Question 1 (20P)

A (perfect) dipole \vec{P} is situated above an infinite grounded conducting plane as shown in the figure. The dipole's positive end is at (0, a, 3a) and negative end is at (0, -a, 2a).

a) Find the dipole moment vector \vec{P} and image dipole moment vector $\vec{P'}$ in cartesian coordinates.

b) Find the potential in cartesian coordinates V(x, y, z) above the plane using method of images.

c) Find the charge distribution $\sigma(x, y, z)$ on the plane in cartesian coordinates.

Question 2 (20P)

A specified charge density $\sigma_0(\theta) = \frac{\sigma_0}{2}(1 - 3sin^2\theta)$ is glued over the surface of a spherical shell of radius *R*. Find the resulting potential inside and outside the sphere.

Question 3 (20P)

A long straight wire, carrying uniform line charge λ_0 is placed coaxially with rubber insulation of long cylindrical shell of inner radius *a* and outer radius *b* with uniform line charge density $-\lambda_0$ and varying polarization $\vec{P} = 3P_0s\hat{s}$. **a)** Find the bound charges.

b) Find the electric displacement vector \vec{D} at $s \le a$, $a \le s \le b$ and $s \ge b$.

c) Find the electric field vector \vec{E} at $s \le a$, $a \le s \le b$ and $s \ge b$.

Question 4 (20P)

A spherical neutral (uncharged) conductor, of radius *a* is surrounded by linear dielectric material of relative permittivity (dielectric constant) ϵ_r and uniform embedde charge density ρ_0 out to radius *b*.

a) Find the electric displacement vector \vec{D} at $r \leq a$, $a \leq r \leq b$ and $r \geq b$.

b) Find the electric field vector \vec{E} at $r \le a$, $a \le r \le b$ and $r \ge b$.

c) Find the energy of this configuration.

Question 5 (20P)

A thick slab extending from y = -a to y = +a (and infinite in the *x* and *z* directions) is pulled with velocity $\vec{v} = v_0 \hat{z}$. **a)** Find the magnetic field \vec{B} , as a function of *y*, at $a \le y \le -a$, $y \ge a$ and $y \le a$. **b)** Find the magnetic vector potential \vec{A} above the plane.

Hint: \vec{A} must be parallel to the current and depends only y.

Question 6 (20P)

A current wire is bent into a loop as shown in the figure. **a)** Find the magnetic field vector \vec{B} at the origin. You can use the ready equations for the magnetic field of a straight wire and a circular arc. **b)** Find the total mean time disclosure \vec{W} of the lase

b) Find the total magnetic dipole moment \vec{m} of the loop.

c) Find the magnetic vector potential of the loop $\vec{A}(x, y, z)$. d) Find the force acting on wire 2, if it is placed in a varying

external magnetic field of $\vec{B} = \frac{B_0}{a} y \hat{z}$.

