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f(x) is given

f(xr)= 0     xr = ?

x

f(x)

• Bracketing Methods  (Need two initial estimates that will bracket the root. Always converge.)

• Bisection Method

• False-Position Method

• Open Methods (Need one or two initial estimates. May diverge.)

• Simple One-Point Iteration

• Newton-Raphson Method   (Needs the derivative of the function.)

• Secant Method

Part 2. Finding Roots of Equations
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Ch 5. General Idea of Bracketing Methods
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Rule 1: If f(x L)*f(x U) < 0  
than there are

odd number of roots
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Rule 2: If f(x L)*f(x U) > 0  
than ther are

i) even number of roots

ii) no roots

x

f(x)

x L

x U

Violations:

i) multiple roots

ii) discontinuitiesx

f(x)

x L x U
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• Estimate the root as the midpoint of this 

interval.   x= (xL+xU)/2

• Determine the interval which contains the root

if  f(xL) * f(x) < 0 root is between xL and x

else root is between x and xU

Bisection Method

x

f(x)

x L

x U

• Start with two initial guesses, xLOWER

and xUPPER .

• They should bracket the root, i.e.
f(xL) * f(xU) < 0

x

f(x)

x L

x Ux

• Estimate a new root in this new interval

• Iterate like this and compute the error after 
each iteration.

• Stop when the specified tolerance is reached.

x

f(x)

x L

x U

x



5

Bisection Method (cont’d)

• It always converge to the true root (but be careful about the following)

• f(xL) * f(xU) < 0  is true if the interval has odd number of roots, not necessarily one root.

Example 6:  Find the square root of 11.

x2 = 11    f(x) = x2 – 11             (note that the exact solution is 3.31662479)

Select initial guesses:  32=9 <11  ,  42=16 > 11        xL = 3,  xU = 4

Iteration no. x f(x) |e t| % |e a| %

1 3.5 1.25 5.53 -----

2 3.25 -0.4375 2.01 7.69

3 3.375 0.390625 1.76 3.70

4 3.3125 -0.02734375 0.12 1.89

5 3.34375 0.180664062 0.82 0.93

6 3.328125 0.076416015 0.35 0.47

• Errors do not drop monotonically but oscillate.

• ea > et at each step, which is good. It means using ea is conservative.

• ea can also be estimated as ea=(xU - xL)/(xU+xL). This can be used for the 1st iteration too.
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False-Position Method

x

f(x)

x L

x U

• Start with two initial guesses, xLOWER

and xUPPER .

• They should bracket the root, i.e.
f(xL) * f(xU) < 0

• Estimate the root using similar triangles.

• Determine the interval which contains the root

if  f(xL) * f(x) < 0 root is between xL and x

else root is between x and xU

• Estimate a new root in this new interval

• Iterate like this and compute the error after 
each iteration.

• Stop when the specified tolerance is reached.
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False-Position Method (cont’d)

• It always converge to the true root.

• f(xL) * f(xU) < 0  is true if the interval has odd number of roots, not necessarily one root.

• Generally converges faster than the bisection method (See page 127 for an exception).

Example 7: Repeat the previous example (Find the square root of 11).

Iteration no. x f(x) |e t| % |e a| %

1 3.28571429 -0.1040816 0.932 -----

2 3.31372549 -0.0192234 0.087 0.845

3 3.31635389 -0.0017969 0.0082 0.079

4 3.31659949 -0.0001678 0.00076 0.0074

5 3.31662243 -0.0000157 0.00007 0.00069

6 3.31662457 -0.0000015 0.00001 0.00006

• Errors drop monotonically. Converges faster than the bisection method.

• ea > et at each step, which is good. It means ea is conservative.
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About bracketing methods

• A plot of the function is always helpful.

• to determine the number of all roots, if there are any.

• to determine whether the roots are multiple or not.

• to determine whether to method converges to the desired root.

• to determine the initial guesses.

• Incremental search technique can be used to determine the initial guesses.

• Start from one end of the region of interest.

• Evaluate the function at specified intervals.

• If the sign of the function changes, than there is a root in that interval.

• Select your intervals small, otherwise you may miss some of the roots. But if they are too 
small, incremental search might become too costly.

• Incremental search, just by itself, can be used as a root finding technique with very small 
intervals (not efficient).
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Fortran Code for Bisection Method
PROGRAM BISECTION    ! Calculates the root of a function

INTEGER :: iter, maxiter

REAL(8) :: xL, xU, x, fxL, fxU, fx, tol, error

READ(*,*) xL, xU, tol, maxiter

DO iter = 1, maxiter

x = (xL + xU) / 2 ! Only this line changes for the False-Position Method

fx = FUNC (x) ! Call a subroutine to calculate the function.

error = (xU - xL) / (xU + xL)*100 ! See page 121

WRITE(*,*) iter, x, fx, error

IF (error < tol) STOP

fxL = FUNC (xL)

fxU = FUNC (xU)

IF(fxL * fx < 0) THEN

xU = x

ELSE

xL = x

ENDIF

ENDDO

END PROGRAM BISECTION

Exercise 5: Write a C program for the Bisection 
method and implement the following improvements

• Check if the initial guesses bracket the root or not.

• Read the true value if it is known and calculate e t in 

addition to e a.

• Check for the cases of  f(xL)=0  or  f(xU)=0
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Ch 6. Open Methods

(a) Bracketing methods always 
converge.

(b) Open methods may diverge

(c) or converge very rapidly.
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Simple One-Point Iteration

• Put the original formulation of f(x) = 0 into a form of x=g(x).

• Many possibilities are possible

• ln(x) – 3x + 5 = 0         x = [ ln(x) + 5 ] / 3       or      x = e3x-5

• cos(x) = 0         x = x + cos(x)

• Start with an initial guess x0

• Calculate a new estimate for the root using   x1 = g(x0)

• Iterate like this. General formula is  xi+1 = g(xi)

• Converges if   |g(x)|<1 in the region of interest (Easier to see graphically in the coming slides).
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Simple One-Point Iteration (cont’d)

Example 8: Repeat the previous example (Find the square root of 11). Start with x0 = 3.

i x i x i+1=g(xi) |e t| %

0 3 1 70

1 1 -9 371

2 -9 61 1739

3 61 3771 113600

Diverges

• Selection of g(x) is important. Note that we did not use the trivial one, x = 11.

• If the method converges, convergence is linear. That is the relative error at each iteration is 

roughly proportional to the half of the previous error. This is easier to see for et.

Exercise 6: Show that (a) violates the convergence criteria |g(x)|<1.

(a)  x2-11 = 0   x= x +x2-11 (b)  11-x2 = 0   x= (4x+11-x2)/4

i x i x i+1=g(x i) |e t| %

0 3 3.5 5.53

1 3.5 3.1875 3.89

2 3.1875 3.39746094 2.44

3 3.39746094 3.26177573 1.65

4 3.26177573 3.35198050 1.07

5 3.35198050 3.29303718 0.71

Converges



13

Simple One-Point Iteration (cont’d)

• We can use the two-curve graphical method to check convergence    |g(x)|<1.

(a) Monotone
convergence

(b) Spiral
convergence

(c) Monotone
divergence

(d)   Spiral
divergence
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Newton-Raphson Method

• Start with an initial guess x0 and 
calculate x1 as
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• Continue like this until you reach the 
specified tolerance or maximum number 
of iterations.
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Newton-Raphson Method (cont’d)

Example 9: Repeat the previous example (Find the square root of 11). Start with x0 = 3.

f(x) = x2-11 = 0 ,  f ’(x)= 2x      xi+1 = xi – (x2-11)/2x

iter x f(x) |e t| %

0 3 -2 9.55

1 3.33333333 0.1111111 0.50

2 3.31666667 0.0002778 0.00126

3 3.31662479 0.0000000 0.00000

Selection of the initial guess affects the convergence a lot.

Exercise 7: NR method is quite sensitive to the starting point. Try to find the first positive 
root of sin(x) (which is 1.570796) starting with  a) x0 = 1.5,  b) x0 = 1.7,  c) x0 = 1.8 ,  d) x0

= 1.9  (They all converge to different roots).
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To find the root, f(x i+1) should be zero    

Derivation of NR Method from Taylor Series
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Error Analysis

If we use the complete Taylor Series the result would be exact.

Use first order approximation    
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This is quadratic convergence. That is the error at each iteration is roughly proportional to 
the square of the previous error. (See page 141 for a nice example).
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Exercise 8: We showed that the NR can be derived from a 1st order Taylor series expansion. 
Derive a new method using 2nd order Taylor series expansion. Compare the convergence of this 
method with NR. Comment on the practicality of this new method.

Exercise 9: NR method can be seen as Simple One-Point Iteration method with 
g(x) = x i - f(x i) / f’(x i). Using the convergence criteria of the Simple One-Point Iteration Method, 
derive a convergence criteria for the NR Method.

Difficulties with the NR Method (page 144)

• Need to know the derivative of the function.

• May diverge around inflection points.

• May give oscillations around local minimums or maximums.

• Zero or near zero slope is a problem, because f ’ is at the denominator.

• Convergence may be slow if the initial guess is poor.

Exercise 9.1 : Use the NR method to locate one of the roots of f(x) = x(x-5)(x-6)+3 starting 
with  x0 = 3.5  (NR will oscillate around the local minimum).
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Secant Method

• Start with two initial guess x-1 and x0. 
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• Continue like this until you reach the 
specified tolerance or maximum number 
of iterations.

Use this in the equation of NR method.
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Secant Method (cont’d)

Example 10: Repeat the same example (Find the square root of 11).

Start with x-1 = 2, x0 = 3

f(x) = x2-11 = 0

iter x f(x) |e t| %

-1 2 -7 -311

0 3 -2 -160

1 3.4 0.56 2.51

2 3.3125 -0.0273438 0.12

3 3.31657356 -0.0003398 0.0015

4 3.31662482 0.0000002 0.0000

Selection of the initial guess affects the convergence a lot.

Exercise 10: There is no guarantee for the secant method to converge. Try to calculate the 
root of ln(x) starting with   (a) x-1 = 0.5 and x0 = 4,    (b) x-1 = 0.5 and x0 = 5. Part (a) 
converges, but not part (b)
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Secant vs. False Position

False-Position:
)x(f)x(f
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First iterations of both methods are the 
same.

Second iterations are different in terms 
of how the previous estimates are 
replaced with the newly calculated root.

• False-position Method drops one of 
previous estimates so that the 
reamining ones bracket the root.

• Secant Method always drops the 
oldest estimate.
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Special Treatment of Multiple Roots

• At even multiple roots, bracketing methods can not be used at all.

• Open methods still work but

• f (x) also goes to zero at a multiple root. Possibility of division by zero for Secant and NR.  
f(x) will reach zero faster than f (x) , therefore use a zero-check for f(x) and stop properly.

• they converge slowly (linear instead of quadratic convergence).

• Some modifications can be made for speed up.

i) If you know the multiplicity of the root NR can be modified as
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 m=2 for a double root, m=3 for a triple root, etc.

ii) Another alternative is to define a new function u(x)=f(x)/f (x) and use it in the formulation
of NR Method
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(Similar modifications can be made for the Secant Method. See the book for details.)
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Solving System of Nonlinear Equations

Using Simple One-Point Iteration Method

Solve the following system of equations
1ye

4yx

x

22
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x

y

2
2

1

x4)x(gy

)y1ln()y(gx
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Put the functions into the form x=g1(x,y),  y=g2(x,y)

Select a starting values for x and y, such as x0=0.0 and y0=0.0. They don’t need to satisfy the 
equations. Use these values in g functions to calculate new values.

x1= g1(y0) = 0 y1= g2(x1) = -2

x2= g1(y1) = 1.098612289 y2= g2(x2) = -1.67124236

x3= g1(y2) = 0.982543669 y3= g2(x3) = -1.74201261

x4= g1(y3) = 1.00869218 y4= g2(x4) = -1.72700321

The solution is converging to the exact solution of x=1.004169 , y=-1.729637

Exercise 11: Solve the same system but rearrange the equations as x=ln(1-y)    y = (4-x2)/y 
and start from x0=1 y0=-1.7. Remember that this method may diverge.
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Solving System of Nonlinear Equations

Using Newton-Raphson Method

Consider the following general form of a two equation system

Write 1st order TSE for these equations
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To find the solution set u i+1 = 0 and v i+1 = 0. Rearrange
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u The first matrix is called the Jacobian matrix.

Solve for x i+1 , y i+1 and iterate.

Can be generalized for n simultaneous equations
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Solving System of Eqns Using NR Method (cont’d)

Solve for x i+1 and y i+1 using Cramer’s rule (ME 210)
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The denominator is the 
determinant of the Jacobian 
matrix |J|.

Example 11: Solve the same system of equations                             stating with x0=1, y0=1
01yev

04yxu

x

22
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i=0, x0=1 y0=1 u0=-2 v0=2.718282 |J0|=-3.436564

i=1, x1=-1.163953 y1=3.335387 u1=8.479595 v1=2.647636 |J1|=-4.410851

i=2, x2=-3.245681 y2=1.337769 u2=8.324069 v2=0.376711 |J2|=-6.595552

i=3, x3=-2.136423 y3=0.959110 u3=1.484197   v3=0.077187 |J3|=-4.499343

Looks like it is converging to the root in the 2nd quadrant x  -1.8, y  0.8.

Exercise 12: Can you start with x0=0 and y0=0 ?

Exercise 13: Try to find starting points that will converge to the solution in the 4th quadrant.
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