$

$$
=2\left(\frac{P_{e 1}}{P_{1}}\right)=2(0.3)=0.6 \%
$$

Efficiency at f_{1}, V_{1} is $=1-\frac{\text { Losses }}{\text { Output }+ \text { Losses }}=1-\frac{\text { Losses/Output }}{1+\text { Losses } / \text { Output }}$

$$
\begin{aligned}
& =1-\frac{\text { P.u. losses }}{1+\text { P.u. losses }}=1-\frac{0.018+0.008+0.003}{1+0.018+0.008+0.003}=1-\frac{0.029}{1.029} \\
& =0.97182 \text { or } 97.182 \%
\end{aligned}
$$

Efficiency at f_{2}, V_{2} is $=1-\frac{0.009+0.008+0.006}{1+0.009+0.008+0.006}$

$$
=1-\frac{0.023}{1.023}=0.97755 \% \quad \text { or } 97.755 \%
$$

Example 1.35. An open circuit test when performed on the delta side of a bank of threephase transformer gave the following data :

Terminal voltage in V	214	71.00	128.4	85.6
Frequency in Hz	50	40	30	20
Power input in W	100	72.5	50	30

Determine the hysteresis and eddy current losses at :
(a) 60 Hz and
(b) 40 Hz .

Solution. First of all the readings are changed to per phase values, as given below :

Per phase voltage in V	214	171.00	128.40	85.6
per phase power in W, i.e. P_{c}	33.3	24.2	16.67	10

It may be seen that the ratio $\frac{V}{f}$ has a constant value of 4.28. Therefore, Eq. (1.59) can be used for separating the hysteresis and eddy current losses.
The core loss per cycle, i.e. $\frac{P_{c}}{f}$ is calculated in a tabular form as follows :

$\frac{P_{c}}{f}$	0.667	0.605	0.556	0.50
f	50	40	30	20

In Fig. 1.31, $\frac{P_{c}}{f}$ is plotted against f. The straight line so obtained intersects the vertical axis at the point A. The intercept $O A$ gives the value of K_{1} equal to 0.39 . The slope of the line $A B$ can be obtained at any frequency, say 50 Hz .
$\therefore K_{2}(50)=0.667-0.39=0.277$
or

$$
K_{2}=\frac{0.277}{50}=0.00554
$$

Fig. 1.31. Pertaining to Example 1.35 .

From Eq. (1.59),
(a) P_{h} per phase $=(0.39)(60)=23.4 \mathrm{~W}$
P_{c} per phase $=(0.00554)(60)^{2}=19.95 \mathrm{~W}$
\therefore Total hysteresis and eddy-current losses at 60 Hz are $23.4 \times 3=70.2 \mathrm{~W}$ and 59.85 W respectively.
(b) P_{h} per phase $=(0.39)(40)=15.6 \mathrm{~W}$
P_{r} per phase $=(0.00554)(40)^{2}=8.86 \mathrm{~W}$.
Total hysteresis and eddy-current losses at 40 Hz are 46.8 W and 26.58 W respectively.
\Rightarrow Example 1.12: $1 \mathrm{kV} / 2 \mathrm{kV}$ transformer has 750 W hysteresis losses and 250 W eddy current losses. When the applied voltage is doubled and frequency is halfed, find the new losses.
Solution : The hysteresis loss is given by,

$$
P_{h} \propto B_{m}^{1.6} f
$$

The eddy current loss is given by,

$$
\begin{array}{ll}
& P_{e} \propto B_{m}^{2} f^{2} \\
\text { But } & B_{m} \propto \frac{V}{f} \\
\therefore & P_{h} \propto\left(\frac{V}{f}\right)^{1.6} \times f \quad \text { and } \quad P_{e} \propto\left(\frac{V}{f}\right)^{2} \times f^{2} \\
\therefore & \frac{P_{h 1}}{P_{h 2}}=\left(\frac{V}{V_{2}}\right)^{1.6} \times\left(\frac{f_{2}}{f_{1}}\right)^{1.6} \times \frac{f_{1}}{f_{2}} \text { and } \frac{P_{e 1}}{P_{e 2}}=\left(\frac{V_{1}}{V_{2}}\right)^{2} \times\left(\frac{f_{2}}{f_{1}}\right)^{2} \times\left(\frac{f_{1}}{f_{2}}\right)^{2}
\end{array}
$$

Now $V_{2}=2 V_{1}$ and $f_{2}=0.5 f_{1}$

$$
\begin{array}{llll}
\therefore & \frac{750}{\mathrm{P}_{\mathrm{h} 2}}=(0.5)^{16} \times(0.5)^{1.6} \times 2 & \text { and } & \frac{250}{\mathrm{P}_{\mathrm{e} 2}}=(0.5)^{2} \times(0.5)^{2} \times(2)^{2} \\
\therefore & \mathrm{P}_{\mathrm{h} 2}=3446.095 \mathrm{~W} \quad \text { and } & \mathrm{P}_{\mathrm{e} 2}=1000 \mathrm{~W}
\end{array}
$$

\therefore Total new iron loss $=\mathrm{P}_{\mathrm{h} 2}+\mathrm{P}_{\mathrm{e} 2}=4446.095 \mathrm{~W}$
\leadsto Example 1.16 : A single phase transformer shows 63 W core losses at 40 Hz while 110 W at 60 Hz . Both the tests are performed at same value of maximum flux density in the core. Find hysteresis and eddy current losses at 50 Hz frequency.

Solution : $P_{i 1}=63 \mathrm{~W}, f_{1}=40 \mathrm{~Hz}, P_{i 2}=110 \mathrm{~W}, f_{2}=60 \mathrm{~Hz}, \quad B_{m}$ is same.
As B_{m} is same, it can be absorbed in the constants A and B. Thus we can write,

$$
\begin{align*}
& P_{h}=A f \text { while } P_{e}=B f^{2} \\
& \therefore \quad \mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{h}}+\mathrm{P}_{\mathrm{e}}=\mathrm{Af}+\mathrm{Bf}^{2} \\
& \therefore \quad 63=\mathrm{A} \times 40+\mathrm{B} \times(40)^{2} \tag{1}\\
& \text { and } \\
& 110=A \times 60+B \times(60)^{2} \tag{2}
\end{align*}
$$

Solving (1) and (2) we get,

$$
\mathrm{A}=1.0584, \mathrm{~B}=0.0129
$$

Thus two losses at 50 Hz are,

$$
\begin{aligned}
& P_{h}=A f=1.0584 \times 50=52.92 \mathrm{~W} \\
& P_{e}=B f^{2}=0.0129 \times 50^{2}=32.25 \mathrm{~W}
\end{aligned}
$$

Example 1.1

A single-phase transformer is designed to operate at $220 / 110 \mathrm{~V}, 60 \mathrm{~Hz}$. What will be the effect on the transformer performance if the frequency reduces by 5% to 57 Hz and the primary voltage increases by 5% to 231 volts?

Solution:

The emf equation is

$$
V_{1}=4.44 \phi_{m p} f N_{1}
$$

Now $\phi_{m p}=B_{m p} A_{c}$
where $B_{m p}$ is peak value of the flux density in the core $\left(\mathrm{wb} / \mathrm{m}^{2}\right)$
A_{c} is cross-sectional area of the core in m^{2}.
Hence, for a given number of turns $\left(N_{1}\right)$ and core area $\left(A_{c}\right)$,

$$
\begin{aligned}
& \frac{(231)_{57 \mathrm{~Hz}}}{(220)_{60 \mathrm{~Hz}}}=\frac{4.44\left(B_{m p}\right)_{57 \mathrm{~Hz}} \times A_{c} \times 57 \times N_{1}}{4.44\left(B_{m p}\right)_{60 \mathrm{~Hz}} \times A_{c} \times 60 \times N_{1}} \\
& \frac{\left(B_{m p}\right)_{57 \mathrm{~Hz}}}{\left(B_{m p}\right)_{60 \mathrm{~Hz}}}=\frac{231 \times 60}{220 \times 57}=1.10 .
\end{aligned}
$$

Thus, with the reduced frequency and higher applied voltage, the flux density in the core increases. This increase will in turn increase the no-load current, the core loss and the noise level of the transformer. This example shows that the operating peak flux density in the core has to be correctly chosen depending on specified overexcitation conditions by the user.

Magnetic Hysteresis Loss

If an alternating voltage is connected to the magnetizing coil, as shown in Figure 1.8(a), the alternating magnetomotive force causes the magnetic domains to be constantly reoriented along the magnetizing axis. This molecular motion produces heat, and the harder the steel the greater the heat. The power loss due to hysteresis for a given type and volume of core material varies directly with the frequency and the nth power of the maximum value of the flux density wave. Expressed mathematically,

$$
\begin{equation*}
P_{h}=k_{h} \cdot f \cdot B_{\text {max }}^{n} \tag{1-11}
\end{equation*}
$$

where: $\quad P_{h}=$ hysteresis loss (W/unit mass of core)
$f=$ frequency of flux wave (Hz)
$B_{\text {max }}=$ maximum value of flux density wave (T)
$k_{h}=$ constant
$n=$ Steinmetz exponent ${ }^{2}$
The constant k_{h} is dependent on the magnetic characteristics of the material, its density, and the units used. The area enclosed by the hysteresis loop is equal to the hysteresis energy in joules/cycle/cubic-meter of material.

EXAMPLE The hysteresis loss in a certain electrical apparatus operating at its rated voltage and 1.3 rated frequency of 240 V and 25 Hz is 846 W . Determine the hysteresis loss if the apparatus is connected to a $60-\mathrm{Hz}$ source whose voltage is such as to cause the flux density to be 62 percent of its rated value. Assume the Steinmetz exponent is 1.4.

Solution

From Eq. (1-11),

$$
\begin{gathered}
\frac{P_{h 1}}{P_{h 2}}=\frac{\left[k_{h} \cdot f \cdot B_{m a x}^{n}\right]_{1}}{\left[k_{h} \cdot f \cdot B_{\text {mar }}^{n}\right]_{2}} \quad \Rightarrow \quad P_{h 2}=P_{h 1} \times \frac{\left[k_{h} \cdot f \cdot B_{\text {mar }}^{n}\right]_{2}}{\left[k_{h} \cdot f \cdot B_{\text {max }}\right]_{1}} \\
P_{h 2}=846 \times \frac{60}{25} \times\left[\frac{0.62}{1.0}\right]^{1.4}=\underline{1.04 \mathrm{~kW}}
\end{gathered}
$$

FIGURE 1.8

(a) Magnetic circuit with an alternating mmf; (b) representative hysteresis loop.

EXAMPLE The eddy-current loss in a certain electrical apparatus operating at its rated voltage and 1-7 rated frequency of 240 V and 25 Hz is 642 W . Determine the eddy-current loss if the apparatus is connected to a $60-\mathrm{Hz}$ source whose voltage is such as to cause the flux density to be 62 percent of its rated value.

Solution

From Eq. (1-30),

$$
\begin{aligned}
& \frac{P_{e 1}}{P_{c 2}}=\frac{\left[k_{c} f^{2} B_{\operatorname{mat}}^{2}\right]_{1}}{\left[k_{c} f^{2} B_{\text {mat }}^{2}\right]_{2}} \quad \Rightarrow \quad P_{c 2}=P_{e 1} \times\left[\frac{f_{2}}{f_{1}}\right]^{2} \times\left[\frac{B_{\max , 2}}{B_{\max , 1}}\right]^{2} \\
& P_{e 2}=642 \times\left[\frac{60}{25}\right]^{2} \times\left[\frac{0.62}{1.0}\right]^{2}=\underline{1.42 \mathrm{~kW}}
\end{aligned}
$$

Example 2.28

A $1 \mathrm{kVA}, 220 / 110 \mathrm{~V}, 400 \mathrm{~Hz}$ transformer is desired to be used at a frequency of 60 Hz . What will be the $k V A$ rating of the transformer at reduced frequency?

Solution:

We know that $\quad E_{1}=V_{1}=4.44 \phi_{m} N_{t} f=4.44 B_{m} A_{i} N_{1} f$
Assuming flux density in the core remaining unchanged, we have

$$
\begin{gathered}
V_{1} \propto f \\
\frac{V_{1}^{\prime}}{V_{1}}=\frac{f^{\prime}}{f}
\end{gathered}
$$

or

$$
V_{1}^{\prime}=V_{1} \times \frac{f^{\prime}}{f}=220 \times \frac{60}{400}=33 \mathrm{volt}
$$

As current rating of the transformer remains the same, the kVA rating is proportional to voltage,
$\therefore \quad$ kVA rating of the transformer at 60 Hz ,

$$
\mathrm{kVA}^{\prime}=\frac{V^{\prime}}{V} \times k V A=\frac{33}{220} \times 1=0.15 \mathrm{kVA}(\text { Ans.) }
$$

Example 2.29

A 40 Hz transformer is to be used on a 50 Hz system. Assuming Steinmetz's coeff. as 2.6 and the losses at $40 \mathrm{~Hz}, 2.2 \%, 0.7 \%$ and 0.5% for copper, hysteresis and eddy currents, respectively, find (i) the losses on 50 Hz for the same supply voltage and current. (ii) the output at 50 Hz for the same total losses as on 40 Hz .

Solution:

Let W be the total power input to the transformer in both the cases in watt.
Copper loss $=I^{2} \times$ total resistance
As long as current and supply voltage remain the same, copper loss will remain the same.
$\therefore \quad$ Copper loss at 40 Hz or 50 Hz

$$
=\frac{1.2}{100} \times W=0.012 \mathrm{~W} \text { watt }
$$

Hysteresis loss $=\eta B_{\max }{ }^{1.6} f$ watt/c.c. of the magnetic material.
For the same voltage induced per turn $(E / N=4.44 f \phi)$ the product ϕf or $B_{\max } f$ remains constant.
$\therefore \quad B_{\text {max1 }} f_{1}=B_{\text {max }_{2}} f_{2}$
$\therefore \quad \frac{B_{\max _{1}}}{B_{\max _{2}}}=\frac{f_{2}}{f_{1}}=\frac{50}{40}=1.25$
or

$$
B_{\max _{2}}=0.8 \quad B_{\max _{1}}
$$

\therefore Hysteresis loss at 50 Hz

$$
\begin{aligned}
& W_{h_{2}}=K_{h}=\eta B_{\max }^{1.6} f_{2} \text { watt/c.c. }=K_{h}\left(0.8 B_{\max _{1}}\right)^{1.6} 1.25 f_{1} \\
&=K_{h}(0.8)^{1.6} B_{\max }{ }^{1.6} f_{1} \times 1.25=1.25(0.8)^{1.6} \times K_{h} B_{\max }^{1} \\
&{ }^{1.6} f_{1}=0.875 \times K_{h} B_{\max }{ }^{1.6} f_{1}
\end{aligned}
$$

But hysteresis loss at 40 Hz is 0.7%

$$
W_{h_{2}}=0.875 \times 0.7=0.6125 \%
$$

Eddy current loss, $W_{e}=B_{\max }^{2} f^{2} t^{2}$ watt per c.c. of the magnetic material.

$$
\begin{array}{ll}
\therefore & \frac{W_{e_{1}}}{W_{e_{2}}}=\frac{B_{\max _{1}}^{2} f_{1}^{2} t_{1}^{2}}{B_{\max _{2}}^{2} f_{1}^{2} t_{2}^{2}} \text { But } t_{1}=t_{2} \\
\therefore & \frac{W_{e_{1}}}{W_{e_{2}}}=\frac{B_{\max _{1}}^{2} f_{1}^{2}}{B_{\max _{2}}^{2} f_{2}^{2}}=\left(\frac{B_{\max _{1}}}{B_{\max _{2}}}\right)^{2}\left(\frac{f_{1}}{f_{2}}\right)^{2}=\left(\frac{5}{4}\right)^{2} \times\left(\frac{4}{5}\right)^{2}=1 \\
\therefore & W_{e_{1}}=W_{e_{2}}
\end{array}
$$

Hence eddy current loss will remain the same.
Thus, the three losses at 50 Hz will be

$$
\begin{aligned}
\text { Copper loss } & =\mathbf{1 . 2 \%} \\
\text { Hysteresis loss } & =\mathbf{0 . 6 1 2 5} \% \text { (Ans.) } \\
\text { Eddy current loss } & =\mathbf{0 . 5} \%
\end{aligned}
$$

Example 2.42

The iron losses of a $400 \mathrm{~V}, 50 \mathrm{~Hz}$ transformer are 2500 W . These losses are reduced to 850 W when the applied voltage is reduced to $200 \mathrm{~V}, 25 \mathrm{~Hz}$. Determine the eddy current loss at normal frequency and voltage.

Solution:

We know,

$$
\begin{aligned}
E & =4.44 N f A_{i} B_{m} \\
B_{m} & \propto \frac{E}{f} \text { (since all other quantities are constant) }
\end{aligned}
$$

As $\frac{E_{1}}{f_{1}}=\frac{400}{50}=8$ and $\frac{E_{2}}{f_{2}}=\frac{200}{25}=8 ; B_{m}$ is same in both the cases

$$
\begin{aligned}
\therefore \quad \text { Hysteresis loss, } W_{h} \propto f & =P f & \text { (where } P \text { is a constant) } \\
\text { Eddy current loss, } W_{e} \propto f^{2} & =Q f^{2} & \text { (where } \mathrm{Q} \text { is a constant) }
\end{aligned}
$$

$$
\text { Eddy current loss, } W_{e} \propto f^{2}=Q f^{2}
$$

$$
\begin{equation*}
\text { Total iron loss, } W_{i}=W_{h}+W_{e}=P f+Q f^{2} \text { or } \frac{W_{i}}{f}=P+Q f \tag{2.83}
\end{equation*}
$$

When $f=50 \mathrm{~Hz} ; W_{i}=2500$

$$
\begin{equation*}
\therefore \quad \frac{2500}{50}=P+Q \times 50 \text { or } P+50 Q=50 \tag{2.84}
\end{equation*}
$$

When $f=25 \mathrm{~Hz} ; W_{i}=850$

$$
\begin{equation*}
\therefore \quad \frac{850}{25}=P+Q \times 25 \text { or } P+25 Q=34 \tag{2.85}
\end{equation*}
$$

Subtracting eq. (iii) from (ii), we get,

$$
\begin{equation*}
25 Q=16 \text { or } Q=0.64 \tag{2.86}
\end{equation*}
$$

From eq. (ii), we get, $P+50 \times 0.64=50 ; P=18$
Eddy current loss at normal frequency and voltage.

$$
W_{e}=Q f^{2}=0.64 \times 50 \times 50=1600 \mathrm{~W}(\text { Ans. })
$$

Example 2.43

A transformer has hysteresis and eddy current loss of 700 W and 500 W , respectively when connected to $1000 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. If the applied voltage is raised to 2000 V and frequency to 75 Hz , find the new core losses.

Solution:

Here, $V_{1}=1000 \mathrm{~V} ; f_{1}=50 \mathrm{~Hz} ; W_{i}=1200 \mathrm{~W} ; W_{h 1}=700 \mathrm{~W}$

$$
W_{e 1}=500 \mathrm{~W} ; V_{2}=2000 \mathrm{~V} ; f_{2}=75 \mathrm{~Hz}
$$

We know,

$$
\begin{align*}
& W_{h} \propto B_{m}^{1.6} \times f=P B_{m}^{1.6} \times f \tag{2.87}\\
& W_{e} \propto B_{m}^{2} \times f^{2}=Q B_{m}^{2} \times f^{2} \tag{2.88}
\end{align*}
$$

$$
\text { Induced emf, } E=4.44 \text { Nf } B_{m} A_{i} \text { volt }
$$

or

$$
B_{m} \propto \frac{E}{f}
$$

$\left(\because 4.44 N A_{i}\right.$ are constant)
Substituting this value in eqs. (2.87) and (2.88), respectively, we get,

$$
\begin{align*}
& W_{h}=P\left(\frac{E}{f}\right)^{1.6} \times f=P E^{1.6} f^{-0.6} \\
& W_{e}=Q\left(\frac{E}{f}\right)^{2} \times f^{2}=Q E^{2}
\end{align*}
$$

Case-I:

$$
\text { When } E=V_{1}=1000 \mathrm{~V} \text { and } f=f_{1}=50 \mathrm{~Hz}
$$

$$
\begin{aligned}
W_{h 1} & =P\left(V_{1}\right)^{1.6} f_{1}^{-0.6} \\
700 & =P(1000)^{2.6} \times(50)^{-0.6} \\
700 & =P \times 63096 \times 0.0956 \text { or } P=0.116 \\
W_{e 1} & =Q \times E^{2} \\
500 & =Q \times(1000)^{2} \text { or } Q=5 \times 10^{-4}
\end{aligned}
$$

Case-II:

$$
\text { When } E=V_{2}=2000 \mathrm{~V} \text { and } f=f_{2}=75 \mathrm{~Hz}
$$

$$
\begin{aligned}
W_{h 2} & =P\left(V_{2}\right)^{1.6} f_{2}^{-0.6}=0.116 \times(2000)^{2.6} \times(75)^{-0.6} \\
& =0.116 \times 192.27 \times 10^{3} \times 0.075=1664 \mathrm{~W}
\end{aligned}
$$

$$
W_{e 2}=Q \times\left(V_{2}\right)^{2}=5 \times 10^{-4} \times(2000)^{2}=2000 \mathrm{~W}
$$

New core losses, $W_{i 2}=W_{h 2}+W_{e 2}=1664+2000=3664 \mathrm{~W}$ (Ans.)

Example 2.44

The hysteresis and eddy current loss of a ferromagnetic sample at a frequency of 50 Hz is 25 watts and 30 watts, respectively, when the flux density of 0.75 tesla. Calculate the total iron loss at a frequency of 400 Hz , when the operating flux density is 0.3 tesla.

Solution:

At frequency, $f_{1}=50 \mathrm{~Hz}: 25 \mathrm{~W} ; W_{h 1}=W_{e 1}=30 \mathrm{~W} ; B_{m 1}=0.75$ tesla

$$
\text { frequency, } f_{2}=400 \mathrm{~Hz} ; B_{m 2}=0.3 \text { tesla }
$$

$$
W_{h 1}=P B_{m 1}^{1.6} f_{1} \text { or } 25=\mathrm{P} \times(0.75)^{2.6} \times 50
$$

or
or

$$
P=\frac{25}{(0.75)^{1.6} \times 50}=0.7922 ; \quad W_{e 1}=Q B_{m 1}^{2} f_{1}^{2}
$$

$$
30=Q \times(0.75)^{2} \times(50)^{2} \text { or } Q=\frac{30}{(0.75)^{2} \times(50)^{2}}=0.02133
$$

$$
W_{h 2}=P B_{m 2}^{1.6} \times f_{2}=0.7922 \times(0.3)^{2.6} \times 400=46.16 \mathrm{~W}
$$

$$
W_{e 2}=Q B_{m 2}^{2} \times f_{2}^{2}=0.02133 \times(0.3)^{2} \times(400)^{2}=307.2 \mathrm{~W}
$$

Total iron losses, $P_{i}=W_{h 2}+W_{e 2}=46.16+307.2=\mathbf{3 5 3 . 3 6} \mathbf{W}$ (Ans.)

Example 2.45

The following test results were obtained when a 10 kg specimen of sheet steel laminated core is put on power loss test keeping the maximum flux density and wave form factor constant.

Frequency (in Hz)	25	40	50	60	80
Total loss (in watt)	18.5	36	50	66	104

Calculate the current loss per kg at frequency of 50 Hz .

Solution:

At a given flux density and waveform factor, total iron losses are given as

$$
P_{i}=P_{h}+P_{e}=A f+B f^{2} \text { or } \frac{P_{i}}{f}=A+B f
$$

Total iron loss/cycle i.e., P_{i} / f for various values of frequency is given below:

f	25	40	50	60	80
P_{i} / f	0.74	0.9	2.0	2.1	2.3

A graph is plotted between P_{i} / f and f as illustrated in Fig. 2.50. From graph $A=0.5$ and $B=0.01$ Eddy current loss at $50 \mathrm{~Hz}=B f^{2}=0.01 \times(50)^{2}=25$ watt

Eddy current loss per kg at $50 \mathrm{~Hz}=\frac{25}{10}=2.5$ watt (Ans.)

Fig. 2.50 Curve for frequency vs iron losses in a given transformer
2.16. A $25-\mathrm{Hz}, 120-\mathrm{V} / 30-\mathrm{V}, 500-\mathrm{VA}$ transformer is to be used on a $60-\mathrm{Hz}$ source. If the core flux density is to remain unchanged, determine (a) the maximum permissible primary voltage, and (b) the new $(60-\mathrm{Hz})$ rated secondary voltage and current.
(a) By (2.9), the primary voltage will vary directly with frequency. Hence,
maximum primary voltage $=\frac{60}{25}(120)=288 \mathrm{~V}$
(b)
rated $V_{2}=\frac{60}{25}(30)=72 \mathrm{~V}$
rated $I_{2}=\frac{500}{30}=16.67 \mathrm{~A}$ (same as at 25 Hz)
3.45. The flux in a magnetic core is varying sinusoidally at a frequency of $600 \mathrm{c} / \mathrm{s}$. The maximum flux density $B_{\text {max }}$ is $0.6 \mathrm{~Wb} / \mathrm{m}^{2}$. The eddy current loss then is 16 W . Find the eddy current loss in this core, when the frequency is $800 \mathrm{c} / \mathrm{sec}$, and the flux density is $0.5 \mathrm{~Wb} / \mathrm{m}^{2}$ (Tesla).

Solution

We know, eddy current loss $\propto B_{\text {max }}^{2} \times f$

$$
\begin{align*}
& \text { at } 600 \mathrm{c} / \mathrm{sec}: P_{e_{1}} \propto(0.6)^{2} \times 600 \tag{i}\\
& \text { at } 800 \mathrm{c} / \mathrm{sec}: P_{e_{2}}(\mathrm{say}) \propto(0.5)^{2} \times 800 \tag{ii}
\end{align*}
$$

Dividing equation (ii) by equation (i) gives:

$$
\begin{aligned}
\frac{P_{c_{2}}}{16} & =\frac{(0.5)^{2} \times 800}{(0.6)^{2} \times 600} \quad\left[\because P_{e_{1}} \text { is } 16 \mathrm{~W}\right] \\
& =9.259 \times 10^{-1} \\
\therefore \quad P_{c_{2}} & =16 \times 9.259 \times 10^{-1} \mathrm{~W} \\
& =14.8148 \mathrm{~W} .
\end{aligned}
$$

Example 4-2 (Section 4-4)

A sample of iron having a volume of $33 \mathrm{~cm}^{3}$ is subjected to a magnetizing force varying sinusoidally at a frequency of 400 Hz . The hysteresis loop is plotted using the following scales: 1 cm represents $300 \mathrm{At} / \mathrm{m}$, and 1 cm represents 0.2 weber $/ \mathrm{m}^{2}$. The area of the hysteresis loop is $57.5 \mathrm{~cm}^{2}$. Find the hysteresis loss in watts.

Solution

Let P_{h}^{\prime} denote the energy loss represented by Eq. 4-17. This is the energy loss per unit volume for one cycle.

$$
P_{h}^{\prime}=\oint H d B=\left(57.5 \frac{\mathrm{~cm}^{2}}{\text { cycle }}\right)\left(\frac{300 \mathrm{At} / \mathrm{m}}{1 \mathrm{~cm}}\right)\left(\frac{0.2 \mathrm{weber} / \mathrm{m}^{2}}{1 \mathrm{~cm}}\right)=3450 \frac{\text { joules }}{\mathrm{m}^{3} \text { cycle }}
$$

The hysteresis loss of Eq. 4-18 is P_{h}^{\prime} multiplied by the volume and the frequency.

$$
\begin{aligned}
P_{h} & =P_{h}^{\prime} \vartheta f \\
& =\left(3450 \frac{\text { joules }}{\mathrm{m}^{3} \text { cycle }}\right)\left(400 \frac{\text { cycles }}{\mathrm{sec}}\right)\left(33 \mathrm{~cm}^{3}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{3} \\
& =45.5 \text { watts }
\end{aligned}
$$

Example 4-3 (Section 4-4)

The flux in a magnetic core is alternating sinusoidally with a frequency of 400 Hz . The maximum flux density is $0.6 \mathrm{weber} / \mathrm{m}^{2}$. The eddy-current loss is 28 w . Find the eddy-current loss in this core when the frequency is 300 Hz and the maximum flux density is 0.7 weber $/ \mathrm{m}^{2}$.

Solution

Let $k_{e}^{\prime}=k_{e} \theta \tau^{2}$
Use Eq. 4-19 to find k_{e}^{\prime}.

$$
k_{e}^{\prime}=\frac{P_{e 1}}{f_{1}^{2} B_{1}^{2}}=\frac{28}{(400 \times 0.6)^{2}}=4.86 \times 10^{-4} \frac{{\text { watts } \mathrm{m}^{4}}_{\mathrm{Hz}^{2} \text { weber }^{2}} \text {. }}{\text { and }}
$$

For the new frequency and new maximum flux density, we can find

$$
P_{e 2}=k_{e}^{\prime} f_{2}^{2} B_{2}^{2}=\left(4.86 \times 10^{-4}\right)(300)^{2}(0.7)^{2}=21.4 \mathrm{w}
$$

Example 4-4 (Section 4-4)

The total core losses (hysteresis plus eddy current) for a sheet steel core are found to be 500 w at 25 Hz . When the frequency is increased to 50 Hz and the maximum flux density is kept constant, the total core loss becomes 1400 w . Find the hysteresis and eddy-current losses for both frequencies.

Solution

Since $B_{\max }$ is constant, Eq. 4-20 can have the following form:

$$
P_{c}=A f+B f^{2} \text { where } A=k_{h}^{\prime}\left(B_{\max }\right)^{n} \text { and } B=k_{e}^{\prime}\left(B_{\max }\right)^{2}
$$

For a frequency of 25 Hz , the core loss is

$$
P_{c 1}=500=A(25)+B(25)^{2}
$$

For a frequency of 50 Hz , the core loss is

$$
P_{c 2}=1400=A(50)+B(50)^{2}
$$

Solve the two equations to find $A=12$ and $B=0.32$. Now, we can find the individual losses.

$$
\begin{array}{ll}
P_{h 1}=A f_{1}=300 \mathrm{w} & P_{e 1}=B f_{1}^{2}=200 \mathrm{w} \\
P_{h 2}=A f_{2}=600 \mathrm{w} & P_{e 2}=B f_{2}^{2}=800 \mathrm{w}
\end{array}
$$

8.65 A $200 \mathrm{~V}, 60 \mathrm{~Hz}$ single-phase transformer has hysteresis and eddy current losses of $250^{\circ} \mathrm{W}$ and 90 W respectively. If the transformer is now energized from $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, calculate its core losses. Assume Steinmmetz's constant equal to 1.6 .

Solution

If W_{h} and W_{c} are the hysteresis and eddy current loss respective then

$$
W_{h}=K_{h} f B_{m}^{x} \quad \text { and } \quad W_{e}=K_{e} f^{2} B_{m}^{2}
$$

where K_{h} and K_{e} are constants, f is the frequency, B_{m} is maximum flux density and x is the Steinmetz constant.

Core loss $=\left(V_{1} I_{e} \cos \theta_{o}\right)=700 \mathrm{~W}$, where $\cos \theta_{o}$ is the no load p.f. and V_{1} is the voltage of the primary winding.

So,

$$
\cos \theta_{o}=\frac{700}{2400 \times 0.64}=0.456
$$

The core loss component of exciting current

$$
=I_{e} \cos \theta_{o}=0.64 \times 0.456=0.292 \mathrm{~A} .
$$

The magnetizing component of exciting current

$$
=I_{e} \sin \theta_{o}=0.64 \times \sin \left(\cos ^{-1} 0.456\right)=0.569 \mathrm{~A} .
$$

14.178 A single-phase transfoprmer on open circuit gave the following test results:
216 V
45 Hz
58.2 W
264 V
55 Hz
73.2 W

Calculate the eddy current and hysteresis losses separately at $240 \mathrm{~V}, 50 \mathrm{~Hz}$.

Solution

For the first test, $\frac{V}{f}=\frac{216}{45}=4.8$
For the second test, $\quad \frac{V}{f}=\frac{264}{55}=4.8$
At $240 \mathrm{~V}, \quad \frac{V}{f}=\frac{240}{50}=4.8$
Since $\quad V=E=4.44 f N \phi_{m}$
then $\quad \frac{V}{f}=K \phi_{m}$ where K is a constant $(K=4.44 \mathrm{~N})$.
As V is constant, the flux and flux density are constant.
We know, hysteresis loss $\left(P_{h}\right) \propto f$ or, $P_{h}=a f$

1. In a transformer zero voltage regulation is achieved at a load power factor which is

At leading power factor the voltage regulation can be negative or zero. This can be found from this equation $\%$ regulation $=\varepsilon_{x} \cos \theta-\varepsilon_{r} \sin \theta$
02. A transformer has resistance and reactance in per unit as 0.01 and 0.04 respectively. Its voltage regulation for 0.8 power factor lagging and leading will be

Voltage regulation for lagging power factor $=(\mathrm{R} \cos \theta+\mathrm{X} \sin \theta) \times 100$ Voltage regulation for 0.8 lagging power factor $=(0.01 \times 0.8+0.04 \times 0.6) \times 100=3.2 \%$ Voltage regulation for leading power factor $=(R \cos \theta-\mathrm{X} \sin \theta) \times 100$ Voltage regulation for 0.8 leading power factor $=(0.01 \times 0.8-0.04 \times 0.6) \times 100$ = -1.6\%

Eddy current loss and hysteresis loss are almost independent of load, significantly depending on supply voltage and frequency. As the flux density or flux is constant for a given voltage and frequency, eddy current loss and hysteresis loss remain constant at any load. Therefore, these losses are called constant losses. Copper loss varies as the square of load current and called variable loss.
04. In a transformer, hysteresis and eddy current losses depend upon

Eddy current loss $P_{e} \propto K_{e} B_{m}^{2} f^{2}$
Hysteresis loss $P_{h} \propto K_{h} B_{m}^{1.6} f$
Therefore, in a transformer, hysteresis and eddy current losses depend upon both maximum flux density and supply frequency.

In a transformer, the core loss is found to be 52 watts at 40 Hz and 90 Watts at 60 Hz ; both losses being measured at the same peak flux density. Compute the hysteresis and eddy current losses at 50 Hz.
05. In a transformer operating at constant voltage if the input frequency increases, the core loss

Eddy current loss $P_{e} \propto K_{c} B_{m}^{2} f^{2}$ Hysteresis loss $P_{h} \propto K_{h} B_{m}^{1.6} f$

$$
B_{m} \propto \frac{v}{f}
$$

> 1. When B_{m} is constant
> $P_{e} \propto K_{e} f^{2}$ and $P_{h} \propto K_{h} f$
> 2. When B_{m} is not constant
> $P_{e} \propto K_{e}\left(\frac{V}{f}\right)^{2} \times f^{2} \propto K_{e,} V^{2}$
> $P_{h} \propto K_{h}\left(\frac{V}{f}\right)^{1.6} \times f \propto K_{h} V^{1.6} \times f^{-0.6}$
06. If the frequency of input voltage of a transformer is increased keeping the magnitude of voltage unchanged, then

$$
\begin{gathered}
\text { Eddycurrentloss } P_{e}=K_{e} B_{m}^{2} f^{2} \\
\text { Hysteresis loss } P_{h}=K_{h} B_{m}^{1.6} f^{2} \\
\text { When flux density is not constant } \\
P_{e}=k_{e} V^{2} \text { and } P_{h}=K_{h} V^{1.6} \times f^{-0.6}
\end{gathered}
$$

Therefore, hysteresis loss will decrease but eddy current loss will remain same.

Eddy current loss $P_{e}=K_{c} B_{m}^{2} f^{2}$

Eddy current loss is directly proportional to supply frequency. Therefore, for dc source, frequency is zero and eddy current loss is also zero.
08. A transformer has hysteresis loss of 30 W , at $240 \mathrm{~V}, 60 \mathrm{~Hz}$. The hysteresis loss at $200 \mathrm{~V}, 50 \mathrm{~Hz}$ will be

$$
\begin{gathered}
\text { Hysteresis loss } P_{h} \propto K_{h} B_{m}^{1.6} f \\
\text { When } B_{m} \text { is constant } P_{h}=K_{h} f \\
\text { For given problem, } B_{m 1}=\frac{240}{60}=4 \text { and and } B_{m 2}=\frac{200}{50}=4 \\
B_{m 1}=B_{m 2} \\
\text { therefore, } \frac{P_{h 2}}{P_{h 1}}=\frac{f_{2}}{f_{1}} \\
P_{h 2}=\frac{50}{60} \times 30=25 \mathrm{~W}
\end{gathered}
$$

9. A single phase transformer when supplied from $220 \mathrm{~V}, 50 \mathrm{~Hz}$ has eddy current loss of 50 W . If the transformer is connected voltage of $330 \mathrm{~V}, 75 \mathrm{~Hz}$, the eddy current loss will be

$$
\begin{gathered}
\text { Eddy current loss } P_{e}=K_{e} B_{m}^{2} f^{2} \\
\text { When } B_{m} \text { is constant } P_{e}=K_{e} f^{2} \\
\text { For given problem } B_{m 1}=\frac{220}{50}=4.4 \text { and } B_{m 2}=\frac{330}{75}=4.4 \\
\text { therefore, } B_{m 1}=B_{m 2} \\
\frac{P_{e 2}}{P_{e 1}}=\left(\frac{f_{2}}{f_{1}}\right)^{2} \\
P_{e 2}=\left(\frac{75}{50}\right)^{2} \times 50=112.5 \mathrm{~W}
\end{gathered}
$$

10. The full load copper loss and iron loss of transformer are 6400 W and 5000 W respectively. The copper loss and iron loss at half load will be respectively?

Iron losses do not depend on the load, iron losses remain constant for any load. Therefore iron losses are considered as constant losses. Copper losses vary as square of load current and these are considered as variable losses.

$$
\begin{gathered}
\text { Copper loss at half load } \\
=\left(\frac{1}{2}\right)^{2} \times \text { full load copper loss } \\
=\frac{1}{4} \times 6400=1600 \mathrm{~W}
\end{gathered}
$$

7. $1 \mathrm{KVA}, 230 \mathrm{~V}, 50 \mathrm{~Hz}$, single phase transformer has an eddy current loss of 30 watts. The eddy current loss when the transformer is excited by a dc source of same voltage will be
Core losses in a transformer is the sum of hysteresis loss and eddy current loss.
hysteresis loss is proportional to frequency and eddy current loss is proportional to square of the frequency.

Hence we can write :
core loss $=\mathrm{Af}+\mathrm{Bf}^{2}$
where A and B are constants.
from the given data we have;
$52=\mathrm{A} 40+\mathrm{B} 1600$. eq 1
and
$90=\mathrm{A} 60+\mathrm{B} 3600$ eq 2

Solving both the equation we get,
$\mathrm{A}=36 / 40$
$B=1 / 100$
Hence putting these values in the equation with frequency 50 hz ,
core loss $=36 * 50 / 40+2500 / 100$
$=45+25$
$=70$ watts
Hence core loss at 50 hz is 70 watts.

Example 1.77. A $4 \mathrm{kVA}, 50 \mathrm{~Hz}$, single-phase transformer has a ratio 200/400 V. The data taken on the l.v. side at the rated voltage show that the open circuit input wattage is 80 W . The mutual inductance between the primary and secondary windings is 1.91 H . What value vill be the current taken by the transformer, if the no-load test is conducted on the h.v. side at rated voltage? Neglect the effect of winding resistances and leakage reactances.
(GATE, 1995)
Solution. Open-circuit input wattage $=$ core loss in transformer $=80 \mathrm{~W}$

But core loss $\quad=I_{c 1} V=80 \mathrm{~W}$
Core loss in a transformer remains unaltered whether it is energized from l.v. side or h.v
;ide. Core-loss current when energized from h.v. side,

$$
I_{c 2}=\frac{80}{400}=0.2 \mathrm{~A}
$$

In a transformer, $\quad E=\sqrt{2} \pi f N \phi_{\max }=\sqrt{2} \pi f \psi_{\max }$
\therefore Maximum value of flux linkages $\psi_{\max }$ with l.v. winding $=\frac{V_{1}}{\sqrt{2} \pi f}$
Mutual inductance, $M=\frac{\text { Flux linkages with l.v. winding }}{\text { Current in } \frac{\text { h.v. winding }}{}=\frac{V_{1}}{\sqrt{2} \pi f} \cdot \frac{1}{\sqrt{2} I_{m 2}}-2{ }^{2}}$
${ }_{\text {where }} I_{m}$ is the magnetizing current in h.v. winding.
$\therefore \quad I_{m 2}=\frac{200}{\sqrt{2} \pi \times 50} \cdot \frac{1}{\sqrt{2} \times 1.91}=0.3333 \mathrm{~A}$
The current taken by transformer when energized on h.v. side, as per Eq. (1.18), is

$$
I_{e}=\sqrt{I_{c 2}^{2}+I_{m 2}^{2}}=\left[0.2^{2}+0.3333^{2}\right]^{1 / 2}=0.3887 \mathrm{~A} .
$$

Example 1.61. A $10 \mathrm{kVA}, 2300 / 230 \mathrm{~V}$, single-phase transformer has the following parameters:

$$
r_{1}=10 \Omega, \quad r_{2}=0.10 \Omega, \quad l_{1}=40 \mathrm{mH}, \quad l_{2}=4 \times 10^{-4} \mathrm{H}, \quad M=10 \mathrm{H} .
$$

Subscripts 1 and 2 indicate h.v. and l.v. windings respectively.
(a) Find the self-impedances of primary and secondary windings.
(b) Find the values of the equivalent-circuit parameters referred to (i) the primary and (ii) the secondary.
(c) The primary of this transformer is energised from $2300 \mathrm{~V}, 50 \mathrm{~Hz}$ source. If its secondary is connected to a load of impedance $5+j 5 \Omega$, find the secondary terminal voltage.

Solution. (a) Primary self-inductance,

$$
L_{1}=L_{m 1}+l_{1}=\frac{N_{1}}{N_{2}} M+l_{1}=\frac{2300}{230} \times 10+0.04=100.04 \text { henrys. }
$$

Secondary self-inductance,

$$
L_{2}=L_{m 2}+l_{2}=M \frac{N_{2}}{N_{1}}+l_{2}=10 \times \frac{1}{10}+4 \times 10^{-4}=1.0004 \mathrm{H}
$$

(b) Parameters referred to primary winding are :

$$
\begin{array}{ll}
r_{1}=10 \Omega ; \quad r_{2}=0.1 \times\left(\frac{N_{1}}{N_{2}}\right)^{2}=0.1 \times(10)^{2}=10 \Omega \\
l_{1}=40 \mathrm{mH} ; & l_{2}=4 \times 10^{-4}\left(\frac{N_{1}}{N_{2}}\right)^{2}=4 \times 10^{-4}(10)^{2}=40 \mathrm{mH} . \\
L_{m 1}=M \frac{N_{1}}{N_{2}}=10 \times 10=100 \mathrm{H} .
\end{array}
$$

Parameters referred to secondary winding are :

$$
\begin{aligned}
r_{1} & =10 \times\left(\frac{1}{10}\right)^{2}=0.10 \Omega ; r_{2}=0.1 \Omega \\
l_{1} & =40 \times 10^{-3}\left(\frac{1}{10}\right)^{2}=4 \times 10^{-4} \mathrm{H} ; \quad l_{2}=4 \times 10^{-4} \mathrm{H} . \\
L_{m 2} & =M \frac{N_{2}}{N_{1}}=10 \times \frac{1}{10}=1.00 \mathrm{H} .
\end{aligned}
$$

Example 1.62.A single-phase two winding transformer gave the following test results:
(i) H.V. winding (590) turns when energised from $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, takes a no-load amnnt of 0.35 A and induced e.m.f. across open circuited l.v. winding is 110 V .
(ii) L.V. winding (295 turns) when energised from $115 \mathrm{~V}, 50 \mathrm{~Hz}$ supply takes a no-load curof of 0.72 A and induced e.m.f. across open circuited h.v. winding is 226 V .
Calculate (a) self-inductances of h.v. and l.v. windings (b) the mutual inductance between
h. and l.v. windings (c) coupling factors k_{1} and k_{2} for h.v. and l.v. windings respectively and the coefficient of coupling k.
Neglect core loss and winding resistances.
Solution. Self-inductance $L=\frac{\psi}{i}$

$$
\begin{aligned}
& \text { Now } \\
& E=\sqrt{ } 2 \pi f N \oint_{\text {max }}=\sqrt{ } 2 \pi f \psi_{\text {max }}
\end{aligned}
$$

$E=\sqrt{ } 2 \pi f N \phi_{\text {max }}$
Here $\psi_{\text {max }}$ are the maximum flux-linkages.
(a) \therefore M
(a) :: Maximum value of flux-linkages with h.v. winding

$$
\Psi_{m 1}=\frac{V_{1}}{\sqrt{2 \pi f}}=\frac{230}{\sqrt{2(\pi)(50)}}
$$

\therefore Self.inductance of h.v. winding $L_{1}=\frac{\psi_{m 1}}{\sqrt{2 I}}$

$$
=\left[\frac{230}{\sqrt{2(\pi)(50)}}\right] \times\left[\frac{1}{\sqrt{2} \times 0.35}\right]=2.092 \mathrm{H}
$$

Similarly self-inductance of l.v. winding,

$$
L_{2}=\left[\frac{115}{\sqrt{2(\pi)(50)}}\right] \times\left[\frac{1}{\sqrt{2 \times 0.72}}\right]=0.5084 \mathrm{H}
$$

(b) The maximum value of mutual flux linkages

$$
=\frac{E_{2}}{\sqrt{2 \pi f}}
$$

\therefore Mutual inductance $M=\left(\frac{E_{2}}{\sqrt{2 \pi f}}\right) \times \frac{1}{\sqrt{2 I}}=\left(\frac{110}{\sqrt{2 \pi(50)}}\right) \times\left[\frac{1}{\sqrt{2(0.35)}}\right]=1 \mathrm{H}$.
Alternatively,

$$
M=\left[\frac{226}{\sqrt{2 \pi \times 50}}\right] \times\left[\frac{1}{\sqrt{2 \times 0.72}}\right]=1 \mathrm{H} .
$$

(c) Coupling factor

$$
k_{1}=\frac{N_{1}}{N_{2}} \cdot \frac{M}{L_{1}}=\frac{590}{295} \times \frac{1}{2.092}=0.956
$$

Coupling factor

$$
k_{2}=\frac{N_{2}}{N_{1}} \cdot \frac{M}{L_{2}}=\frac{295}{590} \times \frac{1}{0.5084}=0.9835
$$

Coefficient of coupling $k=\sqrt{k_{1} k_{2}}=\sqrt{0.956 \times 0.9885}=0.9696$.
Check. $\quad M=k \sqrt{L_{1} L_{2}}=0.9696 \sqrt{(2.092)(0.5084)}=1.00 \mathrm{H}$.

Example 1.63. The self and mutual inductances of a two-winding transformer are

$$
L_{1}=4 \mathrm{mH}, L_{2}=6 \mathrm{mH}, M_{12}=M_{21}=1.8 \mathrm{mH}
$$

Calculate the current which would flow in the winding 1 when this winding is connected to a $130-v o l t,(500 / \pi) \mathrm{Hz}$ supply and the load of 0.2 mH inductance is connected across the winding 2. Assume power losses in the windings and the magnetic circuit to be negligible. (I.E.S., 1982)

Solution. The voltage equation for the primary winding, in terms of rms values, can be obtained from Eq. (1.84) as

$$
\begin{equation*}
\bar{V}_{1}=r_{1} \bar{I}_{1}+j \omega L_{1} \bar{I}_{1}-j \omega M I_{2} \tag{1.101}
\end{equation*}
$$

Similarly for the secondary winding, from Eq. (1.85),

$$
\begin{equation*}
\nabla_{2}=j \omega M I_{1}-j \omega L_{2} I_{2}-r_{2} I_{2} \tag{1.102}
\end{equation*}
$$

Substitution of the values in Eqs. (1.101) and (1.102), with V_{1} as reference phasor, gives

$$
130+j 0=j 2 \pi(500 / \pi) 4 \times 10^{-3} I_{1}-j 2 \pi(500 / \pi) 1.8 \times 10^{-3} I_{2}
$$

and
or

$$
\begin{gathered}
j 2 \pi(500 / \pi) \times 0.2 \times 10^{-3} I_{2}=j 2 \pi(500 / \pi) 1.8 \times 10^{-3} I_{1}-j 2 \pi\left(\frac{500}{\pi}\right) 6 \times 10^{-3} I_{2} \\
130=j 4 I_{1}-j 1.8 I_{2}
\end{gathered}
$$

and

$$
0=j 1.8 I_{1}-j 6.2 I_{2}
$$

from above,

$$
I_{2}=\frac{1.8}{6.2} I_{1}
$$

Simultaneous solution for I_{1} gives $I_{1}=37.384 \mathrm{~A}$.
This example can also be solved alternatively by referring to the equivalent circuit of Fig . 1.65 (b). Here all the given parameters are referred to primary, i.e, take $a=1$ in Fig. $1.65(b)$.

$$
\begin{aligned}
L_{1}-a M & =4-1.8=2.2 \mathrm{mH} \\
a M & =1.8 \mathrm{mH}
\end{aligned}
$$

$$
a^{2} L_{2}-a M=6-1.8=4.2 \mathrm{mH}
$$

Load inductance L referred to primary $=a^{2} L=0.2 \mathrm{mH}$
Total inductance seen by the primary applied voltage

$$
\begin{aligned}
& =\left(L_{1}-a M\right)+\frac{(a M)\left[a^{2} L_{2}-a M+a^{2} L\right]}{a M+a^{2} L_{2}-a M+a^{2} L} \\
& =2.2 \times 10^{-3}+\frac{\left(1.8 \times 10^{-3}\right)(4.2+0.2) \times 10^{-3}}{(1.8+4.2+0.2) \times 10^{-3}}=3.4774 \times 10^{-3} \mathrm{H}
\end{aligned}
$$

Total reactance at the primary terminals

$$
=2 \pi \times \frac{500}{\pi} \times 3.4774 \times 10^{-3}=3.4774 \Omega
$$

\therefore Current in the primary winding $1=\frac{130}{3.4774}=37.384 \mathrm{~A}$.

Example 1.64. An ideal audio-frequency transformer couples a 60 -ohm resistive load to an tronic circuit which is represented by a constant voltage source of 5 V in series with an inter resistance of 3000Ω.
(a) Determine the transformer turns ratio so that maximum power transfer takes place from wiste to the load.
(b) Find the load current, voltage and power under the conditions of maximum power trans-
fr
Solution. (a) For maximum power transfer, the load resistance of 60Ω when referred to the primary side must be equal to the source resistance of 3000Ω.

$$
a t
$$

$$
\begin{aligned}
\therefore \quad 3000 & =\left(\frac{N_{1}}{N_{2}}\right)^{2} \times 60 \\
\frac{N_{1}}{N_{2}} & =\sqrt{50}=7.071
\end{aligned}
$$

(b) Referring all the quantities to load side, the quivalent circuit is as shown in Fig. 1.72. The source wltage on load side is (5/7.071) V and the source resis-

Fig. 1.72. Pertaining to Example 1.64. tance is 60Ω.
\therefore Load current, $\quad I_{L}=\frac{5}{7.071 \times 120}=5.893 \mathrm{~mA}$
Load voltage, $\quad V_{L}=5.893 \times 10^{-3} \times 60=0.3536 \mathrm{~V}$
Load power $\quad=I_{L}^{2} R_{L}=\left(5.893 \times 10^{-3}\right)^{2} \times 60=2.084 \mathrm{~mW}$.

Example 1.65. An audio-frequency transformer has the following parameters :

$$
r_{1}=20 \Omega, \quad l_{1}=1 \mathrm{mH}, \quad R_{2}=0.5 \Omega, \quad l_{2}=0.025 \mathrm{mH}, \quad M_{12}=M_{2 I}=0.2 \mathrm{H}
$$

Iron losses are neglected.
This transformer couples a load of 50Ω to a voltage source of $5 V$ whose internal resistance s2000 Ω
(a) Find the turns ratio for maximum power transfer to load.
(b) Compute the load voltage at the following frequencies:
(i) 100 Hz (LF), (ii) 5000 Hz (IF) and (iii) $15,000 \mathrm{~Hz}$ (HF).

Solution. (a) For maximum power transfer

$$
\begin{gathered}
2000=\left(\frac{N_{1}}{N_{2}}\right)^{2} \times 50 \\
\frac{N_{1}}{N_{2}}=\sqrt{40}=6.3245 \\
\therefore \quad \begin{array}{l}
\text { (b) } r_{2}{ }^{\prime}=0.5(40)=20 \Omega, l_{2}^{\prime}=(0.025)(40)=1 \mathrm{mH}, \\
R_{L^{\prime}}=(50)(40)=2000 \Omega, R_{g}=2000 \Omega \\
R_{s}^{\prime}=R_{g}+r_{1}+r_{2}{ }^{\prime}+R_{L}{ }^{\prime}=4040 \Omega \\
R_{p}^{\prime}=\frac{(2020)(2020)}{4040}=1010 \Omega \\
L_{1} \approx M_{12}=M_{21}=0.2 \mathrm{H}, l_{\text {eq }}=l_{1}+l_{2}^{\prime}=2 \mathrm{mH} .
\end{array}
\end{gathered}
$$

(i) At 100 Hz (LF), from Eq. (1.103),

$$
\frac{V_{L}}{E_{g}}=\frac{1}{\sqrt{40}} \cdot \frac{2000}{4040\left[1+\left(\frac{1010}{2 \pi \times 100 \times 0.2}\right)^{2}\right]^{1 / 2}}=0.00966432
$$

$\therefore \quad V_{L}=0.04832 \mathrm{~V}$.
(ii) At 5000 Hz (IF), from Eq. (1.107),

$$
\begin{aligned}
& \frac{V_{L}}{E_{g}}=\frac{1}{\sqrt{40}} \cdot \frac{2000}{4040}=0.0782742 \\
\therefore & V_{L}=0.3914 \mathrm{~V} .
\end{aligned}
$$

(iii) At $15,000 \mathrm{~Hz}$ (HF), from Eq. (1.108),

$$
\begin{array}{ll}
& \frac{V_{L}}{E_{g}}=\frac{1}{\sqrt{40}} \cdot \frac{2000}{4040} \cdot \frac{1}{\left[1+\left(\frac{2 \pi \times 15,000 \times 1 \times 10^{-3}}{4040}\right)^{2}\right]^{1 / 2}}=0.0782529 \\
\therefore \quad & V_{L}=0.3913 \mathrm{~V} .
\end{array}
$$

EXAMPLE 3.29 A transformer has turn ratio of $a=10$. The results of two open-circuit tests conducted on the transformer are given below:
(a) The primary on application of 200 V draws 4 A with secondary open circuited which is found to have a voltage of 1950 V .
(b) The secondary on application of 2000 V draws 0.41 A with the primary open circuited.

Calculate L_{1} and L_{2} and coupling coefficient. What is the voltage of primary in part (b).

SOLUTION

(a)

$$
\begin{aligned}
& X_{m}=\frac{240}{4}=50 \Omega, X_{m}=2 \pi f L_{1} \\
& L_{1}=\frac{200}{2 \pi \times 50}=0.159 \mathrm{H} \\
& 1950=\sqrt{2} \pi N_{2} \phi_{\max }=\sqrt{2} \pi \psi_{\max } \\
& \psi_{\max }=\frac{1950}{\sqrt{2} \pi}=8.78 \mathrm{~Wb}-\mathrm{T} \\
& \qquad M=\frac{\psi_{\max }}{i_{1}(\max)}=\frac{8.78}{\sqrt{2} \times 4}=1.55 \mathrm{H}
\end{aligned}
$$

(b)

$$
\begin{aligned}
E_{1} & =\sqrt{2} \pi f N_{2} \phi_{\max }=\sqrt{2} \pi f \psi_{\max } \\
\frac{\psi_{\max }}{i_{2}(\max)} & =M, \quad \psi_{\max }=\sqrt{2} \times 0.42 \times 1.55 \\
\therefore \quad E_{1} & =\sqrt{2} \pi \times 50 \times \sqrt{2} \times 0.41 \times 1.55=199.6 \mathrm{~A} \\
L_{2} & =\frac{2000}{\sqrt{2} \pi \times 50} \cdot \frac{1}{\sqrt{2} \times 0.41}=15.53 \mathrm{H}
\end{aligned}
$$

Coupling coefficient,

$$
k=\frac{1.55}{\sqrt{0.159 \times 15.53}}=0.986
$$

EXAMPLE 3.30 A 150 kVA transformer $2400 / 240 \mathrm{~V}$ rating has the following parameters:

$$
\begin{aligned}
R_{l} & =0.2 \Omega, & & R_{2}=2 \times 10^{-3} \\
X_{I} & =0.45 \Omega, & X_{2} & =4.5 \times 10^{-3} \\
R_{i} & =10 \mathrm{k} \Omega & X_{m} & =1.6 \mathrm{k} \Omega \quad \text { (referred to } \mathrm{HV} \text {) }
\end{aligned}
$$

Calculate the leakage inductances, magnetizing inductance, mutual inductance and self-inductances.

SOLUTION

$$
\begin{aligned}
& a=\frac{N_{1}}{N_{2}} \approx \frac{2400}{240}=10 \\
& X_{1}=2 \pi f l_{1}, l_{1}=\frac{0.45}{314} \times 10^{-3}=0.01433 \mathrm{mH} \\
& X_{2}=2 \pi f l_{2}, l_{2}=\frac{4.5 \times 10^{-3}}{314}=0.01433 \mathrm{mH}
\end{aligned}
$$

Magnetizing inductance

$$
\begin{aligned}
2 \pi f L_{m l} & =X_{m}=1.6 \times 10^{3} \\
L_{m 1} & =5.096 \mathrm{H}
\end{aligned}
$$

Self inductances

$$
\begin{aligned}
l_{1} & =L_{1}-L_{m 1} \\
L_{1} & =5.096+0.01433 \times 10^{-3}=5.096 \mathrm{H} \\
L_{m 1} & =a M, M=\frac{L_{m 1}}{a}=\frac{5.096}{10}=0.5096 \mathrm{H} \\
l_{2} & =L_{2}-\frac{M}{a} \\
L_{2} & =l_{2}+\frac{M}{a}=0.01433 \times 10^{-3}+\frac{0.5096}{10} \\
& =0.05098 \mathrm{H}
\end{aligned}
$$

Coupling factor

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}=\frac{0.5096}{\sqrt{5.096 \times 0.05098}}=0.09998 \approx 1
$$

3.61. Two coils with terminals T_{1}, T_{2} and T_{3}, T_{4} respectively are placed side by side. Measured separately, the inductance of the first is $1200 \mu \mathrm{H}$ and that of the second coil is $800 \mu \mathrm{H}$. With T_{2} joined with T_{3} (Fig. 3.41), the total inductance between the two coils is
$2500 \mu \mathrm{H}$. What is the mutual inductance? If T_{2} is joined with T_{4} instead of T_{3}, what would be the value of equivalent inductance of the two coils?

Solution

Given $\quad L_{1}=1200 \mu \mathrm{H}, L_{2}=800 \mu \mathrm{H}, T_{14}=2500 \mu \mathrm{H}$.
Let the mutual inductance between the two coils be M, then total inductance $L_{1}+L_{2}+$ $2 M$. In the first case (refer (Fig. 3.41)

$$
\begin{aligned}
T_{14} & =L_{1}+L_{2}+2 M \\
2500 & =1200+800+2 M \\
\therefore \quad M & =\frac{500}{2}=250 \mu \mathrm{H} .
\end{aligned}
$$

Fig. 3.41 Connection of two coils, 1st case

Fig. 3.42 Connection of two coils, 2nd case

If T_{13} is the total inductance in the second case, then

$$
\begin{align*}
T_{13} & =L_{1}+L_{2}-2 M \tag{SeeFig.3.42}\\
& =1200+800-2 \times 250 \\
& =1500 \mu \mathrm{H} .
\end{align*}
$$

3.18. The combined inductance of the two coils connected in series is 0.60 H and 0.40 H , depenaing on the relative directions of currents in the coils. If one of the coils, when isolated, has a self-inductance of 0.15 H , then find: (a) the mutual inductance, and (b) the co-efficient of coupling K.

Solution

$$
\begin{align*}
L_{\text {additive }} & =L_{1}+L_{2}+2 M \\
0.60 & =0.15+L_{2}+2 M \tag{i}\\
L_{\text {subtractive }} & =L_{1}+L_{2}-2 M \\
0.40 & =0.15+L_{2}-2 M \tag{ii}
\end{align*}
$$

adding equations (i) and (ii), we have

$$
\begin{array}{ll}
& 1.0=0.3+2 L_{2} . \\
\therefore & L_{2}
\end{array} \quad=\frac{(1.0-0.3)}{2}=0.35 \mathrm{H}
$$

Substituting this value of L_{2} in equation (i),
or

$$
\begin{aligned}
0.60 & =0.15+0.35+2 M \\
M & =0.05 \mathrm{H}
\end{aligned}
$$

(b) Co-efficient of coupling, $K=\frac{M}{\sqrt{L_{1} L_{2}}}$

$$
=\frac{0.05}{\sqrt{0.15 \times 0.35}}=0.218=0.22
$$

14.31. Two coils having self-inductances of 0.3 H and 0.5 H are connected in series across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. What current will flow if the coupling co-efficient of the coils is $\mathbf{0 . 4 5}$?

Solution

Mutual inductance $M=\sqrt{L_{1} L_{2}}=0.45 \sqrt{0.3 \times 0.5}=0.1743$
When connected in series the equivalent impedance is given by

$$
L=L_{1}+L_{2} \pm 2 M=0.3+0.5 \pm 2 \times 0.1743=1.1486 \mathrm{H} \text { or } 0.4514 .
$$

Hence $\quad X_{L}=100 \pi \times 1.1486=360.84 \Omega$
or $\quad X_{L}=100 \pi \times 0.4514=141.8 \Omega$

Current is,

$$
\frac{230}{360.84} \mathrm{~A}=0.6374 \mathrm{~A}
$$

or

$$
\frac{230}{141.8} \mathrm{~A}=1.622 \mathrm{~A}
$$

14.32 Two coils are connected in series with same polarities and the combined inductance is found to be 0.567 H . When the coils are connected in series with reverse polarities then the combired inductance is 0.267 H . The self-inductance of one coil is 0.3 H . Determine the mutual inductance and the coupling coefficient.

Solution

Let L_{1} and L_{2} be the self-inductances of the two coils and M the mutual inductance. Then
$L_{1}+L_{2}+M=0.567$
Hence $\quad L_{1}+L_{2}=0.417$
But $\quad L_{1}=0.3 \mathrm{H}$,
$\therefore \quad L_{2}=0.417-0.3=0.117 \mathrm{H}$
and $\quad M=0.417-0.267=0.15 \mathrm{H}$
We know, $\quad M=K \sqrt{L_{1} L_{2}}$, where K is the coupling co-efficient
Hence

$$
K=\frac{0.15}{\sqrt{0.3 \times 0.117}}=0.8
$$

3.25. Three coils are connected in series. Their self-inductances are L_{1}, L_{2} and L_{3}. Each coil has a mutual inductance M with respect to the other coil. Determine the equivalent inductance of the connection. If $L_{1}=L_{2}=L_{3}=0.3 \mathrm{H}$ and $M=0.1 \mathrm{H}$, calculate the equivalent inductance. Consider that the fluxes of the coil are additive in nature.

Solution

Let the current i and v_{1}, v_{2}, v_{3} be the voltage across the three coils.

$$
\therefore \quad \begin{aligned}
v_{1} & =L_{1} \frac{d i}{d t}+M \frac{d i}{d t}+M \frac{d i}{d t} \\
v_{2} & =L_{2} \frac{d i}{d t}+M \frac{d i}{d t}+M \frac{d i}{d t} \\
v_{3} & =L_{3} \frac{d i}{d t}+M \frac{d i}{d t}+M \frac{d i}{d t} \\
v & =v_{1}+v_{2}+v_{3}=\left(L_{1}+L_{2}+L_{3}+6 M\right) \frac{d i}{d t}
\end{aligned}
$$

\because Equivalent inductance $=L_{1}+L_{2}+L_{3}+6 M$.
Now putting the values of L_{1}, L_{2}, L_{3} and M, we have

$$
\begin{aligned}
\text { Equivalent inductance } & =0.3+0.3+0.3+6 \times 0.1 \\
& =0.9+0.6 \\
& =1.5 \mathrm{H} .
\end{aligned}
$$

3.17. Two coils are connected in parallel as shown in Fig. 3.17. Calculate the net inductance of the connection.

Solution

The net inductance in the given circuit

$$
\begin{aligned}
& =\frac{L_{1} L_{2}-M^{2}}{L_{1}+L_{2}+2 M} \\
& =\frac{0.2 \times 0.3-(0.1)^{2}}{0.2+0.3+2 \times 0.1} \\
& =\frac{0.06-.01}{0.7}=\frac{0.05}{0.7}=0.0714 \mathrm{H} .
\end{aligned}
$$

Fig. 3.17
3.24. Two coils of inductance 8 H and 10 H are connected in parallel. If their mutual inductance is 4 H , determine the equivalent inductance of the combination if (a) mutual inductance assists the self-inductance, (b) mutual inductance opposes the self-inductance.

Solution

It is given that

$$
L_{1}=8 \mathrm{H}, L_{2}=10 \mathrm{H}, M=4 \mathrm{H}
$$

(a) $L=\frac{L_{1} L_{2}-M^{2}}{L_{1}+L_{2}-2 M}=\frac{8 \times 10-4^{2}}{8+10-2 \times 4}=\frac{80-16}{18-8}=6.4 \mathrm{H}$.
(b) $L=\frac{L_{1} L_{2}-M^{2}}{L_{1}+L_{2}+2 M}=\frac{8 \times 10-4^{2}}{8+10+2 \times 4}=\frac{80-16}{26}=2.46 \mathrm{H}$.
3.19. Pure inductors each of inductance 3 H are connected as shown in Fig. 3.18. Find the equivalent inductance of the circuit.

Fig. 3.18 The equivalent inductance of the circuit

Solution

Since all three are in parallel. Hence the equivalent inductance is $L / 3=3 / 3=1 \mathrm{H}$.
14.27. Determine the total energy stored in the passive network shown in Fig. 14.16 at $t=0$. Assume $K=0.5$ and terminals x and y (i) open circuited (ii) short circuited.

Solution

$$
M=K \sqrt{L_{1} L_{2}}=0.5 \sqrt{0.3 \times 3} \mathrm{H}=0.474 \mathrm{H} .
$$

Fig. 14.16

Let us consider the two mesh currents i_{1} and i_{2} are flowing the clockwise direction in the two meshes.

From Fig. 14.16, we have

$$
i_{1}=5 \angle 0^{\circ} \mathrm{A} .
$$

(i) When x and y are open circuited $i_{2}=0$

Hence total energy stored is $\frac{1}{2} L_{1} i_{1}^{2}=\frac{1}{2} \times 0.3 \times 5^{2}=3.75 \mathrm{~J}$.
(ii) When x and y are short circuited,
$i_{1}(t)=5 \cos 15 t$ and voltage $v_{x y}$ across $x y$ is 0 .
Hence, $\quad v_{x y}=3 \frac{d i_{2}}{d t}+0.474 \frac{d i_{1}}{d t}=0$
or, $\quad \frac{d i_{2}}{d t}=-\frac{0.474}{3} \frac{d}{d t}(5 \cos 15 t)=\frac{0.474}{3} \times 5 \times 15 \sin 15 t=11.85 \sin 15 t$.
Hence $i_{2}(t)=\int_{-\infty}^{1} 11.85 \sin 15 t d t=-0.75 \cos 15 t$ (assuming zero initial point)
Energy stored is

$$
\left[\frac{1}{2} \times 0.3 \times 5^{2}+\frac{1}{2} \times 3 \times(0.75)^{2}+0.474 \times 5(-0.75)\right]=2.817 \mathrm{~J}
$$

\qquad
14.28 In the circuit shown in Fig. $14.17 L_{1}=2 \mathrm{H}, L_{2}=5 \mathrm{H}$ and $M=1.8 \mathrm{H}$. Find the expression for the energy stored after the circuit is connected to a dc voltage of 30 V . Assume M to be positive.

Solution

If i_{1} and i_{2} be the currents in the two coils, we can write

Fig. 14.17

From Eq. (ii), we get

$$
\frac{d i_{2}}{d t}=-\frac{M}{L_{2}} \frac{d i_{1}}{d t}
$$

\therefore From Eq. (i), we get

$$
30=\frac{d i_{1}}{d t} L_{1}+M\left(-\frac{M}{L_{2}} \frac{d i_{1}}{d t}\right)=\frac{d i_{1}}{d t}\left(L_{1}-\frac{M^{2}}{L_{2}}\right)=\frac{d i_{1}}{d t} \frac{L_{1} L_{2}-M^{2}}{L_{2}}
$$

The equivalent inductance $=\frac{L_{1} L_{2}-M^{2}}{L_{2}}=\frac{2 \times 5-(1.8)^{2}}{5}=1.352 \mathrm{H}$.

Solution

Current $\quad i=\left(15 \sin \frac{\pi}{3} t\right) \mathrm{A}$
$\therefore \quad$ Voltage (instantaneous) across the resistor is $\left(0.5 \times 15 \sin \frac{\pi}{3} t\right) \mathrm{V}$.
i.e.

$$
v_{R}=\left(7.5 \sin \frac{\pi}{3} t\right) \mathrm{V}
$$

Also, voltage across the inductor is given by

$$
v_{L}=L \cdot \frac{d i}{d t}=5 \frac{d}{d t}\left(15 \sin \frac{\pi}{3} t\right)=75 \cdot \frac{\pi}{3} \cos \frac{\pi}{3} t=\left(25 \pi \cos \frac{\pi}{3} t\right) \mathrm{V}
$$

Power across the resistor is

$$
i^{2} R=\left(225 \sin ^{2} \frac{\pi}{3} t\right) 0.5=112.5 \sin ^{2}\left(\frac{\pi}{3} t\right) \mathrm{W}
$$

The energy stored by the inductor is maximum when the current through it is maximum.
Current is maximum when $\left(\sin ^{2} \frac{\pi}{3} t\right)=1$
i.e. $1-\cos \left(\frac{2 \pi}{3} t\right)=2$ or, $\cos \frac{2 \pi}{3} t=-1=\cos \pi$
$\therefore \quad \frac{2 \pi}{3} t=\pi \quad$ or, $t=\frac{3}{2} \mathrm{~s}$.

Hence energy stored in the inductor is maximum at $t=3 / 2 \mathrm{~s}$. In another $3 / 2 \mathrm{~s}$ energy will be recovered from the inductor.

Hence in $\left(\frac{3}{2}+\frac{3}{2}=3 \mathrm{~s}\right)$ energy dissipated in the resistor is $\int_{0}^{3}\left(112.5 \sin ^{2} \frac{\pi}{3} t\right) d t$

$$
=\frac{112.5}{2} \int_{0}^{3}\left(1-\cos \frac{2 \pi}{3} t\right) d t
$$

$$
=\frac{112.5}{2}\left[t-\frac{\sin \frac{2 \pi}{3} t}{\frac{2 \pi}{3}}\right]_{0}^{3}=\frac{112.5}{2}\left[3-\frac{\sin 2 \pi}{\frac{2 \pi}{3}}\right]=168.75 \mathrm{~J}
$$

14.33 Write three mesh equations for the circuit shown in Fig. 14.20.

Fig. 14.20

Solution

The mutual inductance and the self inductances are replaced by their impedances and the corresponding circuit is shown in Fig. 14.21.

Fig. 14.21
Applying KVL in the first mesh (leftmost mesh),
or $\quad(2+5 j \omega) i_{1}-8 j \omega i_{2}+3 j \omega i_{3}=V_{1}$

Applying KVL in the second mesh (middle mesh),

$$
\begin{align*}
& 5 j \omega\left(i_{2}-i_{1}\right)+3 j \omega\left(i_{2}-i_{3}\right)+\frac{1}{j \omega} i_{2}+3 j \omega\left(i_{2}-i_{3}\right)+3 j \omega\left(i_{2}-i_{1}\right)=0 \\
& -8 j \omega i_{1}+\left(14 j \omega+\frac{1}{j \omega}\right) i_{2}-6 j \omega i_{3}=0 \tag{ii}
\end{align*}
$$

Applying KVL in the third mesh (rightmost mesh),

$$
\begin{align*}
& 3 j \omega\left(i_{3}-i_{2}\right)+3 j \omega\left(i_{1}-i_{2}\right)+2 i_{3}=0 \\
& 3 j \omega i_{1}-6 j \omega i_{2}+(2+3 j \omega) i_{3}=0 \tag{iii}
\end{align*}
$$

or
3.20. A current of 10 A when flowing through a coil of 2000 turns establishes a flux of 0.6 milliwebers. Calculate the inductance L of the coil.
iolution
Given

$$
\begin{aligned}
I & =10 \mathrm{~A} \\
N & =2000 \text { turns } \\
\phi & =0.6 \times 10^{-3} \mathrm{wb} \\
L & =\text { to be calculated. }
\end{aligned}
$$

We have

$$
\begin{aligned}
L & =\frac{N \phi}{I}=\frac{2000 \times 0.6 \times 10^{-3}}{10} \\
& =0.12 \mathrm{H} .
\end{aligned}
$$

3.21. Determine the inductance L of a coil of 500 turns wound on an air cored torroidal ring having a mean diameter of 300 mm . The ring has a circular cross section of diameter 50 mm .

Solution

Given
Mean diameter,

$$
\begin{aligned}
N & =500 \text { turns } \\
D & =300 \mathrm{~mm}=300 \times 10^{-3} \mathrm{~m} \\
l & =\pi D=\pi \times 300 \times 10^{-3} \mathrm{~m} \\
& =0.942 \mathrm{~m}
\end{aligned}
$$

Cross-sectional diameter $d=50 \mathrm{~mm}$

$$
\begin{aligned}
& =50 \times 10^{-3} \mathrm{~m} \\
A & =\frac{\pi d^{2}}{4}=\frac{\pi \times\left(50 \times 10^{-3}\right)^{2}}{4} \\
& =1.963 \times 10^{-3} \mathrm{~m}^{2} .
\end{aligned}
$$

For air cored torroidal ring, $\mu_{r}=1$ and $L=$ is to be calculated.
We have, inductance $L=\frac{N^{2}}{\text { Reluctance }}$

$$
\left[\begin{array}{rl}
L & =\frac{\mu_{o} \mu_{r} A N^{2}}{l} \\
& =\frac{N^{2}}{l / \mu_{o} \mu_{r} A}=\frac{N^{2}}{\text { Reluctance }}
\end{array}\right.
$$

$$
\text { where Reluctance } \left.=\frac{l}{\mu_{o} \cdot \mu_{r} \cdot A} .\right]
$$

(The concept of reluctance is explained in article 3.18 and 3.24)

$$
\text { Here } \quad \begin{aligned}
\text { Reluctance } & =\frac{\pi \times 300 \times 10^{-3}}{4 \pi \times 10^{-7} \times 1 \times 1.963 \times 10^{-4}} \\
& =3.818 \times 10^{8} \mathrm{AT} / \mathrm{Wb} \\
\therefore \quad L & =\frac{N^{2}}{\text { Reluctance }}=\frac{500 \times 500}{3.818 \times 10^{8}} \\
& =0.000654 \mathrm{H} \\
& =6.54 \times 10^{-4} \mathrm{H} .
\end{aligned}
$$

3.22 Two coils having 80 and 350 turns respectively are wound side by side on a closed iron circuit of mean length 2.5 m with a cross-sectional area of $200 \mathrm{~cm}^{2}$. Calculate the mutual inductance between the coils. Consider relative permeability of iron as 2700.

Solution

Given

We have

$$
\begin{aligned}
N_{1} & =80 \text { turns } \\
N_{2} & =350 \text { turns } \\
l & =2.5 \mathrm{~m} \\
A & =200 \mathrm{~cm}^{2}=200 \times 10^{-4} \mathrm{~m}^{2} \\
\mu_{r} & =2700 \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\
M & =\text { to be calculated. }
\end{aligned}
$$

where reluctance $=\frac{l}{\mu_{o} \cdot \mu_{r} \cdot A} \quad($ Ref. article 3.18)

$$
\begin{aligned}
& =\frac{2.5}{4 \pi \times 10^{-7} \times 2700 \times 200 \times 10^{-4}} \\
& =36860 \mathrm{AT} / \mathrm{Wb}
\end{aligned}
$$

\therefore Mutual inductance $(M)=\frac{80 \times 350}{36860}$

$$
=0.760 \mathrm{H}
$$

[for two coils of turns N_{1} and N_{2}]
3.23. A solenoid 60 cm long and 24 cm in radius is wound with 1500 turns. Calculate:
(a) the inductance
(b) the energy stored in the magnetic field when a current of 5 A flows in the solenoid.

Solution

Given: $\quad l=60 \mathrm{~cm}=0.6 \mathrm{~m}, N=1500$ turns, $A=\pi(0.24)^{2} \mathrm{~m}^{2}$ $\mu=\mu_{o} \mu_{r}=4 \pi \times 10^{-7} \times 1, I=5 \mathrm{~A}$.
(a) Inductance:

We know $\quad L=\frac{\mu \cdot N^{2} \cdot A}{l}$

$$
\begin{aligned}
& =\frac{4 \pi \times 10^{-7} \times(1500)^{2} \times \pi(0.24)^{2}}{0.6} \\
& =0.8534 \mathrm{H}
\end{aligned}
$$

(b) Energy stored:

We have $\quad W=\frac{1}{2} L I^{2}$

$$
=\frac{1}{2}(0.8534)(5)^{2}=10.67 \mathrm{~J} .
$$

3.54 Calculate the self-inductance of an air-cored solenoid, 40 cm long, having an area of cross-section $20 \mathrm{~cm}^{2}$ and 800 turns.

Hints: $\quad L=\frac{\mu_{0} \cdot N^{2} \cdot A}{l}$
[here we assume $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$].

$$
\therefore \quad L=\frac{4 \pi \times 10^{-7} \times 800^{2} \times 20 \times 10^{-4}}{40 \times 10^{-2}}=4.022 \times 10^{-3} \mathrm{H}
$$

4-6 EXAMPLES

Example 4-1 (Section 4-3)

The cast steel core in Fig. E-4-1 is assumed to have constant permeability of 1.1×10^{-3} henrys per meter. The coil has 1200 turns. Effective dimensions are: $A_{s}=0.003 \mathrm{~m}^{2}, l_{s}=0.5 \mathrm{~m}, A_{g}=0.0034 \mathrm{~m}^{2}, l_{g}=0.0004 \mathrm{~m}$. The flux in the air gap is 0.003 weber. (a) Find the current in the coil. (b) Find the energy stored in the air gap. (c) Find the energy stored in the steel. (d) Find the selfinductance.

Solution

(a) Solve the magnetic circuit problem using a table.

\quad Part	$\phi($ weber $)$	$A\left(\mathrm{~m}^{2}\right)$	$B\left(\right.$ weber $\left./ \mathrm{m}^{2}\right)$	$H(\mathrm{At} / \mathrm{m})$	$l(\mathrm{~m})$	$H l(\mathrm{At})$
steel core	0.003	0.003	1.0	910	0.5	455
air gap	0.003	0.0034	0.884	704,000	0.0004	281

Fig. E-4-1.

The mmf required in the coil is $N I=\Sigma H l=736$ At. The current in the coil is $I=736 / 1200=0.613 \mathrm{amp}$.
(b) Use Eq. $4-14$ with $B_{k_{1}}=0$, and restrict it to just one portion of the magnetic circuit. For the air gap

$$
\begin{aligned}
W_{g} & =\left(l_{g} A_{g}\right) \frac{1}{2}\left(H_{g} B_{g}\right) \\
& =0.0004 \times 0.0034 \times \frac{1}{2} \times 704,000 \times 0.884 \\
& =0.422 \text { joules }
\end{aligned}
$$

(c) For the steel portion, the stored energy is

$$
\begin{aligned}
W_{s} & =\left(l_{s} A_{s}\right) \frac{1}{2}\left(H_{s} B_{s}\right) \\
& =0.5 \times 0.003 \times \frac{1}{2} \times 910 \times 1 \\
& =0.683 \text { joules }
\end{aligned}
$$

(d) The self-inductance is given by

$$
L=\lambda / i=N \phi / i=(1200 \times 0.003) / 0.613=5.87 \text { henrys }
$$

* s/p (seri -prodel)

* Trafolarin primer, sekonder, kaynak ve yak akimbrini bulunuz-

4 Matale de sf:11-6 iqin aszaten örnet setlive parmetrebri:

$$
\begin{aligned}
& V_{5}=220,59 \angle 0^{\circ} \\
& I_{1}=7,33 \angle-4^{\circ} \\
& V_{\text {yok }}=103,3^{\circ} \angle 0^{\circ} \\
& I_{2}=14,3 \angle-1^{\circ}
\end{aligned}
$$

$$
V_{\text {kisodevre }}=12,5 L^{0,95^{\circ}} \rightarrow \text { yonlis yozild }
$$

$$
I_{l(13)}=7,3 \underline{-32^{\circ}}
$$

Gizien:

$$
\begin{aligned}
& z_{\text {bakir }}=\frac{V_{\text {kijodeve }}}{I_{\text {kiJ2 }}}=\frac{12,5 \underline{0,95}}{7,3 \underline{-32^{\circ}}}=1,72 \angle 32,95^{\circ} \\
& 1,72 \int_{0,86}^{2}
\end{aligned}
$$

$$
0,86(\cos 32,95+J \sin 32,95)=\underbrace{0,72}_{R}+\underbrace{50,47}_{x_{R}}
$$

$$
X_{L}=2 \pi f L \quad L=\frac{0,47}{2,3,14,50}=1,5 \mathrm{mH}
$$

Esdeğer devreyi cizelim:

$u=2$ (Tr nesfomasyon ornil)
$V_{1} \cdot I_{1} \cdot \cos \left(\varphi_{v}-\varphi_{I}\right)=R_{1} \cdot I_{1}^{2}+P_{\text {Fes }}+R_{2} \cdot u^{2} \cdot x\left(\frac{I_{2}}{u}\right)^{2}+R_{y} \cdot u^{2} \cdot\left(\frac{I_{2}}{u}\right)^{2} \|$ $P_{\text {Pes }}=V_{1} \cdot I_{1} \cdot \cos \left(\varphi_{v_{1}}-\varphi_{I}\right)-R_{1} \cdot I_{1}{ }^{2}-R_{2} \cdot I_{2}^{2}-R_{y} \cdot I_{2}$ $X_{1} \cdot I_{1} \cdot \sin \left(\varphi_{v_{1}}-I_{11}\right)=X_{1} \cdot I_{1}{ }^{2}+Q_{m s}+X_{2} \cdot u^{2} \cdot \frac{I_{2}{ }^{2}}{u^{2}}+X_{y} \cdot u^{2} \cdot \frac{I_{2}^{2}}{u^{2}}$ $Q_{\text {ms }}=V_{1} \cdot I_{1} \cdot \sin \left(\varphi_{1}-\varphi_{1_{1}}\right)-X_{1} \cdot I_{1}^{2}-X_{2} \cdot I_{2}^{2}-X_{y} \cdot I_{2}^{2}$

$$
\operatorname{trn} \varphi=\frac{Q_{m s}}{\text { Pres }} \Rightarrow \cos \varphi
$$

$$
-V_{1}+\left(R_{1}+X_{1}\right) \cdot I_{1}+V_{c}=0
$$

$$
V_{c}=V_{1}-\left(R_{1}+J^{-X_{1}}\right) \cdot I_{1}
$$

$$
P_{\text {res }}=V_{c} \cdot I_{e} \cdot \cos \varphi \Rightarrow I_{e}=\frac{P_{\text {fes }}}{V_{c} \cdot \cos \varphi}
$$

$$
\text { Pres }=R_{\text {fes }} \cdot I_{e^{2}} \Rightarrow R_{\text {fes }}=\frac{P_{\text {fes }}}{I_{e}{ }^{2}}
$$

$$
x_{m s}=\frac{Q_{m s}}{I_{e}^{2}}
$$

$$
R_{\text {rep }}=\frac{R_{F e s}{ }^{2}+X_{m s^{2}}}{R_{\mathrm{Fes}}}
$$

$$
=\frac{3^{2}+4^{2}}{3}=\frac{25}{3}
$$

$$
\sum_{i j 5}^{\frac{1}{y}} 3 \quad \rightarrow \frac{1}{\frac{25}{3} \quad 3 \leq \frac{25}{4}}
$$

$$
\begin{aligned}
& x_{m p}=\frac{R_{\text {fes }^{2}+x_{m \mu^{2}}}^{x_{m s}}}{} \\
&=\frac{3^{2}+4^{2}}{4}=\frac{25}{4}
\end{aligned}
$$

$$
R_{f_{p}} \xi_{1}^{\text {Refp }} \sum_{3}^{I_{m p}} \quad I_{r_{\text {fep }}}=\frac{V_{c}}{R_{\text {rep }}} \quad I_{x_{m p}}=\frac{V_{c}}{x_{m p}}
$$

3.46. A coil having a resistance of 10Ω and inductance of 15 H is connected across a d.c. voltage of 150 V . Calculate: (i) The value of current at 0.4 sec after switching on the supply. (ii) With the current having reached the final value the time it would take for the current to reach a value of 9 A after switching off the supply.

Solution

It is given that

$$
\begin{aligned}
V(\text { d.c }) & =150 \mathrm{~V} \\
R & =10 \Omega \\
L & =15 \mathrm{H}
\end{aligned}
$$

(i) \therefore The value of the current

$$
\begin{aligned}
i & =\frac{V}{R}\left(1-e^{-\frac{R}{L} t}\right)=\frac{150}{10}\left(1-e^{-\frac{10}{15} \times 0.4}\right) \\
& =15\left(1-e^{-\frac{4}{15}}\right) \\
& =3.51 \mathrm{~A}
\end{aligned}
$$

(ii) Let us assume that at $t=t_{1}, i=9 \mathrm{~A}$

$$
\begin{array}{rlrl}
\therefore & 9 & =15 \times e^{-\frac{t_{1}}{1.5}} \\
e^{-\frac{t_{1}}{1.5}} & =\frac{9}{15}
\end{array}
$$

taking $\log _{e}$ in both sides,

$$
\begin{aligned}
-\frac{t_{1}}{1.5} & =\log _{e} \frac{9}{15} \\
\therefore \quad t_{1} & =0.7662 \mathrm{sec} .
\end{aligned}
$$

3.47. For the network shown in Fig. 3.36
(a) Find the mathematical expression for the variation of the current in the inductor following the closure of the switch at $t=0$ on to position ' a ';
(b) The switch is closed on to position ' b ' when $t=100 \mathrm{~m} / \mathrm{sec}$, calculate the new expression for the inductor current and also for the voltage across R;
(c) Plot the current waveforms for $t=0$ to $t=200 \mathrm{~m} / \mathrm{sec}$.

Fig. 3.36 Network of Ex. 3.47

Solution

(a) For the switch in position ' a ', the time constant is

$$
\begin{aligned}
\mathrm{r}_{a} & =\frac{L}{r}=\frac{0.1}{10}=10 \text { milli-sec(ms) } \\
\therefore \quad i_{a} & =\frac{V}{r}\left(1-e^{-\frac{t}{r_{a}}}\right)=\frac{10}{10}\left(1-e^{-\frac{t}{10 \times 10^{-3}}}\right) \\
& =\left(1-e^{-\frac{t}{10^{-2}}}\right) \mathrm{A} .
\end{aligned}
$$

(b) For the switch in position ' b ' the time constant

$$
\begin{aligned}
\mathrm{r}_{b} & =\frac{L}{R+r}=\frac{0.1}{15+10}=4 \mathrm{~ms} \\
\therefore \quad i_{b} & =\frac{V}{R} e^{-\frac{t}{r_{b}}} \\
& =\frac{10}{10} e^{-\frac{t}{4 \times 10^{-3}}}=e^{-\frac{t}{4 \times 10^{-3}}} \mathrm{~A} .
\end{aligned}
$$

(for decaying)

The current continues to flow in the same direction as before, therefore the voltage drop across R, is negative to the direction of the arrow shown in Fig. 3.36. $v_{R}=i_{b} \cdot R=-15 \times$ $e^{-t / 4 \times 10} \mathrm{~V}$.

Fig. 3.37 Current profile
It will be noted that in the first switched period, five times the time constant is $50 \mathrm{~m} / \mathrm{sec}$. The transient has virtually finished at the end of this time and it would not have mattered whether the second switching took place then or later. During the second period the transient took only $25 \mathrm{~m} / \mathrm{sec}$.
(c) The profile current waveform has been plotted in Fig. 3.37.
3.48. For the network shown in Fig. 3.36 (Ex. No. 3.47) the switch is closed on the position ' a '. Next, it is closed on to position ' b ' when $\tau=10 \mathrm{~ms}$. Again, find the expression of current and hence draw the current wave forms.

Solution

For the switch in position ' a ', the time constant Y ' is $10 \mathrm{~m} / \mathrm{sec}$ as in Ex. No. 3.47, and the current expression as is before. However, the switch is moved to position ' b ' while the transient is proceeding. When $t=10 \mathrm{~m} / \mathrm{sec}$.

$$
i=\left(1-e^{-\frac{t}{10 \times 10^{-3}}}\right)=\left(1.0-e^{-\frac{10 \times 10^{-3}}{10 \times 10^{-3}}}\right)
$$

$$
=\left(1-e^{-1}\right)=0.632 \mathrm{~A}
$$

i.e., the second transient commences with an initial current in R of 0.632 A .
\therefore The current decay is, $i_{b}=0.632 \times$ $\frac{t}{4 \times 10^{-3}}$ A. which is shown in Fig. 3.38.

Fig. 3.38
3.49. A d.c. voltage of 150 V is applied to a coil whose resistance is 10Ω and inductance is 15 H . Find: (i) the value of the current 0.3 sec after switching on the supply; (ii) with the current having reached the final value, how much time it would take for the current to reach a value of 6 A after switching off the supply.

Solution

(a) It is given that

$$
V=150 \mathrm{~V}, R=10 \Omega, L=15 \mathrm{H}
$$

\therefore The value of the current 0.3 sec after switching on is

$$
i=\frac{150}{10}\left(1-e^{-\frac{10}{15} \times 0.3}\right)=2.72 \mathrm{~A} .
$$

(b) After switching off the supply, the current will be decaying and is given by

$$
\begin{aligned}
i & =\frac{V}{R} e^{-\frac{R}{L} t} \quad \therefore \quad 6=\frac{150}{10} e^{-\frac{10}{15} \times t} \\
\therefore \quad t & =1.375 \mathrm{sec} .
\end{aligned}
$$

3.50. A coil of resistance 24Ω and having inductor 36 H is suddenly connected to a d.c. of 60 V supply. Determine
(a) the initial rate of change of current $\left(\frac{d i}{d t}\right)$
(b) the time-constant
(c) the current after 3 sec .
(d) the enrgy stored in the magnetic field at $t=3 \mathrm{sec}$.
(e) the energy lost as heat energy at $t=3 \mathrm{sec}$.

Solution

It is given that: $V=60 \mathrm{~V}, R=24 \Omega, L=36 \mathrm{H}$
(a) Initial rate of change of current:

$$
\begin{aligned}
i & =\frac{V}{R}\left(1-e^{-\frac{R}{L} \cdot t}\right) \\
\therefore \quad \frac{d i}{d t} & =-\frac{V}{R} \cdot\left(-\frac{R}{L}\right) \cdot e^{-\frac{R}{L} \cdot t} \\
& =\frac{V}{L} e^{-\frac{R}{L} \cdot t}: \\
\text { When } \quad t & =0, \\
\frac{d i}{d t} & =\frac{V}{L} \cdot e^{o}=\frac{V}{L}=\frac{60}{36}=1.67 \mathrm{~A} / \mathrm{sec}:
\end{aligned}
$$

(b) Time constant (\boldsymbol{P}) :

$$
Y=\frac{L}{R}=\frac{36}{24}=1.5 \sec
$$

(c) Current; the current at $t=3$ see is

$$
i=\frac{V}{R}\left(1-e^{-\frac{N}{1} \cdot t}\right)=\frac{60}{24}\left(1-e^{-\frac{24}{36} \times 3}\right)=2.16 \mathrm{~A}
$$

(d) Energy stored:
at $\quad t=3$ sec, the energy stored in the magnetic field is $\frac{1}{2}<i^{2}$

$$
=\frac{1}{2} \times 36 \times(2.16)^{2}=84 \mathrm{~J}
$$

(e) Energy lost as heat energy:
at $C=3 \mathrm{sec}$. the energy lost as heat energy is $i^{2} \times R=(2.16)^{2} \times 24 \equiv 112 \mathrm{~J}$.
3.51. If the vertical component of the earth's magnetic field be $4.0 \times 10^{-5} \mathrm{~Wb} \mathrm{~m}^{-2}$, then what will be the induced potential difference produced between the rails of a meter-gauge running north-south when a train is running on them with a speed of $36 \mathrm{~km} \mathrm{~h}^{-1}$?

Solution

When a train is on the rails, it cuts the magnetic flux lines of the vertical component of the earth's magnetic field. Hence, a potential dfifference is induced between the ends of its axle.

Distance between the rails $=1 \mathrm{~m}$; speed of train $(v)=36 \mathrm{~km} / \mathrm{hr}=10 \mathrm{~m} / \mathrm{sec}$. Magnetic field $B_{V}=4.0 \times 10^{-5} \mathrm{~Wb} / \mathrm{m} . \therefore$ The induced potential difference in $e=B v l=\left(4.0 \times 10^{-5}\right)$ $\times 10 \times 1=4.0 \times 10^{-9} \mathrm{~V}$.
3.52. The current in the coil of a large electromagnet falls from 6 A to 2 A in 10 ms . The induced emf across the coil is 100 V . Find the self-inductance of the coil.

Solution

The self-induced emf is given by

$$
e=-L \frac{d i}{d t}
$$

Here

$$
d i=2-6=-4 \mathrm{~A}
$$

$$
d t=10 \mathrm{~ms}=10^{-2} \mathrm{sec}
$$

and

$$
e=100 \mathrm{~V}
$$

$$
\therefore \quad L=-e \frac{d t}{d i}=-100 \times \frac{10^{-2}}{-4}=0.25 \mathrm{H} .
$$

3.53 The current (in ampere) in an inductor is given by $i=5+16 t$, where t is in seconds. The self-induced emf in it is 10 mV . Find (a) the self-inductance, and (b) the energy stored in the inductor and the power supplied to it at $t=1$.

Solution

The induced emf in the inductor due to current change is

$$
\begin{aligned}
|e| & =L \frac{d i}{d t} \\
\therefore \quad & L
\end{aligned}
$$

Hence $\quad i=5+16 t$, from this, we have

$$
\begin{aligned}
& \frac{d i}{d t} & =0+16=16 \mathrm{~A} \mathrm{sec}^{-1}, \text { and } e=10 \mathrm{mV}=10 \times 10^{-3} \mathrm{~V} \\
\therefore & L & =\frac{10 \times 10^{-3} V}{15 \mathrm{~A} \mathrm{sec}^{-1}}=0.666 \times 10^{-3} \mathrm{H}=0.666 \mathrm{mH}
\end{aligned}
$$

(b) The current at $t=1 \mathrm{sec}$ is

$$
\begin{aligned}
i & =5+16 t=5+16 \times 1 \\
& =21 \mathrm{~A}
\end{aligned}
$$

\therefore Energy stored in the inductor is

$$
\begin{aligned}
\frac{1}{2} L i^{2} & =\frac{1}{2} \times\left(0.666 \times 10^{-3}\right) \times(21)^{2} \\
& =137.8 \times 10^{-3}=137.8 \mathrm{~mJ}
\end{aligned}
$$

Power supplied to the inductor at $t=1 \mathrm{sec}$ is

$$
P=l i=\left(10 \times 10^{-3} \mathrm{~V}\right) \times 21=0.21 \mathrm{~W}
$$

3.55 A solenoid of inductance L and resistance R is connected to a battery. Prove that the time taken for the magnetic energy to reach $1 / 4$ of its maximum value is $L / R \log _{e}(2)$.

Solution

The growth of current in an $L R$ circuit is given by

$$
\begin{equation*}
I=I_{0}\left(1-e^{-\frac{R}{L} \cdot t}\right) \tag{i}
\end{equation*}
$$

where I_{0} is the maximum current. The energy stored at time t is

$$
u=\frac{1}{2} L l^{2}
$$

We are required to find the time at which the energy stored is $1 / 4$ the maximum value, i.e., when $u=\frac{u_{o}}{4}$ where $u_{o}=\frac{1}{2} L I_{0}^{2}$.
i.e., $\quad \frac{1}{2} L I^{2}=\frac{1}{4}\left(\frac{1}{2} L I_{0}^{2}\right) \quad$ or $\quad I=\frac{I_{0}}{2}$
\therefore Using the equation 1 , we have

$$
\begin{array}{rlrl}
\frac{I_{0}}{2} & =I_{0}\left(1-e^{-\frac{R}{L} t}\right) \\
\text { or } & & \frac{1}{2} & =1-e^{-\frac{R}{L} \cdot t} \\
\text { or } & e^{-\frac{R}{L} t} & =\frac{1}{2} \\
\therefore & -\frac{R}{L} t & =\log _{e}\left(\frac{1}{2}\right)-\log _{e}(2) \\
& & t & =\frac{L}{R} \log _{e}(2)
\end{array}
$$

3.62 A coil has a resistance of 5Ω and an inductance of 1 H . At $t=0$ it is connected to .2 V battery. Find (a) the rate of rise of current at $t=0$; (b) the rate of rise of current when $i=0.2 \mathrm{Amps}$ and (c) the stored energy when $i=0$ and $i=0.3 \mathrm{~A}$.

Solution

$$
\mathrm{r}=\frac{L}{R}=\frac{1}{5}=0.2 \mathrm{sec}
$$

(a) $\frac{d i}{d t}=\frac{E}{L} e^{-\frac{t}{\gamma}}=2 e^{-S t}$
at $t=0, \quad \frac{d i}{d t}=2 \mathrm{~A} / \mathrm{sec}$.
(b) $i=\frac{E}{R}\left(1-e^{-5 t}\right)$

$$
=0.4\left(1-e^{-5 t}\right)
$$

time t_{1} when $i=0.2 \mathrm{~A}$ is
or

$$
\begin{aligned}
0.2 & =0.4\left(1-e^{-5 t_{1}}\right) \\
t_{1} & =0.1386 \mathrm{sec} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{d i}{d t} & =2 e^{-5(0.1386)} \\
& =1 \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

(c) At $i=0$, stored energy $=0$ when $i=0.3 \mathrm{~A}$, stored energy

$$
=\frac{1}{2} L i^{2}=\frac{1}{2} \times 1 \times(0.3)^{2}=0.045 \mathrm{~J} .
$$

