

CIVIL ENGINEERING DEPARTMENT MATERIAL SCIENCE AND ENGINEERING

LABORATORY REPORT

Name-Surname: Student Number:

Session: 13:⁰⁰-13:⁵⁰ 14:⁰⁰-14:⁵⁰ 15:⁰⁰-15:⁵⁰

1. PHYSICAL PROPERTIES OF MATERIALS

h

Irregular Geometric Shaped Specimens

Table 1.1. The dimensions and weights of the specimens

Sample	a (cm)	b (cm)	h (cm)	W0 (g)	Wsa (g)	Wsw (g)
Brick						
Natural Stone						

1.1. UNIT WEIGHT (DENSITY) (β)

Regular Geometric Shaped Specimens

Calculations:

Table 1.2. Unit weights of the samples

Sample	$W_{o}\left(g ight)$	$V_t (cm^3)$	β (g/cm ³)
Brick			•••••
Natural Stone			•••••

1.2. SPECIFIC GRAVITY (y)

Calculations:

Le Chatelier flask

Fable	1.3.	Specific	gravities	of the	samples
	1.0.	specific	gravines	or the	samples

Sample	W _{powder} (g)	V ₁ (cm ³)	V_2 (cm ³)	γ (g/cm ³)
Brick				•••••
Natural Stone				

1.3. COMPACTNESS (k) and POROSITY (p)

Calculations:

Fable 1.4. Compactness and porosity of the sam	ples
---	------

Sample	Compactness (%)	Porosity (%)
Brick		
Natural Stone	••••••	•••••

1.4. WATER ABSORPTION $(a_m \& a_v)$ Calculations:

Table 1.5. Water absorption ratios of the samples

Sample	Water Absorption by Mass (%)	Water Absorption by Volume (%)
Brick	••••	•••••
Natural Stone	••••	••••

1.5. CAPILLARITY (K)

Table 1.6. Cross-section dimensions of the specimens

Sample	a (cm)	b (cm)	Area (cm ²)
Brick			•••••
Natural Stone			•••••

a and b are the dimensions of the cross-section which is in contact with water.

Table 1.7. The result	s of the capillarity test
-----------------------	---------------------------

Sample	Wo (g)	W1 (g)	W4 (g)	W9 (g)	W ₁₆ (g)
Brick					
Natural Stone					

Calculations:

Table 1.8. Coefficient of capillarity

S la	K (cm ² /sec) for 16 th minutes			
Sample	by the Equation	from the Graph		
Brick		•••••		
Natural Stone	• • • • • • • • • • • • • • •	•••••		

2. MECHANICAL PROPERTIES OF MATERIALS

2.1. TENSION TEST

Specimen		Mild (Low Carbon) Steel	Calculations:
Cla	ss / Type	S420 / Ribbed	
Nominal Di	ameter (d _o , mm)		
	P _{yield} (kN)		
Load (P)	P _{max} (kN)		
	P _{fracture} (kN)		
Final Diameter (d _f , mm)			
	Initial (l _i =5d _o , mm)	•••••	
Gauge Length (1)	Final (l _f , mm)		
Yield Strength (σ _y , MPa)		•••••	
Tensile Str	ength (σ _t , MPa)	•••••	
Apparent Fractural Strength (σ _{af} , MPa)		•••••	
True Fractural Strength (σ _{tf} , MPa)		•••••	
Ductility (Ef, %)		••••••	
Necking Ratio (RA, %)		•••••	

Table 2.1. Tension test results

Figure 1. The stress-strain curve of the steel specimen

3. CONCRETE MIX DESIGN

Material	Particle Density (kg/dm ³)	Ratio in the Mix (%)	Moisture Condition
Fine Aggregate : Natural sand	2.7	30	SSD
Fine Aggregate 2: Crushed sand	2.7	30	1% Moist
Coarse Aggregate: Crushed stone #1	2.6	40	SSD
Cement: CEM I 42.5 R	3.1		
Admixture: Superplasticizer	1.1		

Table 3.1. Physical properties of the constituents

Table 3.2. Recommended limit values for composition and properties of concrete

Exposure Class	Minimum Strength Class	Maximum Water/Cement	Minimum Cement Content (kg/m ³)	Minimum Air Content (%)
XD3				
(Chloride-induced	C35/45	0.45	320	-
Corrosion)				

✓ Selected water/cement ratio is "0.39" and cement dosage is " 360 kg/m^3 ".

✓ The air content is 2%.

✓ Desired consistency class is obtained by 1.5% superplasticizer.

Calculations:

Material	Weight (kg)	
Cement	•••••	
Water	•••••	
Natural sand	••••	
Fine Aggregate 2: Crushed sand	••••	
Crushed stone #1	••••	
Superplasticizer	•••••	

Table 3.3. Quantities of the constituents for 1 m³ concrete

3.2. FRESH AND HARDENED PROPERTIES OF CONCRETE

3.2.1. Slump Test (TS EN12350-2)

Since the measured slump (h) is cm, the consistency class is as defined in TS EN 206.

Figure 3.1. Measurement of slump

3.2.2. Compressive Strength Test (TS EN 12390-3)

Table 3.4. Test results and conformity criteria for the compressive strength classes (TS EN 206)

No.	Pc (kN)	fc (MPa)	Evaluation	
1	1154	•••••	£ \£ 40	
2	1076	•••••	$I_{cm} \ge I_{ck} + 4.0$	(MPa)
3	1188	•••••		
	Average (f _{cm}):	•••••	$I_{c,i} \ge I_{ck} - 4.0$	(MPa)
Minimum Individual (f _{c,i}):		•••••		

Calculations:

a=150 mm

Conclusion:

According to the compression test results, this concrete <u>conforms</u> / <u>does not conform</u> the minimum strength class requirement (C35/45) for XD3 exposure class which was considered during the mix design.