## Question 1 (20P)

A (perfect) dipole $\vec{P}$ is situated above an infinite grounded conducting plane as shown in the figure. The dipole's positive end is at $(0, a, 3 a)$ and negative end is at $(0,-a, 2 a)$.
a) Find the dipole moment vector $\vec{P}$ and image dipole moment vector $\overrightarrow{P^{\prime}}$ in cartesian coordinates.
b) Find the potential in cartesian coordinates $V(x, y, z)$ above the plane using method of images.
c) Find the charge distribution $\sigma(x, y, z)$ on the plane in cartesian coordinates.


## Question 2 (20P)

A specified charge density $\sigma_{0}(\theta)=\frac{\sigma_{0}}{2}\left(1-3 \sin ^{2} \theta\right)$ is glued over the surface of a spherical shell of radius $R$. Find the resulting potential inside and outside the sphere.

## Question 3 (20P)

A long straight wire, carrying uniform line charge $\lambda_{0}$ is placed coaxially with rubber insulation of long cylindrical shell of inner radius $a$ and outer radius $b$ with uniform line charge density $-\lambda_{0}$ and varying polarization $\vec{P}=3 P_{0} s \hat{s}$.
a) Find the bound charges.
b) Find the electric displacement vector $\vec{D}$ at $s \leq a, a \leq s \leq b$ and $s \geq b$.
c) Find the electric field vector $\vec{E}$ at $s \leq a, a \leq s \leq b$ and $s \geq b$.


## Question 4 (20P)

A spherical neutral (uncharged) conductor, of radius $a$ is surrounded by linear dielectric material of relative permittivity (dielectric constant) $\epsilon_{r}$ and uniform embeded charge density $\rho_{0}$ out to radius $b$.
a) Find the electric displacement vector $\vec{D}$ at $r \leq a, a \leq r \leq b$ and $r \geq b$.
b) Find the electric field vector $\vec{E}$ at $r \leq a, a \leq r \leq b$ and $r \geq b$.
c) Find the energy of this configuration.


## Question 5 (20P)

A thick slab extending from $y=-a$ to $y=+a$ (and infinite in the $x$ and z directions) is pulled with velocity $\vec{v}=v_{0} \hat{z}$.
a) Find the magnetic field $\vec{B}$, as a function of $y$, at $a \leq y \leq-a$, $y \geq a$ and $y \leq a$.
b) Find the magnetic vector potential $\vec{A}$ above the plane.

Hint: $\vec{A}$ must be parallel to the current and depends only $y$.


## Question 6 (20P)

A current wire is bent into a loop as shown in the figure.
a) Find the magnetic field vector $\vec{B}$ at the origin.

You can use the ready equations for the magnetic field of a straight wire and a circular arc.
b) Find the total magnetic dipole moment $\vec{m}$ of the loop.
c) Find the magnetic vector potential of the loop $\vec{A}(x, y, z)$.
d) Find the force acting on wire 2 , if it is placed in a varying external magnetic field of $\vec{B}=\frac{B_{0}}{a} y \hat{z}$.


