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Synthesis of biopolymers: proteins, polyesters, polysaccharides 
and polynucleotides 
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The synthesis of proteins, polyesters, polysaccharides 
and polynucleotides can be adapted to produce new 

macromolecular materials. Proteins of designed sequence, 
and with specific chemical functions, conferred by the 
incorporation of unnatural amino acids, have been prepared 
in genetically engineered bacteria. Polyesters, useful 

as biodegradable thermoplastics, have been made in 
bacterial hosts, and more recently, in transgenic plants. 

Polysaccharides, made either chemically or enzymatically, 

are being explored for biomedical applications, and synthetic 

polynucleotides could eventually serve as scaffolds in the 

construction of nanoscale materials. 
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Introduction 
Biopolymers have long been of interest to materials 
scientists because of their unique structural properties. 
Evolutionary constraints have resulted in classes of 
materials that are particularly suited for specific func- 
tions. Examples include proteins, which play structural 
or catalytic roles, polysaccharides, which may provide 
structural integrity in addition to energy storage, and 
polynucleotides, which in their natural environments, 
direct the synthesis of proteins and thus determine the 
characteristics of organisms.In addition to the very specific 
relations between structure and function, another aspect of 
biopolymers intriguing to materials scientists is the preci- 
sion with which they are made. In contrast to conventional 
synthetic polymers, which show a distribution of monomer 
sequences and molecular weights, proteins and nucleic 
acids are of defined length and have precisely determined 
monomer sequences. Because the sequence and length 
of proteins are determined by the genetic material (DNA 
[deoxyribonucleic acid] and [ribonucleic acid] RNA) in 
the cell, genetic engineering allows the fidelity of protein 
synthesis to be harnessed to produce new polymers having 
precisely defined chemical and physical properties. 

The advent of recombinant DNA technology has con- 
tributed greatly to the investigation of natural polymers 

as materials. Genes encoding new protein-based polymers 
can be designed and prepared by chemical synthesis, or 
alternatively, genes encoding natural proteins of interest 
can be isolated from the organisms in which they occur 
and cloned. In either case, natural or artificial proteins can 
then be produced in genetically engineered bacteria. 

In this article we will discuss recent advances in the 
synthesis of several structural proteins, including spider 
silk, aquatic insect silks, and artificial silk-like proteins, 
in addition to artificial proteins that contain unnatural 
amino acids which have the potential to introduce unique 
materials properties. We will then discuss, firstly, the use of 
bacterial energy storage polyesters as novel, biodegradable 
plastics that can be ‘engineered’ to have useful materials 
properties, secondly, the use of polysaccharides, to study 
problems in polymer synthesis such as regioselectivity 
and stereochemistry, and, thirdly, polynucleotides, which 
have potential application in the fabrication of nanoscale 
devices. 

Proteins 
The chemical and materials properties of silks of the 
spider, NqMa chvipes, [l-S] the silkworm, Born&x mori, 
[2,6,7] and other insects, notably Manduca sexta and 
Sesamina nonagtvidcs, [8,9] have been studied extensively. 
The rigidity and high tensile strength of B. mot+ silk fibroin 
can be attributed to the fact that the protein consists 
mainly of hydrogen-bonded, stacked antiparallel p-sheets. 
The p-sheets are formed from repeating sequences of the 
amino acids (largely GlyAlaGlyAlaGlySer) and give rise to 
a rigid, crystalline protein. 

Artificial proteins made up of folded-chain lamellar crystals 
of controlled thickness and surface chemistry have been 
successfully prepared by biological synthesis in bacterial 
hosts [lO,ll]. The rationale for the design of these 
proteins is the choice of a repeating amino acid sequence 
(alternating alanine and glycine residues) that allows the 
formation of &strands, with reverse turns introduced by 
the periodic insertion of amino acids with charged or bulky 
side chains (e.g. glutamic acid). The B-strands associate 
in arrays of hydrogen-bonded sheets which then stack 
to form lamellar crystals. The thickness of the crystal 
is determined by the length of the p-strands, that is, 
by the periodicity of insertion of the bulky amino acid 
residues. The surface properties of the crystalline protein 
are determined by the nature of the bulky side chains. 

These chain-folded lamellar crystals are synthesized in 
Eschetichia co/i cells transformed with synthetic genes 
encoding the desired amino acid sequences. The process 
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from gene synthesis to protein production has been 
described in detail [IO]. Briefly, oligonucleotides encoding 
the desired amino acid sequence are prepared using solid 
phase organic synthesis, and are then ligated to form a 
population of DNA multimers. Multimers of appropriate 
size are inserted into a bacterial expression vector, which is 
then used to transform E. co/i cells. The transformed cells 
yield the target protein under appropriate fermentation 
conditions. 

A family of periodic polypeptides that has been shown 
to adopt B-sheet secondary structure has the amino acid 
sequence ([AlaGly],GluGly), where x =3-6 and n = 14, 20, 
28 or 36 [lO,ll]. Evidence for the formation of B-sheets 
is obtained by infrared spectroscopy, Raman spectroscopy, 
and cross-polarization magic angle spinning nuclear mag- 
netic resonance (CP/MAS NMR) spectroscopy [lo]. The 
infrared spectrum of ([AlaGly]3GlyGlu)36 for example, 
shows vibrational modes characteristic of the B-sheet 
structure, and additional vibrations indicating the presence 
of a regularly alternating chain direction characteristic 
of antiparallel B-sheets. Other features of the spectrum 
indicate the presence of secondary structures unrelated to 
antiparallel B-sheets; these structures are probably reverse 
B- or y-turns. Raman spectroscopy and CP/MAS NMR 
spectroscopy of ([AlaGly]3GlyGlu)36 further confirm the 
antiparallel B-sheet structure and both kinds of spectra 
contain weaker signals that have been attributed to B 
or y-turn structures. X-ray diffraction patterns of crystal 
mats of a series of polymers, ([AlaGlylxGlyGlu),, where 
x=3, 4, 5, 6 and n = 14, 20, 28 and 36, respectively, 
give strong evidence for a crystalline antiparallel B-sheet 
architecture with a chain-folded lamellar structure as the 
basic crystalline unit [lo]. The unit cell dimensions are 
consistent with those previously reported for silk fibroins. 

The incorporation of unnatural amino acids into artificial 
proteins provides a means of expanding the range of 
functional groups usually found in proteins, and of 
placing these groups at predetermined sites along the 
polypeptide chain. Recently, proteins containing selenium, 
fluorine, potentially conductive moieties, and proline 
analogues have been obtained by substituting unnatural 
amino acids for their naturally occurring counterparts 
during protein synthesis in genetically engineered bacteria 
[12-14,15’,16]. A method for determining the potential 
for incorporating unnatural amino acids into recombinant 
bacterial proteins has been described [12]. 

Selenium proteins, containing the repeat 
sequence ([GlyAla]3GlySeMet), are expected to provide 
accessible selenium groups at the protein crystal surface 
because the placement of a bulky residue following the 
GlyAla dyads is favorable for introducing a turn into the 
B-strand 1131. The bulky selenium atoms should thus be 
available for chemical modification, for example, alkylation 
to form trialkylselenonium halides, or oxidation to form 
reactive selenoxides. 

Polymers containing fluorinated amino acids are expected 
to have many of the characteristics of conventional 
fluoropolymers, including good hydrolytic stability, ex- 
cellent solvent resistance, low coefficient of friction, 
and low surface energy. p-Fluorophenylalanine [14] was 
substituted for phenylalanine in proteins containing the 
repeat sequence ([AlaGly]3PheGly), to an extent of 
95-100% during protein synthesis in an E. co/i host 
strain which was dependent on phenylalanine for growth. 
Evidence for B-sheet structure was obtained from Fourier 
transform infrared spectroscopy (FTIR) and wide angle 
X-ray scattering analysis. 

3-Thienylalanine (3-TA) was chosen for incorporation into 
genetically engineered proteins because of its similarity 
to the 3-alkylthiophenes [15’], which when polymerized 
are excellent organic conductors, showing conductivities 
of about 2000Scm-1 after doping. The incorporation 
of 3-thienylalanine into genetically engineered proteins 
may provide a means for electrodepositing proteins on 
electrodes or for fabrication of enzyme-based sensory 
elements. Electron absorption and NMR spectra of 
([GlyAla]3GlyPhe)r3, in which 3-thienylalanine is substi- 
tuted for phenylalanine, indicate that the highest extent of 
substitution achieved to date is approximately 80% [15*]. 

Repeating polypeptides of the sequence([AlaGly],GluGly) 
adopt chain-folded, crystalline architectures, as described 
above [ 10,111. However, the introduction of proline residues 
into the repeat sequence, as in ([AlaGly],ProGluGly), 
produces proteins having disordered structures in the 
solid state [17]. To determine whether replacement of 
proline with a smaller amino acid residue would allow 
B-sheet formation, azetidine-2-carboxylic acid (Aze) was 
substituted for proline in polypeptides of repeating 
sequence ([AlaGly]~ProGluGly) [16]. Aze substitution 
for proline was estimated by NMR spectroscopy to be 
approximately 40%, which is sufficient to allow the 
formation of antiparallel B-sheets as indicated by FTIR 
spectroscopy [ 161. 

In addition to the production of artificial proteins, natural 
proteins, such as spider silk, are being synthesized using 
synthetic genes [ 1,18’]. The dragline silk of spiders has the 
tensile strength of Kevlar@ and seven times the elasticity 
[l]. The structures of the proteins found in dragline silk 
are similar to that of B. mori silk fibroin in that glycine and 
alanine are the predominant amino acids, but in addition to 
these, there are amino acids with bulky side chains, such as 
tyrosine, glutamine, arginine and leucine [ 11. As spiders do 
not produce silk in conveniently large packages and do not 
lend themselves to domestication, historically spider silk 
has not found wide application. With the introduction of 
recombinant DNA techniques, however, the potential for 
large-scale production of spider silk is being investigated. 

Several groups have been exploring the production of 
spider silk using recombinant DNA methods. Randolph 
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V Lewis has constructed genes composed of multiple 
repeats of cloned DNA fragments encoding consensus 
repeats of the main dragline silk protein [l]. Using bacteria 
transformed with this gene, pure artificial silk protein has 
been produced and is now being spun into fibers. A similar 
gene synthesis strategy has been used for spider silk by 
Prince et a/. (18.1 and for silk from the midge, Ch-onomus 
tentans, by Case and Smith [19,20]. Circular dichroism 
measurements of synthetic spider dragline silk indicate 
that the protein contains substantial p-sheet structure 
[18*], but preliminary infrared spectra of midge silk show 
an absence of vibrational modes characteristic of b-sheets 
[19]. The secondary structure of synthetic midge silk is 
currently under investigation. 

Polyesters 
Several kinds of bacteria synthesize polyhydroxyalka- 
noates (PHAs) as osmotically inactive energy storage com- 
pounds [21,22]. These polymers have attracted interest 
because they are biodegradable thermoplastics and a wide 
variety of bacteria produce them in bulk under appropri- 
ate fermentation conditions. The physical properties of 
bacterial PHAs have been studied extensively [23]. The 
predominant polymer synthesized by Akaligenes eurrophus, 
poly-3-hydroxybutyrate (PI-IB), is brittle and undergoes 
thermal decomposition just above its melting point, thus 
limiting its commercial usefulness. Recently, other types 
of PHAs have been produced both by regulating the feed 
composition and growth conditions of the host bacteria and 
by genetic engineering techniques. One of these, polyJ- 
hydroxybutyrate+o-3-hydroxyvalerate (P[HB-co-HV]), is 
less brittle and more processable than PHB, and is 
now marketed under the name of Biopol for use as 
biodegradable packaging. 

Several laboratories have been investigating the efficient 
production of bacterial polyesters. Poly(3-hydroxybutyrate- 
co-3-hydroxyvalerate) is being prepared in Akaligenes 
eutrophs by continuous production methods as opposed 
to batch fermentations [ZS]. The compositions of PHAs 
produced in bacterial cultures can be influenced by 
the composition of the medium or by the choice 
of organism. For example, poly(3-hydroxybutyrate-co-3- 
hydroxycaproate) [25] and poly(3-hydroxybutyrate-co-4- 
hydroxybutyrate) [26] are synthesized by Bacihs ce~us, 
Comomonas tesrosreroni, [25] and by Akaligenes /atus [ 271, 
when the organisms are fed the appropriate monomers. 
Bacteria of the genus Pseudomonas have been known 
to incorporate a variety of monomers with different 
functionalities into bacterial polyesters. Recent examples 
of such novel bacterial polymers include the polymeriza- 
tion of S-(4’tolyl)valeric acid by li o/eworans to produce 
polymers containing aromatic substituents [28**], the 
incorporation of medium (29**] and long (261 chain 
fatty acids into PHA by Pseudomonas sp. A33 and by 
I! aefzginosa, respectively, and the synthesis of PHA 
containing cyano and nitrophenoxy substituents by E 
putida and I! oleworans [30**]. Additional studies of PHA 

storage granules have yielded insight into the relations 

between granule structure and efficiency of polymer 
synthesis [31*]. 

In efforts to find cheaper carbon sources for polymer 
production, PHB [32,33] and P(HB-co-HV) [34] syntheses 
are being studied in recombinant E. co/i. An alternative 
route to inexpensive production of PHAs is through the 
use of transgenic plants. Considerable work has been 
done with Arabidopsis haiiana [35*,36] into which the 
genes encoding the PHB synthesizing system of Alcoligenes 
eutrvphus have been introduced. In early experiments, 
PHB was produced throughout the plant, leading to 
stunted growth and low seed production, but targeting 
the polymer synthesis to plastids (sites of accumulation of 
storage compounds and biosynthesis of fatty acids which 
are potential substrates for PHA synthesis) appears to 
allow polymer to be synthesized in harvestable quantities 
without compromising plant growth [36]. 

Polysaccharides 
The synthesis and postmodification of polysaccharides are 
often undertaken to study basic problems in polymer 
synthesis such as stereochemistry [37*], regioselectivity 
[3&40] and substituent effects [41]. Routes to these 
stereoregular polymers often take advantage of enzymes 
which normally catalyze the hydrolysis of polysaccharides, 
for example, cellulase which has been used to prepare 
an artificial xylan [37*] and phosphorylases, used to 
prepare model cellulose polymers (42-441. Regiospecific 
modifications to sugar monomers which can then be 
polymerized to produce novel materials can also be 
carried out using enzymes 138,391. In addition, enzymatic 
postmodification of polysaccharides, such as regioselective 
acylation [40], may be another useful route to new 
polymers. 

Potentially useful materials properties of poly(galactoside 
acrylates), such as water absorbance and biocompatibility 
[45*], and reinforcing effects of cellulose fibers in synthetic 
polymer matrices [46] have been reported. To prepare the 
poly(galactoside acrylates), the regioselective acryloylation 
of a-methyl galactoside was carried out enzymatically, 
followed by free radical polymerization and cross linking 
[45*]. The resulting cross-linked networks formed hydro- 
gels. Films made from composites of styrene-butyl acrylate 
copolymers and cellulose fibers isolated from tunicate 
exoskeletons showed improved mechanical properties 
when compared to polymer films not containing cellulose 
fibers, especially above the glass transition temperature 

Ml. 

Synthetic polysaccharides may eventually be used in drug 
delivery systems. A series of water soluble polymers 
containing clusters of sugar monomers were chemically 
synthesized and their binding activities toward various 
plant lectins were assessed (471. Preliminary results 
indicate that the binding characteristics of these polymers 
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appear to be dependent on the spacing of the sugar 
clusters; further investigations are in progress. 

In the search for inhibitory agents of the human immuno- 
deficiency virus (HIV) it has been observed that polyan- 
ions suppress HIV infectivity. Toward this end, sulfated 
alkyl malto-oligosaccharides were chemically synthesized 
and were found to exhibit both anti-HIV activity and 
anticoagulant activity (481. The oligosaccharides with the 
most potent anti-HIV activities, however, were also the 
most cytotoxic compounds. Work is in progress to reduce 
the cytotoxicity of these compounds while retaining the 
anti-HIV activity. 

Polynucleotides 
The structural engineering of DNA may have poten- 
tial use in the fabrication of nanoscale devices. DNA 
polymers are unusually suited to engineering in three 
dimensions and could thus have applications as scaffolds 
for the ordering of other materials. Recently, branched 
and knotted forms of DNA have been synthesized 
and characterized [49-S]. Further study of these three 
dimensional structures will likely lead to new insights 
about their functions in cells (where they were first 
observed) as well as to construction of nanoscale materials. 

Conclusion 
Biopolymers with interesting materials properties can be 
produced by a variety of methods, including natural 
processes and traditional chemical reactions. The natural 
processes for fabricating biopolymers range from synthesis 
in genetically engineered bacterial hosts (applicable pri- 
marily to proteins) to the use of enzymes to modify natural 
substrates for subsequent polymerization, or for reactions 
on polymers synthesized by traditional chemical reactions. 
As efficient synthetic methods continue to develop, it is 
expected that the materials applications for biopolymers 
will become more widespread. 
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