Eccentricity

$$
q_{\max }=\frac{Q}{B L}+\frac{6 M}{B^{2} L}
$$

$$
q_{\min }=\frac{Q}{B L}-\frac{6 M}{B^{2} L}
$$

one-way eccentricity

$$
\dot{A}=\hat{B} x \dot{L} \quad \text { (the base area of foundation) }
$$

$$
\begin{gathered}
\dot{B}=B-2 e \\
L=L
\end{gathered}
$$

$$
q_{u l t}=\mathrm{c} N_{c} s_{c} d_{c} i_{c} g_{c} b_{c}+q N_{q} s_{q} d_{q} i_{q} g_{q} b_{q}+\frac{1}{2} \dot{B} \gamma N_{\gamma} s_{\gamma} d_{\gamma} i_{\gamma} g_{\gamma} b_{\gamma}
$$

$$
Q_{u l t}=q_{u l t} A ́
$$

$$
q_{a}=\frac{q_{u l t}}{\text { factor of safety }}=\frac{Q_{a}}{B \bar{L} \dot{L}}
$$

$$
Q_{a}=q_{a} \dot{A}=q_{a} \dot{B} \dot{L}
$$

$e_{B}=0.15$, Qult $=$?

(Das, 1999)

$$
\begin{aligned}
& q=(0.7)(18)=12.6 \mathrm{kPa} \\
& \dot{B}=1.5-2(0.15)=1.2 m \quad \dot{L}=L=1.5 m \\
& s_{q}= 1+\left(\frac{\dot{B}}{\hat{L}} \tan \varnothing\right)=1+\frac{1.2 m}{1.5 m} \tan 30^{\circ}=1.462 \\
& d_{q}=1+\left[2 \tan \phi(1-\sin \phi)^{2} \frac{D_{f}}{B}\right]=1+\left[2 \tan 30(1-\sin 30)^{2} \frac{0.7 m}{1.5 m}\right]=1.135 \\
& s_{\gamma}=1-0.4\left(\frac{\dot{B}}{\hat{L}}\right)=1-0.4 \frac{1.2 m}{1.5 m}=0.68 \quad d_{\gamma}=1 \\
& q_{u l t}= q N_{q} s_{q} d_{q}+\frac{1}{2} B^{\prime} \gamma N_{\gamma} s_{\gamma} d_{\gamma}=549 \mathrm{kPa} \\
&=(12.6)(18.4)(1.462)(1.135) \\
&+(0.5)\left(18 \frac{\mathrm{kN}}{\mathrm{~m}^{3}}\right)(1.2 \mathrm{~m})(22.4)(0.68)(1)
\end{aligned}
$$

$Q_{u l t}=q_{u l t} A=549 \mathrm{kPa}(1.2 \mathrm{~m})(1.5 \mathrm{~m})=988 \mathrm{kN}$

Two-way eccentricity

$A=B^{\prime} x L \quad$ (the base area of foundation)

$$
\begin{aligned}
& q_{u l t}=\mathrm{c} N_{c} s_{c} d_{c} i_{c} g_{c} b_{c}+q N_{q} s_{q} d_{q} i_{q} g_{q} b_{q}+\frac{1}{2} \dot{B} \gamma N_{\gamma} s_{\gamma} d_{\gamma} i_{\gamma} g_{\gamma} b_{\gamma} \\
& Q_{u l t}=q_{u l t} A ́
\end{aligned}
$$

$$
q_{a}=\frac{q_{u l t}}{\text { factor of safety }}=\frac{Q_{a}}{B x \tilde{L}}
$$

$$
Q_{a}=q_{a} A ́=q_{a} B ́ L
$$

$$
A^{\prime}=\text { effective area }=B^{\prime} L^{\prime}
$$

$$
Q_{u l t}=q_{u l t} \dot{A}=q_{u l t} \dot{B} \hat{L}
$$

(Das, 1999)

Case I. $e_{L} / L \geq \frac{1}{6}$ and $e_{B} / B \geq \frac{1}{6}$.

$$
A^{\prime}=\frac{1}{2} B_{1} L_{1}
$$

where

$$
B_{1}=B\left(1.5-\frac{3 e_{B}}{B}\right)
$$

and

$$
L_{1}=L\left(1.5-\frac{3 e_{L}}{L}\right)
$$

The effective length L^{\prime} 's the larger of the two dimensions B_{1} and L_{1}. So the effective width is

$$
B^{\prime}=\frac{A^{\prime}}{L^{\prime}}
$$

(Das,1999)

Effective area for the case of $e_{L} / L \geqslant \frac{1}{6}$ and $e_{B} / B \geqslant \frac{1}{6}$
(Das, 1999)

Case II. $e_{L} / L<0.5$ and $0<e_{B} / B<\frac{1}{6}$.

$$
A^{\prime}=\frac{1}{2}\left(L_{1}+L_{2}\right) B
$$

The effective length is

$$
\begin{aligned}
& L^{\prime}=L_{1} \text { or } L_{2} \quad \text { (whichever is larger) } \\
& B^{\prime}=\frac{A^{\prime}}{L_{1} \text { or } L_{2} \quad \text { (whichever is larger) }}
\end{aligned}
$$

The effective length is

$$
L^{\prime}=L_{1} \text { or } L_{2} \quad \text { (whichever is larger) }
$$

(Das, 1999)

(Das,1999)

Effective area
for the case of $e_{L} / L<0.5$ and $0<e_{B} / B<\frac{1}{6}$ (After Highter and Anders, 1985) (Highter, W. H. and Anders, J. C. (1985). "Dimensioning Footings Subjected to Eccentric Loads," Journal of Geotechnical Engineering, American Society of Civil Engineers, Vol. 111, No. GT5, pp. 659-665. With permission from ASCE.)

Case III. $e_{L} / L<\frac{1}{6}$ and $0<e_{B} / B<0.5$.

$$
A^{\prime}=\frac{1}{2}\left(B_{1}+B_{2}\right) L
$$

$$
L^{\prime}=L
$$

$$
B^{\prime}=\frac{A^{*}}{L}
$$

(Das, 1999)

1 - Effective area for the case of $e_{L} / L<\frac{1}{6}$ and $0<e_{B} / B<0.5$ (After Highter and Anders, 1985) Highter, W. H. and Anders, J. C. (1985). "Dimensioning Footings Subjected to Eccentric Loads," Journal of Geotechnical Engineering, American Society of Civil Engineers, Vol. 111, No. GT5, Pp-659-665. With permission from ASCE.)

Case IV. $e_{L} / L<\frac{1}{6}$ and $e_{B} / B<\frac{1}{6}$.

$$
A^{\prime}=L_{2} B+\frac{1}{2}\left(B+B_{2}\right)\left(L-L_{2}\right)
$$

: Effective area for the case of $e_{L} / L<\frac{1}{6}$ and $e_{B} / B<\frac{1}{6}$ (After Highter and Anders, 1985) (Highter, W. H. and Anders, J. C. (1985). "Dimensioning Footings Subjected to Eccentric Loads," Journal of Geotechnical Engineering,
American Society of Civil Engineers, Vol. 111, No. GT5, pp. 659-665. With permission from ASCE.)
(Das,1999)

$e_{B}=0.15$ and $e_{L}=0.3 ;$ Qult $=$?

There is a two way-eccentricity

$$
\begin{gathered}
\frac{L_{1}}{L} \approx 0.85 ; \quad L_{1}=(0.85)(1.5)=1.275 \mathrm{~m} \quad \frac{L_{2}}{L} \approx 0.21 ; \quad L_{2}=(0.21)(1.5)=0.315 \mathrm{~m} \\
\\
(\text { Das }, 1999)
\end{gathered}
$$

$$
\begin{aligned}
& A^{\prime}=\frac{1}{2}\left(L_{1}+L_{2}\right) B=\frac{1}{2}(1.275+0.315)(1.5)=1.193 \mathrm{~m}^{2} \\
& L^{\prime}=L_{1}=1.275 \mathrm{~m} \quad B^{\prime}=\frac{A^{\prime}}{L^{\prime}}=\frac{1.193}{1.275}=0.936 \mathrm{~m} \\
& s_{c}=1.0+\frac{N_{q}}{N_{c}} \cdot \frac{B}{L} \\
& s_{q}=1.0+\frac{B}{L} \tan \phi=1+\left(\frac{B^{\prime}}{L^{\prime}}\right) \tan \phi^{\prime}=1+\left(\frac{0.936}{1.275}\right) \tan 30^{\circ}=1.424 \\
& s_{Y}=1.0-0.4 \frac{B}{L} \quad=\quad 1-0.4\left(\frac{B^{\prime}}{L^{\prime}}\right)=1-0.4\left(\frac{0.936}{1.275}\right)=0.706 \\
& d_{q}=1+2 \tan \phi(1-\sin \phi)^{2} k=1+2 \tan \phi^{\prime}\left(1-\sin \psi^{\prime}\right): \frac{D_{i}}{B}=1+\frac{(0.289)(0.7)}{1.5} \\
& d_{\gamma}=1.00 \\
& \emptyset=30^{\circ} \Rightarrow N_{c}=30.13 ; \quad N_{q}=18.4 ; \quad N_{\gamma}=22.4 \\
& \text { (Das, 1999) }
\end{aligned}
$$

$$
\begin{aligned}
& q_{u l t}=\mathrm{c} N_{c} s_{c} d_{c}+q N_{q} s_{q} d_{q}+\frac{1}{2} \dot{B} \gamma N_{\gamma} s_{\gamma} d_{\gamma} \\
& q_{\text {ult }}=0+(0.7 \times 18)(18.4)(1.424)(1.135)+\frac{1}{2}(0.936)(18)(22.4) \\
& Q_{u l t}=q_{u l t} \hat{A}=q_{u l t} \dot{B} L^{\prime}=q_{u l t}(0.936 x 1.275)=600 \mathrm{kN}
\end{aligned}
$$

(Das,1999)

