	YTÜ - Fen-Edebiyat Fakültesi		NOT TABLOSU						
	FİZİK Bölümü	Q1		Q2	Q3		Q4	TOPLAM	
Adı Soyadı									
Öğrenci Numarası	Grup No 1								
Bölümü		_		Sınav	Tarihi	08.0	9.2021	10:00-13:00	
Dersin Adı	Classical Electromagnetic Theory 1 FIN	AL Sina Süres		180 lak.	Sınav Yeri				
Dersi veren Öğretim Üyesinin Adı Soyadı	Çetin TAŞSEVEN				İmza				

You must show all of your work explicitly and clearly, and must explain your reasoning to get full credit.

QUESTIONS

Q1. (30/100) Consider a spherical cavity of radius R in a linear dielectric medium with $\chi_e=\frac{3}{2}$ in uniform electric field $\vec{E}=E_0\hat{z}$.

- a) Find the potential inside the cavity $r \leq R$.
- **b)** Find the potential outside the cavity $r \geq R$.
- c) Find the electric field inside the cavity $r \leq R$.
- **d)** Find the electric field outside the cavity $r \ge R$.
- **e)** Find the surface bound charge density on the cavity.

Q2. (25/100)

A spherical shell of radius R carries a surface current density given by $\overrightarrow{K_1} = K_0 \widehat{\emptyset}$ ($0 \le \theta \le \frac{\pi}{2}$) and $\overrightarrow{K_2} = -4K_0 \widehat{\emptyset}$ ($\frac{\pi}{2} \le \theta \le \pi$). Find the magnetic field at the center of the sphere (P).

Q3. (25/100) A long solid cylinder of radius a and volume charge density $\rho=ks$ is coaxial with larger cylindrical shell of radius b and uniform surface charge density σ_0 . The cylinders are pulled parallel to z-axis

in opposite direction with constant velocity (\vec{v}_a and \vec{v}_b) as shown in the figure.

- a) Find the magnetic field vector at $s \le a$ and $a \le s \le b$.
- **b)** what must be the ratio $\frac{v_a}{v_b}$ in order to have zero magnetic field at s>b.
- c) Find the magnetic vector potential at $s \le a$, $a \le s \le b$ and s > b.

Q4. (30/100) A current wire *I* bent into shape shown as shown in the figure.

- a) Find the magnetic field vector at the origin.
- **b)** Find the magnetic dipole moment vector.
- c) Find the vector potential in Cartesian coordinates at point P(x, y, z).
- **d)** Find the magnetic field vector in Cartesian coordinates at point P(x, y, z).
- **e)** Find the magnetic force acting on the part on y-axis at $R \le y \le 2R$ if the loop is placed in a magnetic field given by $\vec{B} = B_0(z\hat{y} + 2y\hat{z})$.

