YILDIZ TECHNICAL UNIVERSITY

CIVIL ENGINEERING DEPARTMENT CONSTRUCTION MATERIALS DIVISION MATERIALS SCIENCE AND ENGINEERING/ PRACTICE 1

QUESTION 1

A material has a body-centered cubic ($B C C$) crystal structure with an atomic radius (r) of $1.857 \AA$ and atomic mass of $23 \mathrm{~g} / \mathrm{mol}$. According to this:
a) Find the length of the unit cell (a), the specific gravity (γ), the atomic packing factor (APF).

Solution 1:

a

The body-centered cubic (BCC) crystal structure contains nine atoms: one on each corner of the cube and one atom in the center. Because the volume of each corner atom is shared between adjacent cells, each BCC cell contains two atoms.

Total number of atoms in the unit cell:

$$
\mathrm{n}=1 / 8 * 8+1=2 \text { atoms }
$$

a)

$$
a_{K H M}=\frac{4 R}{\sqrt{3}}=\frac{4 \cdot(1,857 \AA)}{\sqrt{3}}=4,29 \AA
$$

Since the entire crystal can be generated by the repetition of the unit cell, the theoretical density of a crystalline material can be calculated based on the density of the unit cell:

$$
\rho: \text { Density }
$$

n : Number of atoms in each unit cel
A : Atomic weight (g/mol)
V_{c} : Volume of the unit cell
N_{A} : Avogadro's number
$\mathrm{N}_{\mathrm{A}}=\left(0.602 \times 10^{24}\right.$ atoms $\left./ \mathrm{mol}\right)$
$\mathrm{n}=\mathbf{8 (1 / 8)}+\mathbf{1}=\mathbf{2}$ atom
$V=(a)^{3}=(4 R / \sqrt{3})^{3}$

$$
\gamma=\frac{2}{(4 R / \sqrt{3})^{3}} \cdot \frac{23}{\substack{1,857 \times 10^{\wedge}(-8)}}=0.968 \mathrm{gr} / \mathrm{cm}^{3}
$$

Atomic packing factor shows us how dense the unit cell is:

$$
\begin{gathered}
A P F=\frac{\text { Volume of atoms in a unit cell }}{\text { Total unit cell volume }} \\
A D F=\frac{2 x \frac{4}{3} \cdot \pi \cdot R^{3}}{a^{3}}=\frac{2 x \frac{4}{3} \cdot \pi \cdot\left(1.857 \times 10^{-8}\right)^{3}}{\left(4.29 \times 10^{-8}\right)^{3}}=0.68
\end{gathered}
$$

QUESTION 2

A 10 cm cube made of a stone with a unit weight of $2.34 \mathrm{~g} / \mathrm{cm}^{3}$ and a specific gravity of $2.72 \mathrm{~g} / \mathrm{cm}^{3}$, weighs 2445 g when it is saturated.
a) Calculate compactness (k) and porosity (p).
b) Calculate water absorption ratio by mass $\left(\mathrm{a}_{\mathrm{m}}\right)$ and by volume $\left(\mathrm{a}_{\mathrm{v}}\right)$.
c) The same material absorbs 25.2 g water from its base for $64^{\text {th }}$ minutes by capillarity. According to this, calculate the time that water rises up to the top surface of a structural element with height of 3 m .

Solution 2:

a) Unit Weight (Density) (β)

Density (β) is defined as the dry weight $\left(W_{o}\right)$ of a given volume $\left(V_{t}\right)$ of a material. Density has a strong relation with strength and thermal conductivity.

$$
\beta=\frac{W_{o}}{V_{t}}
$$

b) Specific gravity (V)

Specific gravity (Y) is the dry weight $\left(\mathrm{W}_{\mathrm{o}}\right)$ of a given volume of the solid phase $\left(V_{s}\right)$ of a material.

$$
\gamma=\frac{W_{o}}{V_{s}}
$$

c) Compactness ratio (k)

The ratio of solid volume of a material $\left(\mathrm{V}_{\mathrm{s}}\right)$ to its total volume $\left(\mathrm{V}_{\mathrm{t}}\right)$ and can also be calculated by dividing density (β) by specific gravity (γ).

$$
k=\frac{V_{s}}{V_{t}}=\frac{\beta}{\gamma}
$$

d) Porosity (p)

The ratio of the pore volume $\left(\mathrm{V}_{\mathrm{p}}\right)$ to the total volume $\left(\mathrm{V}_{\mathrm{t}}\right)$ of the material. Porosity (p) defines total pores, whereas effective porosity $\left(p_{e}\right)$ defines open, interconnected and continuous pores.

$$
p=\frac{V_{p}}{V_{t}}=1-k
$$

$$
\begin{aligned}
& \beta=2,34 \mathrm{~g} / \mathrm{cm}^{3} \\
& \gamma=2,72 \mathrm{~g} / \mathrm{cm}^{3} \\
& k=\frac{\beta}{\gamma}=\frac{2,34}{2,72}=0.86=\% 86 \\
& p=1-k=1-0,86=0.14=\% 14
\end{aligned}
$$

e) Water absorption by mass $\left(a_{m}\right)$: The ratio of the increase in mass to the mass of the dry sample.

$$
a_{m}=\frac{W_{S S D}-W_{o}}{W_{o}}
$$

> SSD: Saturated and Surface Dry
> $\mathrm{W}_{\text {ssD }}$: The weight of the sample in the SSD state W_{0} : The weight of the sample in dry state
f) Water absorption by volume $\left(a_{v}\right)$: The ratio of the increase in volume to the total volume.

$$
\begin{aligned}
a_{v}=\frac{\left(W_{\text {SSD }}-W_{o}\right) / \rho_{\text {water }}}{V_{t}} & \rho_{\text {water }} \approx 1 \mathrm{~g} / \mathrm{cm}^{3} \\
& \mathbf{a}_{\mathbf{v}}=\beta \cdot \mathrm{a}_{\mathrm{m}}
\end{aligned}
$$

$\beta=2.34=\frac{W_{0}}{V_{T}}=\frac{W_{0}}{10 \times 10 \times 10}===>W_{0}=2340 \mathrm{~g}$
$a_{m}=\frac{2445-2340}{2340}=\% 4.5$
$a_{v}=\frac{2445-2340}{10 \times 10 \times 10}=\% 10.5$

Capillarity can be defined as the tendency of a water in a capillary pores of a material to rise as a result of surface tension.
g) Capillary Water Absorption Coefficient ($\mathrm{K}, \mathrm{cm}^{2} / \mathrm{s}$)

Defined as the "absorbed water amount (Q) from unit surface area (A) of a material in unit time (t) ".

$$
K_{i}=\frac{Q_{i}^{2}}{A^{2} t_{i}}
$$

$Q_{i}=25.2 g$
$t=64$ min
$K_{i}=\frac{(25.2)^{2}}{(10 x 10)^{2} x(64 \times 60)}=0,0000165 \mathrm{~cm}^{2} / \mathrm{s}$
$t=\frac{Q_{\max }^{2}}{A^{2} . K}===\gg Q_{\max }=a_{v} x V=(10 \times 10 \times 300) x(0.105)=3150 \mathrm{~cm}^{3}$
$t=\frac{(3150)^{2}}{(10 x 10)^{2} x 0,0000165}=60136363,645$ sn $=696$ days $=23,2$ months

QUESTION 3

The capillarity experiment was performed on a stone sample with the dimensions of $10 \times 10 \times 10 \mathrm{~cm}$ and the results are given below:

$\mathbf{t}(\mathbf{m i n})$	0	1	4	9	16	25	36
$\mathbf{W}(\mathbf{g})$	620	622	624	627	629	631	632

a) According to the given data, draw the "absorbed water amount $\left(\mathrm{Q}, \mathrm{cm}^{3}\right)$ - time (t , minute)" graphic of this material.
b) Calculate the capillarity coefficient of this material by considering amount of absorbed water at $36^{\text {th }}$ minutes.

Solution 3:

$Q_{n}=W_{n}-W_{0}$
$Q_{1}=W_{1}-W_{0}$
$Q_{2}=W_{2}-W_{0}$
$Q_{1}=622-620=2 \mathrm{gr}$
$Q_{2}=624-620=4 \mathrm{gr}$
$Q_{9}=627-620=7 \mathrm{gr}$

$$
K=\frac{Q^{2}}{A^{2} \cdot t}=\frac{(632-620)^{2}}{(10 \times 10)^{2} \times 36 \times 60}=6,7 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{sn}
$$

QUESTION 4

A concrete pipe has internal diameter of 80 cm and wall thickness of 4 cm . Permeability coefficient $\left(K_{p}\right)$ of the concrete is $2 \times 10^{-8} \mathrm{~cm} / \mathrm{sec}$. Calculate the amount of water loss daily under 6 atm pressure for a length of 1 km ?

Note: $1 \mathrm{~atm} \approx 1000 \mathrm{~cm}$-water column

Solution 4:

4.6. Permeability

Water permeability of a material is expressed by the coefficient of water permeability ($\mathrm{K}_{\mathrm{p}}, \mathrm{cm} / \mathrm{sec}$), which is measured by determining the rate of water flow through the material under pressure.

$$
K_{p}=\frac{Q x h}{P x A x t}
$$

In the equation,
Q is the amount of water that flows through the sample $\left(\mathrm{cm}^{3}\right)$,
h is the thickness of the sample that water flows through (cm),
P is the pressure in
A is the cross- section of the sample $\left(\mathrm{cm}^{2}\right)$ and t is time in seconds.

$$
\begin{aligned}
& P=6 \mathrm{~atm}=6000 \text { cm-hydrauic column "(water-column), } \\
& \mathrm{A}=2 . \pi \cdot \mathrm{r} \cdot \mathrm{~L}=\pi \cdot 80 \cdot 10^{5}=25120000 \mathrm{~cm}^{2} \\
& Q=\frac{\Delta P . A . t}{h} \cdot k_{\mathrm{p}}=\frac{2 \times 10^{-9} \times 6000 \times 86400 \times 25120000}{4}: \\
& =6511104 \mathrm{~cm}^{3}=6,511 \mathrm{~m}^{3}
\end{aligned}
$$

QUESTION 5

A S420 class steel sample with a nominal diameter of $16 \mathrm{~mm}(\phi 16)$ was subjected to the uniaxial tension test. The gauge length of the extensometer $\left(l_{0}\right)$ is 100 mm and the results are given below:

P (Load, N)	0	20100	40200	60300	80400	88400	108500	124600	115600
$\Delta \mathrm{l}$ (Displacement, mm)	0	0.045	0.090	0.135	0.180	0.280	6.30	9.20	Fracture

According to the given data:
a) Draw the stress-strain $(\sigma-\varepsilon)$ curve and calculate the limit of proportionality $\left(\sigma_{p}\right)$, the yield strength $\left(\sigma_{y}\right)$, the tensile strength $\left(\sigma_{t}\right)$.
b) Calculate the modulus of elasticity (E)
c) Calculate the ductility $\left(\varepsilon_{\mathrm{k}}\right)$ if the final gauge length is measured as 90.0 mm after the fracture.
d) Calculate the resilience $\left(\mathrm{W}_{\mathrm{R}}\right)$ and the toughness $\left(\mathrm{W}_{\mathrm{T}}\right)$ of this specimen.

Solution 5:

Stress and strain data points can be determined by using load and deformation measurements

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{d}_{\mathrm{o}}=16 \mathrm{~mm} \\
\mathrm{l}_{\mathrm{o}}=10 \mathrm{~cm}=100 \mathrm{~mm} \\
A_{0}=\frac{\pi \times d_{0}^{2}}{4}=\frac{\pi \cdot 16^{2}}{4}=201 \mathrm{~mm}^{2} \quad\left(201 \mathrm{~mm}^{2}\right) \\
\\
\\
\sigma_{i}=\frac{P_{i}}{A_{0}} \\
\\
\\
\sigma_{1}=20100 / 201=100 \mathrm{~N} / \mathrm{mm}^{2}=100 \mathrm{MPa} \\
\sigma_{2}=40200 / 201=200 \mathrm{MPa} \\
\sigma_{3}=60300 / 201=300 \mathrm{MPa} \\
\sigma_{4}=80400 / 201=400 \mathrm{MPa} \\
\sigma_{5}=88400 / 201=440 \mathrm{MPa} \\
\sigma_{6}=108500 / 201=540 \mathrm{MPa} \\
\sigma_{7}=124600 / 201=620 \mathrm{MPa} \\
\varepsilon_{i}=\frac{l-l_{0}}{l_{0}}=\frac{\Delta l}{l_{0}} \\
\sigma_{8}=115600 / 201=575 \mathrm{MPa}
\end{array} \quad \begin{array}{l}
\varepsilon_{1}=0,045 / 100=4,5 \times 10^{-4} \\
\varepsilon_{2}=0,090 / 100=9,0 \times 10^{-4} \\
\varepsilon_{3}=0,135 / 100=13,5 \times 10^{-4} \\
\varepsilon_{4}=0,180 / 100=18,0 \times 10^{-4} \\
\varepsilon_{5}=0,280 / 100=28,0 \times 10^{-4} \\
\varepsilon_{6}=6,300 / 100=630 \times 10^{-4} \\
\varepsilon_{7}=9,200 / 100=920 \times 10^{-4} \\
\end{array} \quad \begin{array}{ll}
\mathrm{Kopma}
\end{array}
\end{aligned}
$$

- PL: Proportional limit (σ_{R})

In the stress level up to PL (i.e., the linear elastic limit), Hooke's law is obeyed.

- YS: Yield Strength $\left(\sigma_{y}\right)$

For engineering applications, it is desirable to know the stress level at which plastic deformation begins, or where the phenomenon of yielding occurs. For metals that experience

- TS: Tensile Strength ($\sigma_{\underline{t}}$)

When stress continues in the plastic regime, the stress-strain passes through a maximum (point M), called the tensile strength, and then falls as the material starts to develop a neck and it finally breaks at the fracture point (F).

$$
\sigma_{t}=\frac{P_{\max }}{A_{o}}
$$

The slope of this linear segment corresponds to the modulus of elasticity (E).
This modulus may be thought of as stiffness, or a material's resistance to elastic deformation.

Çözüm b)

$$
\mathrm{E}=\Sigma \sigma_{\mathrm{i}} \cdot \varepsilon_{\mathrm{i}} / \Sigma \varepsilon_{\mathrm{i}}^{2}
$$

σ_{i} (MPa)	ε_{i}	$\sigma_{\mathrm{i}} \times \varepsilon_{i}(\mathrm{MPa})$	$\varepsilon_{i}{ }^{2}$
0	0	0	0
100	$4,5 \times 10^{-4}$	0,045	$20,2 \times 10^{-8}$
200	$9,0 \times 10^{-4}$	0,180	$81,3 \times 10^{-8}$
300	$13,5 \times 10^{-4}$	0,405	182×10^{-8}
400	18×10^{-4}	0,720	324×10^{-8}
440	28×10^{-4}	$\Sigma=1,35$	$\Sigma=607,5 \times 10^{-8}$
540	630×10^{-4}		
620	920×10^{-4}		
575	-		

Elastisite Modülii

$$
\begin{aligned}
& \mathrm{E}=\Sigma \sigma_{\mathrm{i}} \cdot \varepsilon_{\mathrm{i}} / \Sigma \varepsilon_{\mathrm{i}}^{2} \\
& \mathrm{E}=1,35 /\left(607,5 \times 10^{-8}\right)=222222 \mathrm{MPa}=222,2 \mathrm{GPa}
\end{aligned}
$$

c) Calculate the ductility $\left(\varepsilon_{\mathrm{k}}\right)$ if the final gauge length is measured as 90.0 mm after the fracture.

- D: Ductility $\left(\% \varepsilon_{f}\right):$

Ductility may be expressed quantitatively as either percent elongation (\% ε_{f}) or percent reduction in area $\left(\% R_{A}\right)$. The percent elongation $\% \varepsilon_{f}$ is the percentage of plastic strain at fracture point:

$$
\% \varepsilon_{f}=\frac{l_{f}-l_{i}}{l_{i}} \times 100
$$

$$
\mathrm{I}_{\mathrm{i}}=5 \times \mathrm{d}_{\mathrm{o}}=5 \times 16=80 \mathrm{~mm}
$$

$$
I_{\text {final }}=90 \mathrm{~mm}
$$

$$
\varepsilon_{f}=(90-80) / 80=0,125=\% 12,5
$$

Resilience

Resilience is the capacity of a material to absorb energy when it is deformed elastically.

$$
W_{R}=\frac{\sigma_{y} \times \varepsilon_{y}}{2}=\frac{\sigma_{y}}{2} \times \frac{\sigma_{y}}{E}=\frac{\sigma_{y}^{2}}{2 E}=\frac{470^{2}}{2 \times 222222}=0,50 \mathrm{MPa}
$$

Toughness

Toughness is a measure of the ability of a material to absorb energy up to fracture.
Modulus of toughness $\left(W_{T}\right)$ is the area under the stress-strain curve up to the fracture point. In other words, toughness is the energy per unit volume is the total area under the strain-stress curve.

$$
\begin{aligned}
& \text { *FFracture } W_{\substack{\text { Modulus of } \\
\text { toughness }}}^{\sigma} W_{T}=\int_{0}^{\varepsilon_{f}} \sigma d \varepsilon \\
& \text { veya Assuming a right trapezoid: } \\
& W_{T}=\frac{\sigma_{y}+\sigma_{t}}{2} \times \varepsilon_{f} \\
& 2
\end{aligned} \varepsilon_{f}=\frac{470+620}{2} \times 0,125=68,13 M P a
$$

QUESTION 6

A tensile stress is to be applied along the long axis of a cylindrical brass rod that has a diameter of 10 mm . Determine the magnitude of the load required to produce a $2 \cdot 5 \cdot 10^{-3} \mathrm{~mm}$ change in diameter if the deformation is entirely elastic. (For brass, the modulus of elasticity is 97 GPa and the Poisson's ratio is 0.34).

Solution 6:

- A parameter termed Poisson's ratio (v) is defined as the ratio of the lateral and axial strains:

$$
\nu=-\frac{\varepsilon_{\text {lateral }}}{\varepsilon_{\text {axial }}}
$$

The negative sign is included in the expression so that (v) will always be positive, since $\left(\varepsilon_{\text {lateral }}\right)$ and ($\varepsilon_{\text {axial }}$) will always be of opposite sign.

$$
0.34=-\frac{\xi_{\text {lateral }}}{\xi_{\text {axial }}}===\gg \xi_{\text {lateral }}=\frac{\Delta l}{l}=\frac{2,5 \times 10^{-3}}{10}=2,5 \times 10^{-4}
$$

$$
0,34=\frac{2,5 \times 10^{-4}}{\xi_{\text {axial }}}===>\xi_{\text {axial }}=7,35 \times 10^{-4}
$$

$$
\sigma=E \varepsilon
$$

$$
\begin{aligned}
& \sigma=97000 \times 7,35 \times 10^{-4}=71,323 \mathrm{Mpa} \\
& \sigma=71,323=\frac{P}{A}=\frac{P}{\pi x 10^{2} / 4}
\end{aligned}
$$

$$
P=5598,9 \mathrm{~N}
$$

