Question 1.

Consider a discrete model for the location of a gas in the bulk state and the surface state. The gas has N atoms in a container with M spatial cells. The surface of the container has N spatial cells where the atoms may be absorbed. An atom in the bulk state can have two magnetic moments $\vec{\mu}=\bar{\mp} \mu_{0} \hat{\imath}$. An atom in the surface state can have only one magnetic moment $\vec{\mu}=+\mu_{0} \hat{\jmath}$. The system placed in a uniform magnetic field of $\vec{B}=+B_{0} \hat{\jmath}$. The energy of a magnetic moment in a magnetic field is $\varepsilon=-\vec{\mu}$. \vec{B}. Let n be the number of atoms absorbed by the surface.
a) Find the possible number of microstates in microcanonical ensemble.
b) Using the minimization of free energy, find a relation between the number of atoms absorbed by the surface n and temperature of the system T. Don't try to express n as a function of T explicitly.
c) What is the number of absorbed atoms n for the limiting case $T \rightarrow 0$?

State with no absorption

State with absorption

Question 2.

A simple model of a rubber band is described as a one-dimensional polymer, with N monomers of length d, that can point in either $+y$ or $-y$. A mass of m is suspended from the free end of the band as shown in the figure.
a) Find the extension of the rubber band L as a function of the temperature $T, L(T)$, in microcanonical ensemble.
b) Find the extension of the rubber band L as a function of the temperature $T, L(T)$, in canonical ensemble.

Question 3.

A two-dimensional gas confined in the (x, y) plane is characterized by N non interacting particles in equilibrium at the temperature T. The Hamiltonian (energy) of the single particle is

$$
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} m w^{2}\left[a\left(x^{2}+y^{2}\right)+b x y\right]
$$

where p_{x}, p_{y} are the components of the momentum and m, w, a and b are constants. $\left(a>0\right.$ and $\left.a^{2}>b^{2}\right)$. $\int_{-\infty}^{+\infty} e^{-\left(A x^{2}+B x\right)} d x=e^{B^{2} / A}\left(\frac{\pi}{A}\right)^{1 / 2}$.
a) In canonical ensemble, find the energy of the system as a function of temperature $E(T)$.
b) Find the grand partition function for the system. (Leave you result in summation form, don't do further calculation)

Question 4.

Consider a system of three particles with three energy eigenstates of $0, \varepsilon, 3 \varepsilon$ and 5ε. Write the partition function for three particle system.
a) If the particles are non-identical.
b) If the particles are obeying Bose-Einstein statistics.
c) If the particles are obeying Fermi-Dirac statistics

