
Appendix:
Introduction to MATLAB

This appendix introduces the reader to programming with the software package MAT-
LAB. It is assumed that the reader has had previous experience with a high-level pro-
gramming language and is familiar with the techniques of writing loops, branching
using logical relations, calling subroutines, and editing. These techniques are directly
applicable in the windows-type environment of MATLAB.

MATLAB is a mathematical software package based on matrices. The package
consists of an extensive library of numerical routines, easily accessed two- and three-
dimensional graphics, and a high-level programming format. The ability to implement
and modify programs quickly makes MATLAB an appropriate format for exploring
and executing the algorithms in this textbook.

The reader should work through the following tutorial introduction to MATLAB
(MATLAB commands are in typewriter type). The examples illustrate typical input
and output from the MATLAB Command Window. To find additional information
about commands, options, and examples, the reader is urged to make use of the on-line
help facility and the Reference and User’s Guides that accompany the software.

Arithmetic Operations

+ Addition
- Subtraction
* Multiplication
/ Division
^ Power
pi, e, i Constants

639

640 APPENDIX: INTRODUCTION TO MATLAB

Ex. >>(2+3*pi)/2
ans =

5.7124

Built-in Functions

Below is a short list of some of the functions available in MATLAB. The following ex-
ample illustrates how functions and arithmetic operations are combined. Descriptions
of other available functions may be found by using the on-line help facility.

abs(#) cos(#) exp(#) log(#) log10(#) cosh(#)
sin(#) tan(#) sqrt(#) floor(#) acos(#) tanh(#)

Ex. >>3*cos(sqrt(4.7))
ans =

-1.6869

The default format shows approximately five significant decimal figures. Entering the
command format long will display approximately 15 significant decimal figures.

Ex. >>format long
3*cos(sqrt(4.7))
ans =

-1.68686892236893

Assignment Statements

Variable names are assigned to expressions by using an equal sign.

Ex. >>a=3-floor(exp(2.9))
a=

-15

A semicolon placed at the end of an expression suppresses the computer echo (output).

Ex. >>b=sin(a); Note. b was not displayed.
>>2*b^2
ans=

0.8457

Defining Functions

In MATLAB the user can define a function by constructing an M-file (a file ending
in .m) in the M-file Editor/Debugger. Once defined, a user-defined function is called
in the same manner as built-in functions.

APPENDIX: INTRODUCTION TO MATLAB 641

Ex. Place the function fun(x) = 1 + x − x2/4 in the M-file fun.m. In the
Editor/Debugger one would enter the following:
function y=fun(x)
y=1+x-x.^2/4;

We will explain the use of “.^” shortly. Different letters could be used for the variables
and a different name could be used for the function, but the same format would have
to be followed. Once this function has been saved as an M-file named fun.m, it can be
called in the MATLAB Command Window in the same manner as any function.

>>cos(fun(3))
ans=

-0.1782

A useful and efficient way to evaluate functions is to use the feval command. This
command requires that the function be called as a string.

Ex. >>feval(’fun’,4)
ans=

1

Matrices

All variables in MATLAB are treated as matrices or arrays. Matrices can be entered
directly:

Ex. >>A=[1 2 3;4 5 6;7 8 9]
A=

1 2 3
4 5 6
7 8 9

Semicolons are used to separate the rows of a matrix. Note that the entries of the matrix
must be separated by a single space. Alternatively, a matrix can be entered row by row.

Ex. >>A=[1 2 3
4 5 6
7 8 9]

A =
1 2 3
4 5 6
7 8 9

Matrices can be generated using built-in functions.

Ex. >>Z=zeros(3,5); creates a 3× 5 matrix of zeros
>>X=ones(3,5); creates a 3× 5 matrix of ones
>>Y=0:0.5:2 creates the displayed 1× 5 matrix
Y=
0 0.5000 1.0000 1.5000 2.0000

642 APPENDIX: INTRODUCTION TO MATLAB

>>cos(Y) creates a 1× 5 matrix by taking the
cosine of each entry of Y

ans=
1.0000 0.8776 0.5403 0.0707 -0.4161

The components of matrices can be manipulated in several ways.

Ex. >>A(2,3) select a single entry of A
ans=

6
>>A(1:2,2:3) select a submatrix of A
ans=

2 3
5 6

>>A([1 3],[1 3]) another way to select a submatrix of A
ans=

1 3
7 9

>>A(2,2)=tan(7.8); assign a new value to an entry of A

Additional commands for matrices can be found by using the on-line help facility or
consulting the documentation accompanying the software.

Matrix Operations
+ Addition
- Subtraction
* Multiplication
^ Power
’ Conjugate transpose

Ex. >>B=[1 2;3 4];
>>C=B’ C is the transpose of B
C=

1 3
2 4

>>3*(B*C)^3 3(BC)3

ans=
13080 29568
29568 66840

Array Operations
One of the most useful characteristics of the MATLAB package is the number of func-
tions that can operate on the individual elements of a matrix. This was demonstrated

APPENDIX: INTRODUCTION TO MATLAB 643

earlier when the cosine of the entries of a 1 × 5 matrix was taken. The matrix oper-
ations of addition, subtraction, and scalar multiplication already operate elementwise,
but the matrix operations of multiplication, division, and power do not. These three op-
erations can be made to operate elementwise by preceding them with a period: .*, ./,
and .^. It is important to understand how and when to use these operations. Array op-
erations are crucial to the efficient construction and execution of MATLAB programs
and graphics.

Ex. >>A=[1 2;3 4];
>>A^2 produces the matrix product AA
ans=

7 10
15 22

>>A.^2 squares each entry of A
ans=

1 4
9 16

>>cos(A./2) divides each entry of A by 2, then takes
the cosine of each entry

ans=
0.8776 0.5403
0.0707 -0.4161

Graphics

MATLAB can produce two- and three-dimensional plots of curves and surfaces. Op-
tions and additional features of graphics in MATLAB can be found in the on-line fa-
cility and the documentation accompanying the software.

The plot command is used to generate graphs of two-dimensional functions. The
following example will create the plot of the graphs of y = cos(x) and y = cos2(x)

over the interval [0, π].
Ex. >>x=0:0.1:pi;

>>y=cos(x);
>>z=cos(x).^2;
>>plot(x,y,x,z,’o’)

The first line specifies the domain with a step size of 0.1. The next two lines define the
two functions. Note that the first three lines all end in a semicolon. The semicolon is
necessary to suppress the echoing of the matrices x, y, and z on the command screen.
The fourth line contains the plot command that produces the graph. The first two terms
in the plot command, x and y, plot the function y = cos(x). The third and fourth
terms, x and z, produce the plot of y = cos2(x). The last term, ’o’, results in o’s
being plotted at each point (xk, zk) where zk = cos2(xk).

644 APPENDIX: INTRODUCTION TO MATLAB

In the third line the use of the array operation “.^” is critical. First the cosine of
each entry in the matrix x is taken, and then each entry in the matrix cos(x) is squared
using the .^ command.

The graphics command fplot is a useful alternative to the plot command. The
form of the command is fplot(’name’,[a,b],n). This command creates a plot of
the function name.m by sampling n points in the interval [a, b]. The default number
for n is 25.

Ex. >>fplot(’tanh’,[-2,2]) plots y = tanh(x) over [−2, 2]
The plot and plot3 commands are used to graph parametric curves in two- and three-
dimensional space, respectively. These commands are particularly useful in the visu-
alization of the solutions of differential equations in two and three dimensions.

Ex. The plot of the ellipse c(t) = (2 cos(t), 3 sin(t)), where 0 ≤ t ≤ 2π , is produced
with the following commands:
>>t=0:0.2:2*pi;
>>plot(2*cos(t),3*sin(t))

Ex. The plot of the curve c(t) = (2 cos(t), t2, 1/t), where 0.1 ≤ t ≤ 4π , is pro-
duced with the following commands:
>>t=0.1:0.1:4*pi;
>>plot3(2*cos(t),t.^2,1./t)

Three-dimensional surface plots are obtained by specifying a rectangular subset of the
domain of a function with the meshgrid command and then using the mesh or surf
commands to obtain a graph. These graphs are helpful in visualizing the solutions of
partial differential equations.

Ex. >>x=-pi:0.1:pi;
>>y=x;
>>[x,y]=meshgrid(x,y);
>>z=sin(cos(x+y));
>>mesh(z)

Loops and Conditionals

Relational Operators
== Equal to
~= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Logical Operators

APPENDIX: INTRODUCTION TO MATLAB 645

~ Not (complement)
& And (true if both operands are true)
| Or (true if either or both operands are true)

Boolean Values
1 True
0 False

The for, if, and while statements in MATLAB operate in a manner analogous to their
counterparts in other programming languages. These statements have the following
basic form:

for (loop-variable = loop-expression)
executable-statements

end

if (logical-expression)
executable-statements

else (logical- expression)
executable-statements

end

while (while-expression)
executable-statements

end

The following example shows how to use nested loops to generate a matrix. The
following file was saved as a M-file named nest.m. Typing nest in the MATLAB
Command Window produces the matrix A. Note that, when viewed from the upper-left
corner, the entries of the matrix A are the entries in Pascal’s triangle.

Ex. for i=1:5
A(i,1)=1;A(1,i)=1;

end
for i=2:5

for j=2:5
A(i,j)=A(i,j-1)+A(i-1,j);

end
end
A

The break command is used to exit from a loop.

Ex. for k=1:100
x=sqrt(k);
if ((k>10)&(x-floor(x)==0))
break

end
end

646 APPENDIX: INTRODUCTION TO MATLAB

k

The disp command can be used to display text or a matrix.

Ex. n=10;
k=0;
while k<=n

x=k/3;
disp([x x^2 x^3])
k=k+1;

end

Programs

An efficient way to construct programs is to use user-defined functions. These func-
tions are saved as M-files. These programs allow the user to specify the input and
output parameters. They are easily called as subroutines in other programs. The fol-
lowing example allows one to visualize the effects of moding out Pascal’s triangle with
a prime number. Type the following function in the MATLAB Editor/Debugger and
then save it as an M-file named pasc.m.

Ex. function P=pasc(n,m)
%Input - n is the number of rows
% - m is the prime number
%Output - P is Pascal’s triangle

for j=1:n
P(j,1)=1;P(1,j)=1;

end
for k=2:n

for j=2:n
P(k,j)=rem(P(k,j-1)+P(k-1,j),m);

end
end

Now in the MATLAB Command Window enter P=pasc(5,3) to see the first five rows
of Pascal’s triangle mod 3. Or try P=pasc(175,3); (note the semicolon) and then type
spy(P) (generates a sparse matrix for large values of n).

Conclusion

At this point the reader should be able to create and modify programs based on the
algorithms in this textbook. Additional information on commands and information
regarding the use of MATLAB on your particular platform can be found in the on-line
help facility or in the documentation accompanying the software.

Numerical Methods Using Matlab, 4th Edition, 2004
John H. Mathews and Kurtis K. Fink

ISBN: 0-13-065248-2

Prentice-Hall Inc.
Upper Saddle River, New Jersey, USA

http://vig.prenhall.com/

