Vektörler:
Vektorel büyüklükler vektor adi verilen yǒnlŭ dogru parcaları ile gisterilirler. Vektör, belirli bir uzunluğa, belirli bir dopnttuya ve belirli bir yône sahip bulunon bir dogn parcasidir.

$|\overrightarrow{A B}|$ vektörün modulu veya uzunlugu
$\underset{\vec{a}}{\text { Vekförterin }} \underset{\rightarrow}{\text { esiteigi: }}$
\vec{a} ve \vec{b} gibi iki vektor alalem. \vec{a} ve \vec{b} vektöterhin baclongia noktalan farkli fakat dopnltu, yön ve buyük hikleri (modulleri) ayni ise \vec{a} ve \vec{b} vektoin esittir desir $\vec{a}=\vec{b}$ ile gostesilir.
iki vektoñn Toplomi ve Farki
\vec{a} ve \vec{b} iki vektor olsun.

$$
\vec{c}=\vec{a}+\vec{b}
$$

$\vec{a}+\vec{b}=\vec{b}+\vec{a}$ dir.
$\vec{a}-\vec{b}$ farki \vec{a} ve $(-\vec{b})$ vektorlenhin toplaml olup $\vec{c}=\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$ seklinde ifode edili.

Bir vektörin bir skalerle Garpiml
\vec{a} vektorinuin m gibi bír pozitif sayi ile Garpimi olon $\overrightarrow{\vec{a}}$ vektoñ \vec{a} velction ile ayni dopnlto ve yôndeder.

$$
|m \vec{a}|=m|\vec{a}| \text { dir. }
$$

$m<0$ ise \vec{a} ve $\overrightarrow{m a}$ nin dopnltulari ayni yónteni birbinhin tersidil.
Birin veletor: $\vec{u}=\frac{1}{|\vec{a}|} \cdot \vec{a}$, \vec{a} vekton' ile ayni dopnltu ve yöne sahip olon moduliu 1 olan bir velctör duir.

Vektrötenh Oxyz eksen takimi üzerinde tonimlanmasi U2aydohi bir veictor $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ seiclinde gósterilir.
Duzlende ise $\vec{a}=\left(a_{1}, a_{2}\right)$ dir.
Bilesenlenhin hepsi sifir olan vektöre sifir uektör denir. $\vec{O}=(0,0,0)$ dir.
$\vec{i}, \vec{j}, \vec{k}$ birm vektôrleri
$\vec{i}, \vec{j}, \vec{k}$ vektorlen $0_{x}, O_{y}, O_{z}$ eksenleri dojpnltusundalu binim vektörlerdir. Buna pöre

$$
\vec{l}=(1,0,0) \quad \vec{j}=(0,1,0) \quad \vec{k}=(0,0,1) d i r .
$$

U2ayda bir $A(x, y, z)$ noktasi alalem.

$\overrightarrow{O A}$ vektoń A noktasinin yer vectóridur.

$$
\overrightarrow{O A}=\vec{a}=x \vec{i}+y \vec{j}+z \vec{k}
$$

seklindedir.
Bu bir vektorin bu sekilde ifodesime kartezyen birim (6az) vektöleri cinsinden ifodesi deir.

$$
|\vec{a}|=\sqrt{x^{2}+y^{2}+z^{2}} d v
$$

Tanim: $\vec{a}=x_{1} \vec{i}+y_{1} \vec{j}+z_{1} \vec{k} \quad$ ise $\vec{a}+\vec{b}=\left(x_{1}+x_{2}\right) \vec{i}+\left(y_{1}+y_{2}\right) \vec{j}+\left(z_{1}+z_{2}\right) \vec{k}$

$$
\vec{b}=x_{2} \vec{i}+y_{2} \vec{j}+z_{2} \vec{k} \quad \text { dir. }
$$

k bir skaler ise
Skaler Garpin:

$$
k \vec{a}=k x_{1} \vec{\imath}+k y_{1} \vec{j}+k z_{1} \vec{k} d r_{-}
$$

\vec{a} ve \vec{b} gibi iki vektorun skaler carpimı, bu vektörlerin a ve b buyuklükleriyle vektórler arasindaki aginin kosinusu carpimina esittir.

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

iki vektorin skaler Garpimi bir skalersayidir.

1) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
2) $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
3) $m(\vec{a} \cdot \vec{b})=(m \vec{a}) \cdot \vec{b}=\vec{a} \cdot(m \vec{b})$
4) $\vec{i} \cdot \vec{i}=\vec{j} \cdot \vec{j}=\vec{k} \cdot \vec{k}=1$

$$
\vec{i} \cdot \vec{j}=\vec{j} \cdot \vec{k}=\vec{k} \cdot \vec{i}=0
$$

5) $\quad \vec{a} \cdot \vec{a}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \quad\left(\vec{a}=a_{1} \vec{i}+a_{2} \vec{\jmath}+a_{3} \vec{k}\right)$
6) Eger $\vec{a} \cdot \vec{b}=0$ ve \vec{a} ve \vec{b} vektötcri sifir vektor degilse \vec{a} ve \vec{b} dik vektórlerdil.
OR/ $\vec{a}=2 \vec{i}+3 \vec{j}-k \vec{b}$ ve $\vec{b}=\vec{\imath}+2 \vec{k}$ vektörlerinin birbiine dik oldujunu jósteriniz.

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=0 \quad \text { olmale } \\
(2 \vec{i}+3 \vec{j}-\vec{k}) \cdot(\vec{i}+2 \vec{k})=2-2=0
\end{gathered}
$$

\vec{a} ve \vec{b} dik nektôrlerdir.
iki vektor arosindali acil;

$$
\vec{a}=a_{1} \vec{\imath}+a_{2} \vec{j}+a_{3} \vec{k} \quad, \vec{b}=b_{1} \vec{i}+b_{2} \vec{\jmath}+b_{3} \vec{k}
$$

ise

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|} \text { dir. }
$$

Vektorel Garpim:
\vec{a} ve \vec{b} ibi vektör aci θ olswn.

$$
\overbrace{\vec{a}=\vec{a} \times \vec{b}}^{\vec{a}} \vec{b} \quad \vec{c}=\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \cdot \vec{u}
$$

Vektirel Garpim bu iki vektoñn belirttigi dizlene dik dönltuda bir vektördir. $\vec{c} \perp \vec{a}$ ve $\vec{c} \perp \vec{b}$ dir. \vec{u} vektoin \vec{c} ile ayni dopnltu ve yönde birim nektordür.
$\vec{a} \cdot(\vec{b} \times \vec{c}) \quad k \operatorname{arisik}$ ciarpimi \vec{a}, \vec{b} ve \vec{c} vektörlen úzerine kưlan paralel yüzlunün hacmine esittir.
iki kat vektourel garpim:
$\vec{a}, \vec{b}, \vec{c}$ üa vektor olmak y̌zere
$\vec{a} \times(\vec{b} \times \vec{c})$ ifadesine \hat{a} vektbrun iki kat vektörel carpimi desir.
$\hat{\text { ork / }} \vec{u}=\vec{i}+3 \vec{k}, \vec{v}=3 \vec{i}+2 \vec{j}+\vec{k}$ vektörlerinin belirttigi dizlene paralel olon $\bar{\omega}=\vec{i}-2 \vec{j}$ vektorine dik olen bir birim vektor bulunuz.

Bir \vec{x} vektorív alalem. \vec{x} vektion $\vec{u} v e \vec{v} \operatorname{nim}$ belirttigi dizlene paralel oldujundan $\vec{u} \times \vec{v}$ vektórel Garpimina diktir.

$$
\left.\begin{array}{l}
\text { 1) }(\vec{u} \times \vec{v}) \cdot \vec{x}=0 \\
\text { 2) } \vec{x} \cdot \vec{w}=0
\end{array}\right\}
$$

$$
\begin{aligned}
& \vec{x}=a \vec{i}+b \vec{j}+c \vec{k} \text { olven. } \\
& (\vec{u} \times \vec{v}) \cdot \vec{x}=0 \\
& -6 a+8 b+2 c=0 \\
& \vec{x} \cdot \vec{w}=0 \\
& a-2 b=0 \\
& \vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 0 & 3 \\
3 & 2 & 1
\end{array}\right| \\
& =-6 \vec{i}+8 \vec{j}+2 \vec{k} \\
& -6 a+8 b+2 c=0 \\
& a-2 b=0 \\
& a=2 b \\
& c=26 \text { olur. } \\
& \frac{\vec{x}}{|\vec{x}|}=\mp \frac{b(2 \vec{i}+\vec{j}+2 \vec{k})}{\sqrt{b^{2}(4+1+4)}}=\mp\left(\frac{2}{3} \vec{i}+\frac{1}{3} \vec{j}+\frac{2}{3} \vec{k}\right)
\end{aligned}
$$

Vektorrel garpim bir vektördür.

1) $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
2) $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
3) $m(\vec{a} \times \vec{b})=(m \vec{a}) \times \vec{b}=\vec{a} \times(m \vec{b}) \quad m$ skaler
4) $\vec{i} \times \vec{i}=\vec{j} \times \vec{j}=\vec{k} \times \vec{k}=0$

$$
\vec{i} \times \vec{j}=\vec{k}, \vec{j} \times \vec{k}=\vec{i} \quad, \vec{k} \times \vec{i}=\vec{j}
$$

5)

$$
\begin{aligned}
& \vec{a}=a_{1} \vec{i}+b_{1} \vec{j}+c_{1} \vec{k} \\
& \vec{b}=a_{2} \vec{i}+b_{2} \vec{j}+c_{2} \vec{k}
\end{aligned} \quad \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|
$$

6) Eger \vec{a} ve \vec{b} sigir dektö dojil ve $\vec{a} \times \vec{b}=0$ ise \vec{a} ve \vec{b} paralel vektórlerdir.
7) $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \cdot \sin \theta$ dir.
$|\vec{a} \times \vec{b}|$, \vec{a} ve \vec{b} vektörlen üzerine kurulan paralel kenarin alanina esittir.
$\vec{a}, \vec{b}, \vec{c}$ vektörlenhin Karisik Garpiml $\vec{a} \cdot(\vec{b} \times \vec{c}), \vec{a}, \vec{b}, \vec{c}$ vektörlenhin Karisik carpimidir. Sonug skalerdiv.

$$
\begin{aligned}
& \vec{a}=a_{1} \vec{i}+b_{1} \vec{j}+c_{1} \vec{k} \\
& \vec{b}=a_{2} \vec{i}+b_{2} \vec{j}+c_{2} \vec{k} \\
& \vec{c}=a_{3} \vec{i}+b_{3} \vec{j}+c_{3} \vec{k}
\end{aligned} \quad \vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \text { tur. }
$$

OR/ $A(1,2,3) \quad B(-1,2,-3), C(-1,4,2)$ noktalari veriliyor.

1) $\overrightarrow{A B}, \overrightarrow{A C}$ vektörlerine dik dan birim vektör bulunuz.
2) Bu noktalardan geaes duzlenin desklenini bulunuz.
3)

$$
\begin{aligned}
& \overrightarrow{A B}=\vec{b}-\vec{a}=-2 \vec{i}-6 \vec{k} \\
& \overrightarrow{A C}=\vec{c}-\vec{a}=-2 \vec{i}+2 \vec{j}-\vec{k} \\
& \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-2 & 0 & -6 \\
-2 & 2 & -1
\end{array}\right|=12 \vec{i}+10 \vec{j}-4 \vec{k} \\
& \vec{U}=\frac{\overrightarrow{A B} \times \overrightarrow{A C}}{|\overrightarrow{A B} \times \overrightarrow{A C}|}=\mp \frac{12 \vec{i}+10 \vec{j}-4 \vec{k}}{\sqrt{144+100+16}}=\mp \frac{12 \vec{i}+10 \vec{j}-4 \vec{k}}{2 \sqrt{65}}
\end{aligned}
$$

2)

$$
\begin{array}{ll}
B & \overrightarrow{A B}=-2 \vec{i}-6 \vec{k} \\
C & \overrightarrow{A C}=-2 \vec{i}+2 \vec{j}-\vec{k} \\
D(x, y, z) & \overrightarrow{A D}=(x-1) \vec{i}+(y-2) \vec{j}+(z-3) \vec{k}
\end{array}
$$

$\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$ vektórlen izerine kurulan panalel yuzhinuin hacmi 0 ise (yani $\overrightarrow{A B} \cdot(\overrightarrow{A C} \times A D)=0$) bu ùa vektoir bir uzay sekli meydona getirnet ayni düzlendedir desir.

$$
\begin{aligned}
& \overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})=\left|\begin{array}{ccc}
-2 & 0 & -6 \\
-2 & 2 & -1 \\
x-1 & y-2 & z-3
\end{array}\right|=0 \\
& 12(x-1)+10(y-2)-4(z-3)=0 \\
& 12 x+10 y-4 z=20 \text { bulwwr. }
\end{aligned}
$$

OR/ $A(2,0,1) \quad B(3,-1,2) \quad C(0,1,-1) \quad D(m, 1,1)$ noktalarinin ayni dizlende olmasi iain m ne olmalidir?

$$
\begin{aligned}
& \overrightarrow{A B}=(1,-1,1) \quad \overrightarrow{A C}=(-2,1,-2) \\
& \overrightarrow{A D}=(m-2,1,0)
\end{aligned}
$$

$\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$ vektorleri aynı dizlemde olduklandon $\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})=0$ olmalider.

$$
\begin{aligned}
\overrightarrow{A B} \cdot(\overrightarrow{A C} \times A D) & =\left|\begin{array}{ccc}
1 & -1 & 1 \\
-2 & 1 & -2 \\
m-2 & 1 & 0
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & -1 & 1 \\
0 & -1 & 0 \\
m-2 & 1 & 0
\end{array}\right|=\begin{array}{l}
m-2=0 \\
m=2 \text { bulunur. }
\end{array}
\end{aligned}
$$

OR/Kóseleri $A(1,0,-1), B(2,-1,1)$ ve $C(3,1,0)$ olan $\triangle B C$ lageninin alanini bulunuz.

$$
\begin{aligned}
& \vec{B} \quad \overrightarrow{A B}=\vec{i}-\vec{j}+2 \vec{k} \\
& A \longrightarrow C \quad \overrightarrow{A C}=2 \vec{i}+\vec{j}+\vec{k} \\
& \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -1 & 2 \\
2 & 1 & 1
\end{array}\right|=-3 \vec{i}+3 \vec{j}+3 \vec{k} \\
& S=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2} \sqrt{(-3)^{2}+3^{2}+3^{2}}=\frac{1}{2} \sqrt{27} 6 r^{2}
\end{aligned}
$$

VEKTÓR HZAYLARI
Tanim: Bir V kümesi uzerinde tonimli \oplus ve \odot islemlerine göre asoj̄idaki bbzellikler sojloniyorsa V'ye bir reel vektor uzayi denir.

1) Her $u, v \in V$ isin $u \oplus v \in V$
2) Her $u_{1} v \in V$ isin $u \oplus v=v \oplus u$
3) Her $u, v, w \in V$ isin $u \oplus(v \oplus w)=(u \oplus v) \oplus w$
4) Her $u \in V$ igin $u \oplus 0=0 \oplus u=u$ olacak sekilde V de bir O elenani vardir.
5) Her $u \in v$ iain $u \oplus(-u)=(-u) \oplus u=0$ olacak sekilde V de bir $-u$ elenanı $v a r d i r$.
6) Her $u \in V$ ve her $C \in R$ iदin $C(u \in V$ dir.
7) Her $u_{1} v \in V$ ve $c \in R$ isin $c \odot(u \oplus v)=(c \odot u) \oplus(c \odot v) d r$
8) Her $u \in V$ veher $c, d \in R$ isin $(c \oplus d) \odot u=(c \odot u) \oplus(d \odot u) d u r$.
9) Her $u \in V$ ve her $c, d \in R$ iain $c \odot(d \odot u)=(c \cdot d) \odot \Delta d u r$.
10) Her $u \in V$ icin $1 \odot u=u$ dur.

Vektor uzayi V nin elemanlarino vektir, R nin (reel sayilarin) elenonlarina skaler desir. (4) islenine vektorel toplan, () iclenine de skaler aarpim adi verilir.
OR/ $V=R$ olsun. Toplama ve skalerle carpma icleni
$x \oplus y=3 x+3 y$ ve $k \odot x=k x$ ile tonimlansin.
vektor usaye kosullanndon déisme ozelligihin soj̣tondiginı ana birlesme ozalliginin segtonmadiginı gosterelim.

1) $x \oplus y \stackrel{?}{=} y \oplus x$
$x \oplus y=3 x+3 y$
$x \oplus y=y \oplus x \quad$ Bóylece \oplus

$$
y \oplus x=3 y+3 x
$$ islemine góre V degismelidir.

2) $(x \oplus y) \oplus z^{?}=x \oplus(y \oplus z)$

$$
\left.\begin{array}{rl}
(x \oplus y) \oplus z= & (3 x+3 y) \oplus z
\end{array}=3(3 x+3 y)+3 z ~ 子 ~=9 x+9 y+3 z\right) ~ \begin{aligned}
x \oplus(y \oplus z)= & x \oplus(3 y+3 z) \\
& =3 x+3(3 y+3 z)=3 x+9 y+9 z
\end{aligned}
$$

Bitlesme vzelligi yoktur. Vnin vektor uzayl olmadiǵ gonulur.
OR/ $V=R$ olsun. Toploma ve skalerle carpma iclemi
$x \oplus y=x^{y}$ ve $k \odot x=k x$ seklinde
tomimlansin. V nin vektior usayi olmadigini gòsterelim.

$$
\begin{aligned}
& x \oplus y=x^{y} \\
& y \oplus x=y^{x}
\end{aligned}
$$

olup $x^{y} \neq y^{x}$
oldujunden V vektör uzayi degildir.
$\because R / V=\{(x, y) \mid x, y \in R\} \quad s=\left(s_{1}, s_{2}\right)$ ve $t=\left(t_{1}, t_{2}\right)$ olsun.

$$
\left(s_{1}, s_{2}\right) \oplus\left(t_{1}, t_{2}\right)=\left(s_{1}+t_{1}+2, s_{2}+t_{2}+2\right)
$$

ve

$$
c \odot\left(s_{1}, s_{2}\right)=\left(c s_{1}+c-1, c s_{2}+c-2\right)
$$

islemler ile tanimlansin. V nin bir vektor uzayi oldugunu gǒsteriniz.
V, toplama ve skalerle carpma islemine joie kapalidir. Toplona islenine goie déjisme ve birlesme bzellikleride saḡlanir.
Her $s=\left(s_{1}, s_{2}\right) \in V$ isin $e=\left(t_{1}, t_{2}\right) \in V$ icin toplanaya jóre etkisiz elenon bulunmaktadir. Sơyle ki
$s \oplus e=s$ veya $\left(s_{1}+t_{1}+2, s_{2}+t_{2}+2\right)=\left(s_{1}, s_{2}\right)$ dir.

$$
\begin{aligned}
s_{1}+t_{1}+2=s_{1} & \text { ve } \quad s_{2}+t_{2}+2=s_{2} \\
t_{1} & =-2
\end{aligned} \text { ve } \quad t_{2}=-2 \text { olur. }
$$

Bu da toplomsal etkisiz elemanin $e=0=(-2,-2)$ olduğunu gusterir.

Vdeki her bir $\left(s_{1}, s_{2}\right)$ elemaninin toplamsal tersinin oldugunu göstermek icin
$s \oplus t=O=(-2,-2)$ olocok sehilde bir (t_{1}, t_{2}) vektörüu oldugunu bulmalyyl2.

$$
\begin{aligned}
& s \oplus t=\left(s_{1}+t_{1}+2, s_{2}+t_{2}+2\right) \text { oldupundan } \\
& s_{1}+t_{1}+2=-2 \text { ve } s_{2}+t_{2}+2=-2 \text { olur. } \\
& t_{1}=-4-s_{1} \text { ve } t_{2}=-4-s_{2} \text { elde edilir. }
\end{aligned}
$$

V deki herhangi bir $\left(s_{1}, s_{2}\right)$ elemaninin inversi $-5=\left(-s_{1}-4,-5_{2}-4\right)$ olacaktir.

OR/ $n \times 1$ mertebeli reel elemanlı $\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]$ seklindeki
matristerin kümesi R^{n} ǔzerinde
\oplus islemini matris toplami ve O islenini de bir matrisin bir reel sayi ile aarpimi olarak alirsak vektor uzayı aksiyomlarini soglediginı gơrürüz $-R^{2}$ de bir $\left[\begin{array}{l}a \\ b\end{array}\right]$ vektorru seklinde ifade edilebilir.
ÓR/ \oplus islemini matris toplami ve \odot isleninide bir matrisin bir reel sayi ile carpimi olarak alirsak mxn mertebesindeki tüm reel matrislerin kumesi bir vektor uzayidir. Bu velctör U2ayi $M_{m \times n}$ ile gisterilir.
OR/ n bir pozitif sabit tamsayi olsun. Derecesi n yada daha küuuk buitün polinomlor ve sifir polinomunus olucturdǘu kume P_{n} ile góstesilsin.
P_{n} 'nin bir vektor uzayl oldupusu jósterebiliiz.
$p(x) \oplus q(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\ldots+\left(a_{n}+b_{n}\right) x^{n}$ Toplonalikni
$c \odot p(x)=c a_{0}+c a_{1} x+\cdots+c a_{n} x^{n}$ skalerle garpma

Teorem; V bir reel vektor uzayi dsun.

1) Her $u \in V$ isin $O \odot \omega=O$
2) Her $C \in R$ iain $C O O=O$
3) Eger $c \odot u=0$ ise $c=0$ veya $u=0$ dir.
4) Her $u \in V$ igin $(-1) \bigcirc u=-u$ dur.

Tanim: ALT LIAAY
V bir reel velctö Uzayl ve W, Vnin bostan farklı bir alt kumesi olsun. Egger W, V deki islenlere gore bir vektor u2ayi ise w ye V nin bir alt veltior uzayi desír.
Teoren; V bir reel vektor u2ayi $V N$, Vnin bostan farklı bir alt kùmesi olsisn. Budurumda W nin V nin bir alt uzay, olmasi iain gerek ve yeter kosul asoğidoki ifadelerin sojlanmasidir.

1) Her $u, v \in W$ iain $u \oplus v \in W$ dir.
2) Her $u \in W$ ve her $c \in R i a i n$ cOuEW dir.
$\hat{O R /} R^{2} \operatorname{nin}, W=\left\{\left[\begin{array}{c}x \\ x+1\end{array}\right] x \in R\right\}$ seklinde tanimlanan alt kumesinin bir alt u2ay olup olmadigini gösteriniz.
W nin iki vektionú $w_{1}=\left[\begin{array}{c}x \\ x+1\end{array}\right]{w_{2}}_{2}=\left[\begin{array}{c}y \\ y+1\end{array}\right] \in W$ olsun.

$$
w_{1}+w_{2}=\left[\begin{array}{c}
x \\
x+1
\end{array}\right]+\left[\begin{array}{c}
y \\
y+1
\end{array}\right]=\left[\begin{array}{c}
x+y \\
x+y+2
\end{array}\right] \notin w \text { yani }
$$

$w_{1}+w_{2} \notin w$ oldupundan
W, R^{2} nim bir alt uzayi degildir.

OR/ 2×2 mertebesinden vektor v2oyl $M_{2 \times 2}$ olsun.izi 0 olar tum 2×2 mertebeli matrislerin kumesi ω olsun. Yani

$$
W=\left\{\left[\begin{array}{ll}
x & y \\
z & t
\end{array}\right] \quad x+t=0\right\} \quad \text { olsun }
$$

w nin $M_{2 \times 2}$ nin alt uzayi olup olmadȳinıjósterhiz.

$$
\begin{array}{r}
w_{1}=\left[\begin{array}{ll}
x_{1} & y_{1} \\
z_{1} & t_{1}
\end{array}\right] \in W \\
w_{2}=\left[\begin{array}{cc}
x_{2} & y_{2} \\
z_{2} & t_{2}
\end{array}\right] \in W \\
\left.x_{2}+t_{1}=0 \quad \begin{array}{l}
2
\end{array}\right]
\end{array}
$$

$$
w_{1}+w_{2}=\left[\begin{array}{ll}
x_{1} & y_{1} \\
z_{1} & t_{1}
\end{array}\right]+\left[\begin{array}{ll}
x_{2} & y_{2} \\
z_{2} & t_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1}+x_{2} & y_{1}+y_{2} \\
z_{1}+z_{2} & t_{1}+t_{2}
\end{array}\right]
$$

$w_{1}+w_{2}$ nin izi;

$$
x_{1}+x_{2}+t_{1}+t_{2}=\underbrace{\left(x_{1}+t_{1}\right)}_{0}+(\underbrace{x_{2}+t_{2}}_{0})=0 d \text { dr }
$$

cherhangi bir skaler olmak izere

$$
\begin{aligned}
c \cdot w_{1}=c\left[\begin{array}{ll}
x_{1} & y_{1} \\
z_{1} & t_{1}
\end{array}\right]= & {\left[\begin{array}{ll}
c x_{1} & c y_{1} \\
c z_{1} & c t_{1}
\end{array}\right] } \\
& c x_{1}+c t_{1}=c\left(x_{1}+t_{1}\right)=0
\end{aligned}
$$

Sonus olarak $W, M_{2 \times 2}$ nin bir altuzayidir.
ÔR/V,derecesi 3 olon bútün polinomlarin kümesi olswn. V, P_{n} bir alt kumesidir. Ancale

$$
3 x^{3}+4 x^{2}-5 x-1 \text { ve }-3 x^{3}-4 x^{2}+3 x-3
$$

polinomlarinin toplami $-2 x-4$ dür ve binhai derecedes bir polinon oldujunden V deolmadigı isin V, P_{n} nin bir alt uzayi degildir.

Tanim; vektor whayinda $v_{1}, v_{2}, \ldots v_{m} m$ tone vektor ve $c_{1}, c_{2} \ldots c_{n} m$ tose skaler olmak úzere bir v vektorü
$v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{m}$ seklinde ifoole edilirse v vektorrǔ $v_{1}, v_{2}, \ldots, v_{n}$ vektör-lerinin bir lneer kombinasyonu olarak yazllir desir.
$\dot{O R} / R^{3}$ de $V=\left[\begin{array}{l}5 \\ 6 \\ 9\end{array}\right]$ vektơñuin $V_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], V_{2}=\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right], V_{3}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$
vektorlerinin lineer koinbinasyonue olonak ifade edildiǵmi gósterelim.

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=V \text { olacak sehilde } c_{1}, c_{2}, c_{3}
$$

bulunabilirse v vektion v_{1}, v_{2}, v_{3} in lineer kombinasyonu olonale ifoole edilir.

$$
c_{1}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
5 \\
6 \\
9
\end{array}\right]
$$

$$
\left.\begin{array}{l}
c_{1}+2 c_{2}+c_{3}=5 \\
2 c_{1}+2 c_{2}+c_{3}=6 \\
c_{1}+2 c_{2}+3 c_{3}=9
\end{array}\right\}
$$

derklen sistem'
cosuilurse $c_{1}=1 \quad c_{2}=1 \quad c_{3}=2$ bulunur.
Deublon gistenini cózelin $\quad v=v_{1}+v_{2}+2 v_{3}$ olur.

$$
\begin{aligned}
& {[A ; B]=\left[\begin{array}{ccc:c}
1 & 2 & 1 & 5 \\
2 & 2 & 1 & 6 \\
1 & 2 & 3 & 9
\end{array}\right] \sim\left[\begin{array}{ccc:c}
1 & 2 & 1 & 5 \\
0 & -2 & -1 & -4 \\
0 & 0 & 2 & 4
\end{array}\right] \sim\left[\begin{array}{ccc:c}
1 & 2 & 1 & 5 \\
0 & -2 & -1 & -4 \\
0 & 0 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{ccc:c}
1 & 2 & 1 & 5 \\
0 & -2 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right]} \\
& \mathrm{H}_{21}(-2), \mathrm{H}_{3}(-1), \mathrm{H}_{3}\left(\frac{1}{2}\right) \quad \mathrm{H}_{2}(1) \\
& {\left[\begin{array}{lll:l}
1 & 2 & 1 & 5 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{lll:l}
1 & 2 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{lll:l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \longrightarrow c_{1} c_{3}} \\
& H_{2}\left(\frac{-1}{2}\right) \quad H_{1}(-1) \quad H_{1}{ }^{(-2)} \quad r_{A}=r_{A: B}=3=n \\
& \text { Tele Gözui }
\end{aligned}
$$

Tanim: vektor v2ayinda $S=\left\{v_{1}, v_{2} \ldots v_{m}\right\}$ \checkmark deki vektörlerin kümesi olsun. Sdeki vektörlerin tum lineer kombinasyonlarindon olusan

$$
\langle S\rangle=\left\{c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n} \mid c_{1}, c_{2} \ldots c_{n} \in R\right\}
$$

V nin bir vektor uzayidir. $\langle S\rangle$ alt uzayina S kumesinin gerdigi veya ürettigi alt u2ay desir.
OR/ $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ seklinde verilen S
kûmesi gozðnune alinsin. Bu durumda $c_{1}, c_{2}, c_{3} \in R$ olmak \quad uzere $\langle S\rangle$ ikinci mertebedes tum simetrik matrislerin kümesidir.

$$
c_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+c_{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+c_{3}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
c_{1} & c_{2} \\
c_{2} & c_{3}
\end{array}\right]
$$

Burada $V=M_{2 \times 2}$ matrisler $S=\left\{v_{1}, v_{2}, v_{3}\right\} \begin{aligned} & \text { simetric } \\ & \text { matrisler }\end{aligned}$
Jani $\langle s\rangle, \quad c_{1}, c_{2}, c_{3} \in R$ olmak üzere $\left[\begin{array}{ll}c_{1} & c_{2} \\ c_{2} & c_{3}\end{array}\right]$ formundaki tim simetrik matrislerih olusturdupu $M_{2 \times 2}$ kumesidir.
$O R / R^{3}$ vektor wzayinin alt kúmesi

$$
S=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\} \text { ol sun. } V=\left[\begin{array}{c}
6 \\
8 \\
-2
\end{array}\right] \text { vektöñuin }\langle s\rangle
$$

ye ait olduguns gostenhiz.
$v,\langle s\rangle$ de ise

$$
\langle S\rangle \text { de ise }
$$

$c_{1}+c_{2}+c_{3}=6 \quad$ derk c_{1} óulürse

$$
\left.\begin{array}{l}
c_{1}+c_{2}+c_{3}=0 \\
c_{1}+c_{2}-c_{3}=8 \\
c_{1}-c_{2}+c_{3}=-2
\end{array}\right\} \quad \begin{array}{ll}
\text { derk } & c_{1}=3 \\
c_{2}=4 & c_{3}=-1 \\
\text { bulmur. }
\end{array}
$$ \checkmark vektion $\langle S\rangle$ deder.

OR/ ikinci mertebeden timterssimetrik matrislerin kùmesi W olsun. W nin tưm 2×2 matrislerin vektor uzayi olan $M_{2 \times 2}$ nin altuzay1 olup olmadigini aractiriniz.

$$
\begin{array}{ll}
W=\left\{\left[\begin{array}{cc}
0 & -x \\
x & 0
\end{array}\right]\right. & \mid x \in R\} \text { dir. } \\
w_{1}=\left[\begin{array}{cc}
0 & -a \\
a & 0
\end{array}\right] \quad w_{2}=\left[\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right] \quad \text { wdeiki matris }
\end{array}
$$

ve k da bir skaler olsun.

$$
\begin{aligned}
& w_{1}+w_{2}=\left[\begin{array}{cc}
0 & -a \\
a & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -(a+b) \\
a+b & 0
\end{array}\right] \in W \\
& c w_{1}=\left[\begin{array}{cc}
0 & -c a \\
c a & 0
\end{array}\right] \in W
\end{aligned}
$$

$w_{1}+w_{2} \in W, c w_{1} \in W$ oldugundan $W, M_{2 \times 2}$ nin alt uzayidir.
Ö́ $/\langle S\rangle=\left\{\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right]\right\}=R^{3}$ old gósteriniz. R^{3} un keyfi bir elemanı $V=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ olswn.

$$
c_{1}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{l}
2 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { oluyorsa }
$$

\checkmark vektoö $\langle S\rangle$ dedir.

$$
\begin{aligned}
& c_{1}+2 c_{3}=x \\
& c_{1}-c_{2}+5 c_{3}=y \\
& 2 c_{1}-c_{2}+c_{3}=z \\
& {\left[\begin{array}{ccc:c}
1 & 0 & 2 & x \\
1 & -1 & 5 & y \\
2 & -1 & 1 & z
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & x \\
0 & -1 & 3 & y-x \\
0 & -1 & -3 & z-2 x
\end{array}\right]} \\
& H_{2}(-1), H_{31}(-2) \\
& {\left[\begin{array}{cccc}
1 & 0 & 2 & x \\
0 & 1 & -3 & x-y \\
0 & -1 & -3 & z-2 x
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & x \\
0 & 1 & -3 & x-y \\
0 & 0 & -6 & -y+z-x \\
\mathrm{H}_{2}(-1)
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 2 & x \\
0 & 1 & -3 & x-y \\
0 & 0 & 1 & \frac{y+x-z}{6}
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & \frac{2 x-y+z}{3} \\
0 & 1 & 0 & \frac{-z-y+3 x}{2} \\
0 & 0 & 1 & \frac{-z+y+x}{6}
\end{array}\right]} \\
& \mathrm{H}_{3}\left(\frac{-1}{6}\right) \quad \mathrm{H}_{23}(3), \mathrm{H}_{13}(-2) \\
& c_{1}=\frac{2 x-y+z}{3} \quad c_{2}=\frac{-z-y+3 x}{2} \quad c_{3}=\frac{-z+y+x}{6}
\end{aligned}
$$

Bu sistenin Gözümiu vardir. R^{3} deki her vektö veriles ìa vektoruin bir lineer kombinasyonu olona yazilir 0 halde $\langle S\rangle=R^{3}$ olur.

OR/ R^{3} vektor iszayinin alt kimesi
$S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ 7\end{array}\right],\left[\begin{array}{c}1 \\ -2 \\ -7\end{array}\right]\right\}$ olsun. $V=\left[\begin{array}{l}3 \\ 2 \\ 4\end{array}\right]$ vektioñoün $\langle S\rangle$ ye ait olup olmadiginı arastiriniz.

$$
c_{1}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right]+c_{3}\left[\begin{array}{c}
1 \\
-2 \\
-7
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
4
\end{array}\right]
$$

$c_{1}+c_{2}+c_{3}=3$
$2 c_{1}+5 c_{2}-2 c_{3}=2 \quad$ derklen sisteninin

$$
c_{1}+7 c_{2}-7 c_{3}=4
$$

$v,\langle s\rangle$ altuzayl ait degildir.

$$
\begin{gathered}
{[A ; B]=\left[\begin{array}{ccc:c}
1 & 1 & 1 & 3 \\
2 & 5 & -2 & 2 \\
1 & 7 & -7 & 4
\end{array}\right] \sim\left[\begin{array}{ccc:c}
1 & 1 & 1 & 3 \\
0 & 3 & -4 & -4 \\
0 & 6 & -8 & 1
\end{array}\right] N\left[\begin{array}{ccc:c}
1 & 1 & 1 & 3 \\
0 & 3 & -4 & -4 \\
0 & 0 & 0 & 9
\end{array}\right]} \\
{\left[\begin{array}{ccc:c}
1 & 1 & 1 & 3 \\
0 & 1 & -4 / 3 & -4 / 3 \\
0 & 0 & 0 & 1
\end{array}\right] \quad r_{A}=2 \neq r_{A: B}=3 \text { cơzum yok. }}
\end{gathered}
$$

Tanim; V vektor usayinda $v_{1}, v_{2} \ldots v_{n} m$ tone vektor ve $c_{1}, c_{2} \ldots c_{m} m$ tone skaler icii $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{m} v_{m}=0$ ifadesi sadece $c_{1}=c_{2}=\ldots=c_{n}=0$ icin soploniyorsa $v_{1}, v_{2} \ldots v_{n}$ lineer bojumsiz, c_{i} lerden en az biri sifirdan farklı iken soplaniyorsa $v_{1}, v_{2} \ldots v_{m}$ uektórlesine lineer bogimle desir.
$\hat{O R} / R^{3}$ de $\quad V_{1}=(1,1,1), \quad V_{2}=(1,2,1), \quad V_{3}=(1,0,-2)$
vektorleri lineer boğinsizdir.

$$
\begin{aligned}
& c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \\
& c_{1}(1,1,1)+c_{2}(1,2,1)+c_{3}(1,0,-2)=(0,0,0) \\
& c_{1}+c_{2}+c_{3}=0 \\
& c_{1}+2 c_{2}=0 \\
& c_{1}+c_{2}-2 c_{3}=0 \\
& {\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 2 & 0 & 0 \\
1 & 1 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & -3 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \\
& \left.\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lllll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \begin{array}{l}
c_{1}=c_{2}=c_{3}=0 \\
v_{1}, v_{2}, v_{3}
\end{array}\right] \text { lineerbogimsiz_ }
\end{aligned}
$$

Söylede bakabilirsiniz.

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 1 & -2
\end{array}\right] \quad|A|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 1 & -2
\end{array}\right| \neq 0 \begin{aligned}
& \text { ise lineer } \\
& \text { honojen derk } \\
& \text { sisteninin sod }
\end{aligned}
$$ sisteninin sadece si fir ciozumu vardir. yoi $r=n$ dir

$\hat{\theta} R / P_{2}$ Uzayinda $S=\{\underbrace{x^{2}+2 x+2}_{v_{1}},-\underbrace{x^{2}+3 x-1}, \underbrace{\text { yoi }} \underbrace{x^{2}+2 x-1}\}$ kuimesinin lineer bogimsizvi olup olmodigini ${ }^{v} \operatorname{manas}^{2 / 2}$ ininiz.

$$
\begin{aligned}
& c_{1}\left(x^{2}+2 x+2\right)+c_{2}\left(-x^{2}+3 x-1\right)+c_{3}\left(x^{2}+2 x-1\right)=0 \\
& \left(c_{1}-c_{2}+c_{3}\right) x^{2}+\left(2 c_{1}+3 c_{2}+2 c_{3}\right) x+\left(2 c_{1}-c_{2}-c_{3}\right)=0
\end{aligned}
$$

$\left.\begin{array}{l}c_{1}-c_{2}+c_{3}=0 \\ 2 c_{1}+3 c_{2}+2 c_{3}=0\end{array}\right\}$ lineer desklen sisteni 4ozilurse $c_{1}=c_{2}=c_{3}=0$ elde edilir: v_{1}, v_{2}, v_{3} lineer bogimsizder.

Teoren: n boyutin V vektör szayinda m tone vektör

$$
\begin{aligned}
& V_{1}=\left(a_{11}, a_{12} \ldots a_{1 n}\right) \\
& V_{2}=\left(a_{21}, a_{22}, \ldots, a_{2 n}\right) \\
& \vdots \\
& V_{m}=\left(a_{m 1}, a_{m 2}, \ldots, a_{m n}\right. \\
& A=\left[\begin{array}{ccc}
a_{11} & a_{12} & \ldots \\
a_{1 n} \\
\vdots & a_{22} & \ldots \\
a_{n 1} & a_{m 2} & \ldots \\
\vdots
\end{array}\right]
\end{aligned}
$$

$$
v_{m}=\left(a_{m_{1}}, a_{m 2}, \ldots a_{m n}\right) \quad \text { olsun. Ejeer }
$$

matrisinin rangi r ise

1) Verilen m vektòrden r tonesi lineer bogimsizdir.
2) $r<m$ ise gerige kalan $m-r$ vektorûn herbiri bu r vektörún lineer kombinasyonu seklinde yazilabilir. ve m vektor lineer bogimli dur.
3) $n=m$ ise m vektörun lineer bogimsiz olmasi ian gerek ve yeter kosul $|A| \neq 0$ dir.
bR/ R^{3} vektor uzayinda $v_{1}=(1,0,-3), v_{2}=(1,0,0)$, $V_{3}=(0,0,1), V_{4}=(1,-1,0)$ vektorlerihin lineer bogiml l_{1} olup olmadigini arastirinız. lineer begimlı iseler aralarindaki bogintiyi bulwnuz.

$$
\begin{aligned}
A= & {\left[\begin{array}{ccc}
1 & 0 & -3 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 0 & 3 \\
0 & 0 & 1 \\
0 & -1 & 3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & -1 & 3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & -1 & 3
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & -1 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \text { elde edilir. } }
\end{aligned}
$$

$r=3$ oldupundon 3 vektor lineer bejimsiz. $m=4 \quad(r<m) \quad 1$ vektör lineer bojimle

$$
\begin{aligned}
& c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=0 \\
& c_{1}(1,0,-3)+c_{2}(1,0,0)+c_{3}(0,0,1)+c_{4}(1,-1,0)=(0,0,0) \\
& c_{1}+c_{2}+c_{4}=0 \\
& c_{4}=0 \\
& -c_{4}=0 \\
& -3 c_{1}+c_{3}=0 \\
& {\left[\begin{array}{rrrr:l}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 \\
-3 & 0 & 1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll:l}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 3 & 1 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{llll:l}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 / 3 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccc:c}
1 & 0 & -1 / 3 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 / 3 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc:c:c}
1 & 0 & -1 / 3 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 / 3 & 0 & 0
\end{array}\right] \quad \begin{array}{c}
r_{A}=r_{A: 1} \\
n=3
\end{array}} \\
& c_{1}-\frac{1}{3} c_{3}=0 \quad c_{3}=k=301 \mathrm{sm} \text {. (keyfi) } \\
& c_{4}=0 \\
& c_{2}+\frac{1}{3} c_{3}=0 \\
& \left.\begin{array}{rl}
c_{1} & =\frac{1}{3} k \\
c_{2} & =-\frac{1}{3} k \\
c_{4} & =0 \\
c_{3} & =k
\end{array}\right\} \Rightarrow \begin{array}{l}
c_{1}=1 \\
c_{2}=-1 \\
c_{4}=0 \\
c_{3}=3
\end{array} \\
& \text { Type your text } \\
& v_{1}-v_{2}+3 v_{3}=\bigcirc \\
& V_{3}=\frac{V_{2}-V_{1}}{3} \text { eide edilir. }
\end{aligned}
$$

II yol: $\quad v_{1}=(1,0,-3) \quad v_{2}=(1,0,0) \quad v_{3}(0,0,1) \quad v_{4}(1,-1,0)$

$$
\begin{aligned}
& c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=0 \\
& c_{1}(1,0,-3)+c_{2}(1,0,0)+c_{3}(0,0,1)+c_{4}(1,-1,0) \\
& c_{1}+c_{2}+c_{4}=0 \\
& -c_{4}=0 \\
& -3 c_{1}+c_{3}=0 \\
& {\left[\begin{array}{cccc:c}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 \\
-3 & 0 & 1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc:c}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 3 & 1 & 3 & 0
\end{array}\right] \sim} \\
& {\left[\begin{array}{cccc:c}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 / 3 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 / 3 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 / 3 & 1 \\
0
\end{array}\right] N\left[\begin{array}{cccc}
1 & 0 & -1 / 3 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 / 3 & 0 \\
0
\end{array}\right]} \\
& r_{A}=r_{A: B}=3
\end{aligned} m=4
$$

$$
\left.c_{1}-\frac{1}{3} c_{3}=\rho\right\} \quad c_{3}=3 \text { aldik }
$$

$$
\left.\begin{array}{l}
c_{4}=0 \\
c_{2}+\frac{1}{3} c_{3}=0
\end{array}\right\}
$$

$$
c_{1}=1
$$

$$
c_{2}=-1
$$

$$
c_{4}=0
$$

$$
c_{3}=3
$$

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=0
$$

$v_{1}-v_{2}+3 v_{3}=0$ aralorindehi begintr.
$\stackrel{u}{O R} / R^{4}$ vektor uzayinda $V_{1}=(2,3,1,-1)$,

$$
v_{2}=(2,3,1,-2) \quad, \quad v_{3}=(4,6,2,-3)
$$

vektorlenhin lineer begimlı olup olmadg̈nın aractiriniz. Lineer bogimle iseler aralanndalui bağintiyi bulunuz.

$$
\begin{aligned}
& c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \\
& c_{1}(2,3,1,-1)+c_{2}(2,3,1,-2)+c_{3}(4,6,2,-3)=(0,0,0,0) \\
& \left.\begin{array}{l}
2 c_{1}+2 c_{2}+4 c_{3}=0 \\
3 c_{1}+3 c_{2}+6 c_{3}=0 \\
c_{1}+c_{2}+2 c_{3}=0 \\
-c_{1}-2 c_{2}-3 c_{3}=0
\end{array}\right\} \begin{array}{l}
\text { lineer } \\
\text { edilir. }
\end{array} \\
& {[A: B]=\left[\begin{array}{ccc:c}
2 & 2 & 4 & 0 \\
3 & 3 & 6 & 0 \\
1 & 1 & 2 & 0 \\
-1 & -2 & -3 & 0
\end{array}\right] \sim\left[\begin{array}{ccc:c}
1 & 1 & 2 & 0 \\
3 & 3 & 6 & 0 \\
2 & 2 & 4 & 0 \\
-1 & -2 & -3 & 0
\end{array}\right] N\left[\begin{array}{ccc:c}
1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll:l}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll:l}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& c_{1}+c_{3}=0 \\
& c_{2}+c_{3}=0 \\
& \begin{array}{c}
r_{A}=r_{A B B}=2 \quad m-r=1 \text { keyfisbt } \\
m=3
\end{array} \\
& c_{3}=1 \text { alalem. } \\
& c_{1}=-1 \\
& c_{2}=-1 \\
& c_{3}=1 \\
& \left.\begin{array}{l}
c_{1}=-1 \\
c_{2}=-1
\end{array}\right\} \text { olur. } \\
& -v_{1}-v_{2}+v_{3}=0 \\
& v_{3}=v_{1}+v_{2} \text { elde edilir. }
\end{aligned}
$$

$\ddot{O R /} R^{4}$ vektor uzayinda $V_{1}=(2,1,3,0), V_{2}=(0,1,2,4)$
$v_{3}=(-1,-2,0,3)$ vektorlerinin lineer bogimli olup olmadigini aragtiriniz. Lineer bgömle iseler aralarindaki bagintiyi bulunuz.

$$
\begin{aligned}
& c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \\
& c_{1}(2,1,3,0)+c_{2}(0,1,2,4)+c_{3}(-1,-2,0,3)=0 \\
& \left.\begin{array}{l}
2 c_{1}-c_{3}=0 \\
c_{1}+c_{2}-2 c_{3}=0 \\
3 c_{1}+2 c_{2}=0 \\
4 c_{2}+3 c_{3}=0
\end{array}\right\} \\
& {\left[\begin{array}{cccc}
2 & 0 & -1 & 0 \\
1 & 1 & -2 & 0 \\
3 & 2 & 0 & 0 \\
0 & 4 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & -2 & 0 \\
2 & 0 & -1 & 0 \\
3 & 2 & 0 & 0 \\
0 & 4 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & -2 & 0 \\
0 & -2 & 3 & 0 \\
0 & -1 & 6 & 0 \\
0 & 4 & 3 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 1 & -2 & 0 \\
0 & -2 & 3 & 0 \\
0 & 1 & -6 & 0 \\
0 & 4 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & -2 & 0 \\
0 & -2 & 3 & 0 \\
0 & 1 & -6 & 0 \\
0 & 0 & 27 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 4 & 0 \\
0 & 0 & -9 & 0 \\
0 & 1 & -6 & 0 \\
0 & 0 & 27 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & -6 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] N\left[\begin{array}{llll}
1 & 0 & 4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \\
& \left.\left[\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
m=3 \\
r_{A}=r_{A i B}=3
\end{array}\right\} \\
& \Gamma=m \text { tum } \\
& \text { vektoriter lineer } \\
& \text { bejimsiz }
\end{aligned}
$$

Tanim: V bir vektor vzayl Sde Vini bir alt kümesi olsun. Eger

1) S, V nin bir lineer bag̈msiz alt kümesi
2) $\langle S\rangle=V$
sartlar1 saglaniyorsa Sye Vnin bir tabani veya ba21 denir.
ÖR/T$=\left\{\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right] \cdots\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right]\right\} \begin{aligned} & \text { kùmesi } R^{n} \text { in bir tabanidir. } \\ & \text { Bu tabana } R^{n}\end{aligned}$ Bu tabana R^{n} nin stondart tabanı (ba21) derir.

OR/ $T=\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ kuimesi R^{3} ün bir tabanidir.
Goisterelim.

1) Tnin lineer bağmsiz oldugunis güsterelim.

$$
\begin{aligned}
& c_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \left.\begin{array}{c}
c_{1}+c_{2}=0 \\
-c_{2}+c_{3}=0 \\
-c_{1}=0
\end{array}\right\} \quad \begin{array}{l}
c_{1}=0 \quad c_{2}=0 \quad c_{3}=0 \\
T \text { lineer bogimsiz. }
\end{array}
\end{aligned}
$$

2) Tnin R^{3} ü gerdigini gösterelim.

$$
\left.\begin{array}{rl}
c_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] & =\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \\
c_{1}+c_{2}=a \\
-c_{2}+c_{3}=b \\
-c_{1}=c
\end{array}\right\} \begin{aligned}
& c_{1}=-c \\
& c_{2}=a+c \\
& c_{3}=a+b+c
\end{aligned}
$$

Lineer desk

$$
\left[\begin{array}{ccc:c}
1 & 1 & 0 & a \\
0 & -1 & 1 & b \\
-1 & 0 & 0 & c
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & -c \\
0 & 1 & 0 & a+c \\
0 & 0 & 1 & a+b+c
\end{array}\right]
$$

ÖR/ $T=\left\{x^{2}+1, x+2,-x^{2}+x\right\}$ nin $V=P_{2}$ iain bir taban olduğunu gósteriniz.

1) Lineer bağmsizligı gösterelim.

$$
\begin{aligned}
& c_{1}\left(x^{2}+1\right)+c_{2}(x+2)+c_{3}\left(-x^{2}+x\right)=0 x^{2}+0 x+0 \\
& \left(c_{1}-c_{3}\right) x^{2}+\left(c_{2}+c_{3}\right) x+\left(c_{1}+2 c_{2}\right)=0 x^{2}+0 x+0 \\
& c_{1}-c_{3}=0 \quad c_{2}+c_{3}=0 \quad c_{1}+2 c_{2}=0
\end{aligned}
$$

$c_{1}=0=c_{2}=c_{3}=0 \quad T$ kunnesi lineer b eginsirdir.

$$
\begin{aligned}
& c_{1}\left(x^{2}+1\right)+c_{2}(x+2)+c_{3}\left(-x^{2}+x\right)=a x^{2}+b x+c \\
& \left.\left(c_{1}-c_{3}\right) x^{2}+\left(c_{2}+c_{3}\right) x+c_{1}+2 c_{2}\right)=a x^{2}+b x+c \\
& c_{1}-c_{3}=a \\
& c_{2}+c_{3}=b \\
& c_{1}+2 c_{2}=c \\
& {\left[\begin{array}{ccc:c}
1 & 0 & -1 & a \\
0 & 1 & 1 & b \\
1 & 2 & 0 & c
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & a \\
0 & 0 & 1 & b \\
0 & 2 & 1 & c-a
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & a \\
0 & 1 & 1 & b \\
0 & 0 & -1 & c-a-2 b
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & -1 & a \\
0 & 0 & 1 & b \\
0 & 0 & 1 & a+2 b-c
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 2 a+2 b-c \\
0 & 1 & 0 & -a-b+c \\
0 & 0 & 1 & a+2 b-c
\end{array}\right]}
\end{aligned}
$$

$$
c_{1}=2 a+2 b-c, c_{2}=c-a-b, c_{3}=a+2 b-c
$$

Tek Gözùmü elde edilir. $\langle T\rangle=P_{2}$ dir.
T_{1}, P_{2} icin bir tabondir.

Tanim: V vektör uzayi olsun. V nin herhangi bir tabanindaki vektor sayisina Vnin boyutu denir ve boy (V) ile gösterilir.
Teoren; V, n boyutlu bir vektor uzayi olswn. Asagidakiler soglanir.

1) Eger $T=\left\{v_{1}, v_{2} \ldots v_{n}\right\}$ lineer bajimsiz ise $\langle T\rangle=V$ dir. ve $T, V_{n i n}$ bir tabanidir.
2) $T=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ ve $\langle T\rangle=V$ ise T lineer baginsizdir ve V nin bir tabanidir.
OR/ R^{3} de $\quad a=(-1,1,1) \quad b=(0,2,3) \quad c=(1,-1,0)$ olmak vzere $T=\{a, b, c\}$ kuimesi verieiyor. Tnin R^{3} un bir tabanı olduj̄unu gösteriniz $\operatorname{boy}\left(R^{3}\right)=3$ ve T de ûa vektór vardir. T nin taban olduğunu göstermek iain lineer bağımsiz olduğunu göstermemiz yeterlidir.

$$
\begin{aligned}
& c_{1} a+c_{2} b+c_{3} c=0 \\
& c_{1}(-1,1,1)+c_{2}(0,2,3)+c_{3}(1,-1,0)=0 \\
& -c_{1}+c_{3}=0 \quad c_{1}=c_{2}=c_{3}=0 \\
& \left.\begin{array}{c}
c_{1}+2 c_{2}-c_{3}=0 \\
c_{1}+3 c_{2}=0
\end{array}\right\} \\
& \text { T lineer bajimsizdir. } \\
& T, R^{3} \text { in bir tabanidir. }
\end{aligned}
$$

öR

$$
S=\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 2 \\
1 & 3
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
-1 & 2
\end{array}\right],\left[\begin{array}{cc}
0 & -2 \\
0 & 3
\end{array}\right]\right\}
$$

kümesinin M_{22} iain bir taban olup olmadiginı aragtiriniz.
M_{22} uzayinin boyutu 4 oldujundon S kümesí lineer bagimsiz ise H_{22} icin bir tabandir.

S kurmesinin lineer bojimsiz olup olmadigini aragtiralim.

$$
\left.\begin{array}{c}
c_{1}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+c_{2}\left[\begin{array}{ll}
0 & 2 \\
1 & 3
\end{array}\right]+c_{3}\left[\begin{array}{cc}
0 & 0 \\
-1 & 2
\end{array}\right]+c_{4}\left[\begin{array}{cc}
0 & -2 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
c_{1}=0 \\
c_{1}+2 c_{2}-2 c_{4}=0 \\
c_{2}-c_{3}=0 \\
c_{1}+3 c_{2}+2 c_{3}+3 c_{4}=0
\end{array}\right\} \begin{aligned}
& \text { denclem sisteni } \\
& \text { elde }
\end{aligned}
$$

Bu desklen sistenihin katsayilar matrisivin determinont,

$$
\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 2 & 0 & -2 \\
0 & 1 & -1 & 0 \\
1 & 3 & 2 & 3
\end{array}\right|=\left|\begin{array}{ccc}
2 & 0 & -2 \\
1 & -1 & 0 \\
3 & 2 & 3
\end{array}\right|=\left|\begin{array}{ccc}
2 & 0 & 0 \\
1 & -1 & 1 \\
3 & 2 & 6
\end{array}\right|=-16 \neq 0
$$

oldugundor S kimesi lineer bogimsizdir. Bu durunda S, H_{22} uzayinin bir tabanider.
or/ R^{3} ü $\left\{\left[\begin{array}{l}7 \\ 6 \\ 4\end{array}\right],\left[\begin{array}{c}11 \\ 10 \\ 7\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]\right\}$ kimesi ile verilen V alt uzayinin bir tabonini bulup boyutunu belirleyiniz.
$c_{1}, c_{2}, c_{3}, c_{4}$ skalerler olmak Üzere

$$
c_{1}\left[\begin{array}{l}
7 \\
6 \\
4
\end{array}\right]+c_{2}\left[\begin{array}{c}
11 \\
10 \\
7
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]+c_{4}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { olsun. }
$$

Bu denklene karsi gelen arttirilnis hatsayilar matrisinin satirca indirgesmis esolan formu

$$
\begin{aligned}
& 7 c_{1}+11 c_{2}+c_{3}+3 c_{4}=0 \\
& 6 c_{1}+10 c_{2}+2 c_{3}+2 c_{4}=0 \\
& 4 c_{1}+7 c_{2}+2 c_{3}+c_{4}=0
\end{aligned}
$$

$$
-1\left(\left[\begin{array}{cccc:c}
7 & 11 & 1 & 3 & 0 \\
6 & 10 & 2 & 2 & 0 \\
4 & 7 & 2 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc:c}
1 & 1 & -1 & 1 & 0 \\
6 & 10 & 2 & 2 & 0 \\
4 & 7 & 2 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc:c}
1 & 1 & -1 & 1 & 0 \\
0 & 4 & 8 & -4 & 0 \\
0 & 3 & 6 & -3 & 0
\end{array}\right]\right.
$$

$$
\left[\begin{array}{cccc:c}
1 & 1 & -1 & 1 & 0 \\
0 & 1 & 2 & -1 & 0 \\
0 & 1 & 2 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc:c}
1 & 1 & -1 & 1 & 0 \\
0 & 1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] N\left[\begin{array}{cccc:c}
1 & 0 & -3 & 2 & 0 \\
0 & 1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

matrisidir. ilk 1 ler 1 -inci, 2-inci sütunda bulundugundan V nin bir tabanı olarak $\left\{\left[\begin{array}{l}7 \\ 6 \\ 4\end{array}\right],\left[\begin{array}{l}11 \\ 10 \\ 7\end{array}\right]\right\}$ kumesi alinabilir. boy $V=2$ bulunur.

OR/ P_{3} uzayinda

$$
S=\left\{t^{2}+1, t^{3}-2 t, 2 t^{3}+3 t^{2}-4 t+3, t^{3}+t^{2}-2 t+1\right\}
$$

kumesihin gerdig̈i alt uzayin bir tabani bulup boyutunu belirleyiniz.

$$
c_{1}\left(t^{2}+1\right)+c_{2}\left(t^{3}-2 t\right)+c_{3}\left(2 t^{3}+3 t^{2}-4 t+3\right)+c_{4}\left(t^{3}+t^{2}-2 t+1\right)=0
$$

Bu derklene karsi gelen arttirilnis katsayilar matrisinin sutica esdirgermis esolan formu

$$
\begin{aligned}
& c_{1}+c_{1} t^{2}+c_{2} t^{3}-2 c_{2} t+2 c_{3} t^{3}+3 c_{3} t^{2}-4 c_{3} t+3 c_{3}+c_{4} t^{3} t \\
& c_{4} t^{2}-2 c_{4} t+c_{4}=0 \\
& t^{3}\left(c_{2}+2 c_{3}+c_{4}\right)+t^{2}\left(c_{1}+3 c_{3}+c_{4}\right)+t\left(-2 c_{2}-4 c_{3}-2 c_{4}\right) \\
&+\left(c_{1}+3 c_{3}+c_{4}\right)=0 \\
& {\left[\begin{array}{ccccc}
0 & 1 & 2 & 1 & 0 \\
1 & 0 & 3 & 1 & 0 \\
0 & -2 & -4 & -2 & 0 \\
1 & 0 & 3 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{llllll}
0 & 1 & 2 & 1 & 0 \\
1 & 0 & 3 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 0 & 3 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

$$
\left[\begin{array}{llll:l}
1 & 0 & 3 & 1 & 1 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Burada ilk 1 ler 1 -inci ve 2 -mai sutunda bulundugundan $\left\{t^{2}+1, t^{3}-2 t\right\}$
kurnesi S nín gerdigi alt uzayin bir tabani olup boyute 2 dir.

$$
\begin{array}{ll}
v_{1}=t^{2}+1 \quad v_{2}=t^{3}-2 t, & v_{3}=2 t^{3}+3 t^{2}-4 t+3 \\
v_{4}=t^{3}+t^{2}-2 t+1 & v_{1}+v_{2}=v_{4} \quad 3 v_{1}+2 v_{2}=v_{3}
\end{array}
$$

OR/W, tum 3.mertebeden ters simetrik matrislerin kümesi olsun. W nin M_{33} vzayinin bir alt uzayı olduğunu gösterip $W_{\text {nin }}$ bir tabonin, bulunuz.

$$
W=\left\{A \in M_{33} ; A^{t}=-A\right\} \text { dir. }
$$

$A, B \in W$ ve α bir skaler olsun.
Bu durumda

$$
A^{t}=-A \text { ve } B^{t}=-B \text { dir. }
$$

Alt uzay oldujunu gísteriyoruz.
(W, nun M_{33} in alt uzayi oldygnu goisterelim.)
a) $A+B \stackrel{?}{\in} W$

$$
A+B=-A^{t}-B^{t}=-\left(A^{t}+B^{t}\right)=-(A+B)^{t}
$$

oldugundon $A+B \in W$ olur
b) $\alpha A \stackrel{?}{\epsilon} W$

$$
\begin{aligned}
(\alpha A)^{t}=\alpha A^{t}=\alpha & (-A)=-(\alpha A) \\
(\alpha A)^{t}= & -(\alpha A) \text { oldupundan } \\
& \alpha A \in W \text { dir. }
\end{aligned}
$$

W, alt, uzay olma kosulinu sopladigindan M_{33} un bir alt uzayidir.
W de herhangi bir elemon
$\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$ seklinde oldugindan

$$
W,\left\{\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]\right\}
$$

kùmesi He gerilir. (uretilir) Bu kume lineer bagimsiz olduğundon W nin bir tabonidir.

Or/ $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ v\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0 \\ v_{2}\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 0 \\ v_{3}\end{array}\right]\right\}$ kumesinin R^{3} uzayinı gerip-germediğmi belirleyiniz.

Her $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in R^{3}$ icin

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3} \text { olacak sekilde } c_{1}, c_{2}, c_{3}
$$

skalerleri bulunabilirse $S_{1} R^{3}$ ă gerer.

$$
\begin{aligned}
& c_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \\
& c_{1}+2 c_{2}+3 c_{3}=a \\
& c_{1}+2 c_{2}=b \\
& c_{1}=c
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
1 & 2 & 3 & a \\
1 & 2 & 0 & b \\
1 & 0 & 0 & c
\end{array}\right] \sim\left[\begin{array}{ccc:c}
1 & 2 & 3 & a \\
0 & 0 & -3 & b-a \\
0 & -2 & -3 & c-a
\end{array}\right]} \\
& {\left[\begin{array}{ccc:c}
1 & 2 & 3 & a \\
0 & 0 & 1 & \frac{a-b}{3} \\
0 & -2 & -3 & c-a
\end{array}\right] \sim\left[\begin{array}{ccc:c}
1 & 2 & 3 & a \\
0 & 0 & 1 & \frac{a-b}{3} \\
0 & 1 & \frac{3}{2} & \frac{a-c}{2}
\end{array}\right]} \\
& {\left[\begin{array}{ccc:c}
1 & 2 & 3 & a \\
0 & 1 & 3 / 2 & \frac{a-c}{2} \\
0 & 0 & 1 & \frac{a-b}{3}
\end{array}\right]} \\
& c_{3}=\frac{a-b}{3} \\
& c_{2}+\frac{3}{2} c_{3}=\frac{a-c}{2} \Rightarrow c_{2}+\frac{3}{2}\left(\frac{a-b}{3}\right)=\frac{a-c}{2} \\
& c_{2}=\frac{a-c}{2}+\frac{b-a}{2} \\
& c_{2}=\frac{b-c}{2} \\
& c_{1}+2 c_{2}+3 c_{3}=a \\
& c_{1}+2 \cdot\left(\frac{b-c}{2}\right)+3 \cdot\left(\frac{a-b}{3}\right)=a \\
& c_{1}+(b-c)+(a-b)=a \\
& c_{1}=a-a+b-b+c \\
& c_{1}=c
\end{aligned}
$$

Bu durunda S, R^{3} ü gerer.

Koordinatlar ve Geais Matrisi
V, n boyutlw bir vektor uzayinin her tabaninda n tane vektör oldugunis biliyoruz. Buraya kadar tabandaki vektorlerin sirasina qok ynem vermedik. Bu kisimda V nim sirali tabanindan S_{2} edecegiz.
$T_{1}=\left\{v_{1}, v_{2} \ldots v_{n}\right\} \quad V$ nin sirall bir tabani ise $T_{2}=\left\{v_{2}, v_{1} \ldots v_{n}\right\} \quad V$ nin farkli sirali bir tabanidir.
Teorem: V, n boyutlu bir vektör uzayl ve $T=\left\{v_{1}, v_{2} \ldots v_{n}\right\}, v_{n i n}$ sirall bir tabani olsun. V nin her v vektörü

$$
v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n} \text { bisiminde tek }
$$ turlu yazilabilir.

Tanim: V, n boyuten bir vektor uzayi ve $T=\left\{v_{1}, v_{2} \ldots v_{n}\right\}, V$ nin sirali bir tabani olsun. $c_{1}, c_{2} \ldots c n$ skalerler olmak űzere V nin her \checkmark vektörü tek türlü olarak
$v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$ seklinde ifade edilebilir. v vektbrinün T sirale tabanina göre koordinat vektörü $[v]_{T}$ seklinde jösterilir ve

$$
[v]_{T}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \text { olarak tanimlanir. }
$$

$c_{1}, c_{2} \ldots c_{n} y e$ yani $[v]$, nin bilesenlerine \checkmark vektơruinün T tabanina góre koordinatları denir.
$\ddot{O} / R^{3}=V$ velctor wrayinin sirall bir tabani
$U_{1}=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right] \quad u_{2}=\left[\begin{array}{c}0 \\ -1 \\ 2\end{array}\right] \quad U_{3}=\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]$ olmak ǰzere
$T=\left\{u_{1}, u_{2}, u_{3}\right\}$ olsun. Eger $u=\left[\begin{array}{c}-4 \\ 4 \\ 2\end{array}\right]$ ise $[v]_{T}$
koordinat vektornünü bulunuz.
V nin u vektörúu
$c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}=u$ seklinde ifoole edilir.
T sirall tabanina göre koordinat vektörii $[v]_{T}$ yi bulmak iain c_{1}, c_{2}, c_{3} sabitlerihi bulmamiz gereker.

$$
c_{1}\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right]+c_{3}\left[\begin{array}{c}
-5 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-4 \\
4 \\
2
\end{array}\right] \text { den }
$$

$\left.\begin{array}{l}c_{1}-5 c_{3}=-4 \\ 2 c_{1}-c_{2}+c_{3}=4\end{array}\right\}$ lineer desk cristeni
$4 c_{1}+2 c_{2}=2$
cózülurse
$c_{1}=1 \quad c_{2}=-1 \quad c_{3}=1$ bulunur.

$$
[v]_{T}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \text { elde edilir. }
$$

Tanim; V, n boyutlu vektor u2oy1 $S=\left\{u_{1}, u_{2} \ldots u_{n}\right\}$ ve $T=\left\{v_{1}, v_{2} \ldots v_{n}\right\} \quad V_{\text {nin }}$ sirali iki tabani olsunlar $\forall i=1,2 \ldots n$ iam

$$
\left[v_{i}\right]_{S}=\left[\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\vdots \\
a_{n i}
\end{array}\right] \text { olmak í2ere }\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

matrisine T tabanindan S tabanina gecis matrisi. desir. $[M]_{T}^{S}$ ile gösterilir.

OR/ R^{3} vektor urayinda $T=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ sirali tabani ve $S=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ farkli sirall tabanı verilsin.
a) T sirali tabanindan S farkli sirali tabanina gecis matrisini bulunuz. $[M]_{T}^{S}=$?
b) $V=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ vektorionin S sirale tabanina gore koordinat vektioninu bulmuz. $[\mathrm{V}]_{S}=$?

Iyônten/ $[M]_{T}^{S}$ geais matrisini bulmak iain T deki vektörler t_{1}, t_{2}, t_{3} ve S dehi vektôler s_{1}, s_{2}, s_{3} ve gecis matrisinin sütun vektôrleri $\left[t_{1}\right]_{S},\left[t_{2}\right]_{S},\left[t_{3}\right]_{S}$ ile gósterilsin.

$$
\begin{aligned}
& \left.\begin{array}{l}
a_{1} s_{1}+a_{2} s_{2}+a_{3} s_{3}=t_{1} \\
b_{1} s_{1}+b_{2} s_{2}+b_{3} s_{3}=t_{2} \\
c_{1} s_{1}+c_{2} s_{2}+c_{3} s_{3}=t_{3}
\end{array}\right\} \begin{array}{l}
a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3} \\
\text { katsayilar1 bulunacal }
\end{array} \\
& a_{1}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+a_{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+a_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad a_{1}=0 \quad a_{2}=1 \quad a_{3}=0 \\
& {\left[\begin{array}{l}
t_{1}
\end{array}\right]_{5}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
& b_{1}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+b_{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+b_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad b_{1}=1 \quad b_{2}=0 \quad b_{3}=0 \\
& {\left[t_{2}\right]_{S}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad c_{1}=0 \quad c_{2}=0 \quad c_{3}=1 \\
& {\left[t_{3}\right]_{S}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
& {[M]_{T}^{S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \text { dir. }}
\end{aligned}
$$

II yönten/ $\left.\begin{array}{l}a_{1} s_{1}+a_{2} s_{2}+a_{3} s_{3}=t_{1} \\ a_{1} s_{1}+b_{2} s_{2}+b_{3} s_{3}=t_{2} \\ c_{1} s_{1}+c_{2} s_{2}+c_{3} s_{3}=t_{3}\end{array}\right\}$
עैद bilinmeyerli üa desklender oluscu 2 neer derk sistenider.
$\left[\begin{array}{lll:lll}s_{1} & s_{2} & s_{3} & t_{1} & t_{2} & t_{3}\end{array}\right]$ matrisine elenater satir dônüsumberi uygulayarak satirca mdingermis esolon formu elde edilir.

$$
\left[\begin{array}{lll:lll}
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{lll:lll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & \underbrace{0} & 0 & 1
\end{array}\right]
$$

b)

$$
\begin{aligned}
& {[v]_{S}=?} \\
& {\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=c_{1}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
1
\end{array}\right]} \\
& c_{2}=1 \\
& c_{1}=2 \\
& c_{3}=3 \\
& {[v]_{S}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right] \text { olur. }}
\end{aligned}
$$

Teorem: V, n boyutlu vektor uzayl $S v e T$ de V nin sirale iki taboni olsmlar. Bir $V \in V$ vektörü íain $[v]_{S}=[M]_{T}^{S} \cdot[V]_{T} \operatorname{dir}$.

Teorem: V, n boyuten bir vektor uzoyiSveT de V nin sirale iki tabani olsunlar. T den Sye gecis matrisi $[M]_{T}^{S}$ nin tersi mevcuttur.

$$
\left([M]_{T}^{S}\right)^{-1}=[M]_{S}^{\top} \operatorname{dir} .
$$

Özdeger ve özvektórrler

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], \quad X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \text { olwak y̌ere }
$$

$A X=\lambda x$ derklenini sgglayan λ ya A matrisinin ǒ2degeri desir.

$$
\begin{aligned}
& A X=\lambda X \\
& (A X-\lambda X)=0 \quad(A-\lambda I) X=0 \text { derleleni elde }
\end{aligned}
$$

edilir. Bu desklen bize bir lneer homajen derklem sistenini verir. Bu sistenin sifirdan farklı Gózùmunnín olmasi igin katsayilor matrisinin determinouts sifira esit olmaleder. Yani $|A-\lambda I|=\left|\begin{array}{cccc}a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda\end{array}\right|=0 \quad$ olmaledir.
$|A-\lambda I|$ ifadesi λ ya gore n.dereceden bir polinom olup bu polinoma A matrisinin kanokteristik polinomu desir.
$|A-\lambda I|=0$ deaklenine de A matrisinin karakteristik deskleni desir.

$$
P(\lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n} \text { seculinde bir }
$$

polinondur. n tane gerael yada karmasik kolkü vardir. $P(x)$ polinomunda $a_{1}=-i z A$ ve $a_{n}=(-1)^{n}|A|$ dir.

$$
\begin{aligned}
& |A-\lambda I|=\left|\begin{array}{ccc}
1-\lambda & 0 & 5 \\
-2 & -4-\lambda & -3 \\
3 & 6 & -\lambda
\end{array}\right|=\left|\begin{array}{ccc}
2-\lambda & 2-\lambda & 2-\lambda \\
-2 & -4-\lambda & -3 \\
3 & 6 & -\lambda
\end{array}\right| \\
& \text { (2- } 2)\left|\begin{array}{ccc}
1 & 1 & 1 \\
-2 & -4-\lambda & -3 \\
3 & 6 & -\lambda
\end{array}\right|=(2-\lambda)\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2-\lambda & -1 \\
0 & 3 & -\lambda-3
\end{array}\right| \\
& =(2-\lambda)[(-2-\lambda)(-\lambda-3)+3] \\
& P(\lambda)=(2-\lambda)\left(\lambda^{2}+5 \lambda+9\right)=0 \\
& \lambda_{1,2}=-\frac{5 \mp i \sqrt{11}}{2}, \lambda_{3}=2 \text { b uluwr. }{ }_{2} \text { dejerter } \\
& P(\lambda)=-\lambda^{3}-3 \lambda^{2}+\lambda+18=0
\end{aligned}
$$

kanaluteristik delulen

Tanim: A bir kare matris ve λ, A nin bir '2degeri olmak uzere
$A X=\lambda X \quad$ desklemini saglayan X vektorine λ ozdeggerine karşlik gelen dz vektör denir.

ÖR/ $A=\left[\begin{array}{cc}3 & 2 \\ 3 & -2\end{array}\right] \begin{aligned} & \text { matrisinin d̀zdegerlerini ve bunlara } \\ & \text { karglkk geles }\end{aligned}$ karglik geles δ_{2} vektörlerini bulunuz.

$$
\begin{aligned}
&|A-\lambda I|=\left|\begin{array}{cc}
3-\lambda & 2 \\
3 & -2-\lambda
\end{array}\right|=0(3-\lambda)(-2-\lambda)-6=0 \\
& P(\lambda)=\lambda^{2}-\lambda-12=0 \\
& \lambda_{1}=-3 \lambda_{2}=4 \text { ódejer ler }
\end{aligned}
$$

$\lambda_{1}=-3$ iain
$A-\lambda_{1} I=\left[\begin{array}{ll}6 & 2 \\ 3 & 1\end{array}\right]$ dir $X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ icin

$$
\begin{aligned}
& \left(A-\lambda_{1} I\right) X=0 \Rightarrow\left[\begin{array}{ll}
6 & 2 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \left.\begin{array}{l}
6 x_{1}+2 x_{2}=0 \\
3 x_{1}+x_{2}=0
\end{array}\right\} \\
& {\left[\begin{array}{ll}
6 & 2 \\
3 & 1
\end{array}\right] \sim\left[\begin{array}{ll}
3 & 1 \\
6 & 2
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 1 / 3 \\
6 & 2
\end{array}\right] \sim\left[\begin{array}{cc}
1 & 1 / 3 \\
0 & 0
\end{array}\right] \begin{array}{c}
r=1 \\
n=2 \\
n-r=1 \text { kegsi } \\
\text { st }
\end{array}} \\
& x_{1}+\frac{1}{3} x_{2}=0 \quad \begin{array}{l}
x_{2}=3 \text { alirsak } \\
x_{1}
\end{array} \\
& x_{1}=-1 \text { olur. }
\end{aligned}
$$

 gelen ${ }^{2}$ velctor
$\lambda_{2}=4$ iain

$$
\begin{aligned}
& A-\lambda_{2} I=\left[\begin{array}{cc}
-1 & 2 \\
3 & -6
\end{array}\right] \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { iदm } \\
& \left.\begin{array}{l}
\left(A-\lambda_{2} I\right)=0 \\
{\left[\begin{array}{cc}
-1 & 2 \\
3 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
-x_{1}+2 x_{2}=0 \\
3 x_{1}-6 x_{2}=0
\end{array}\right\} \begin{array}{l}
x_{1}=2 x_{2} \\
x_{2}=1 \text { secersek } x_{1}=2
\end{array}
\end{aligned}
$$

$X_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad \lambda_{2}=4^{\prime}$ 'e karsilk gelen òzvektö
Teorem: (Cayley Honilton Teoreni)
Her matris kendisinin karakteristik denklenini saglar. Su halde A bir kare matris ve A nin karakteristik derkleni

$$
\begin{aligned}
& \lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\cdots+a_{n}=0 \text { ise } \\
& A^{n}+a_{1} A^{n-1}+a_{2} A^{n-2}+\cdots+a_{n} I_{n}=0 \text { dir. }
\end{aligned}
$$

Cayley Hamilton don yanarlananak bir kare matrisin tersini ve kuvueteesini hesapleyabiliriz.
Bir A kare matrisinin tersi varsa $|A| \neq 0$ olduğunu biliyoruz. Boylece

$$
A^{n}+a_{1} A^{n-1}+a_{2} A^{n-2}+\cdots+a_{n} I_{n}=0
$$

derkleninden

$$
a_{n} I_{n}=-A\left(A^{n-1}+a_{1} A^{n-2}+\cdots+a_{n-1} I_{n}\right)
$$

Busradan iki taraf $\frac{1}{a_{n}} A^{-1}$ ile carpilirsa

$$
A^{-1}=-\frac{1}{a_{n}}\left(A^{n-1}+a_{1} A^{n-2}+a_{2} A^{n-3}+\cdots+a_{n-1} I_{n}\right)
$$

elde edilir.

$$
\begin{array}{ll}
{\left[\begin{array}{lll}
3 & 6 & 0
\end{array}\right]} & -x^{3}-3 x^{2}+x+18=0 \text { idi } \\
P(\lambda)=-\lambda^{3}-3 \lambda^{2}+\lambda+18=0
\end{array}
$$

Cayley Homilton Teo göre A matrisi bu deskleni soplayacegindbr
$-A^{3}-3 A^{2}+A+18 I=0$ yazilir. Her ihi tong

$$
\begin{gathered}
A^{-1}\left(-A^{3}-3 A^{2}+A+18 I\right)=0 \\
-A^{2}-3 A+I+18 A^{-1}=0 \\
A^{-1}=\frac{1}{18}\left(A^{2}+3 A-I\right) \\
A^{2}=\left[\begin{array}{ccc}
16 & 30 & 5 \\
-3 & -2 & 2 \\
-9 & -24 & -3
\end{array}\right] \\
A^{-1}=\frac{1}{18}\left(\left[\begin{array}{ccc}
16 & 30 & 5 \\
-3 & -2 & 2 \\
-9 & -24 & -3
\end{array}\right]+\left[\begin{array}{ccc}
3 & 0 & 15 \\
-6 & -12 & -9 \\
9 & 18 & 0
\end{array}\right]-\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \\
A^{-1}=\left[\begin{array}{ccc}
1 & 5 / 3 & 10 / 9 \\
-1 / 2 & -5 / 6 & -7 / 18 \\
0 & -1 / 3 & -2 / 9
\end{array}\right]
\end{gathered}
$$

A^{5} 'i hesaplayalm.

$$
\begin{aligned}
P(\lambda)= & -\lambda^{3}-3 \lambda^{2}+\lambda+18=0 \\
& -A^{3}-3 A^{2}+A+18 I=0
\end{aligned}
$$

$A \quad\left(A^{3}=-3 A^{2}+A+18 I\right)$ ilecorp

$$
\begin{aligned}
A^{4}= & -3 A^{3}+A^{2}+18 A \\
& =-3\left(-3 A^{2}+A+18 I\right)+A^{2}+18 A \\
& =9 A^{2}-3 A-54 I+A^{2}+18 A
\end{aligned}
$$

$$
A^{4}=10 A^{2}+15 A-54 I
$$

$$
A^{5}=10 A^{3}+15 A^{2}-54 A
$$

$$
\begin{aligned}
& A^{5}=10\left(-3 A^{2}+A+18 I\right)+15 A^{2}-54 A \\
& A^{5}=-30 A^{2}+10 A+180 I+15 A^{2}-54 A \\
& A^{5}=-15 A^{2}-44 A+180 I
\end{aligned}
$$

$$
\begin{gathered}
A^{5}=-15\left[\begin{array}{ccc}
16 & 30 & 5 \\
-3 & -2 & 2 \\
-9 & -24 & -3
\end{array}\right]-44\left[\begin{array}{ccc}
1 & 0 & 5 \\
-2 & -4 & -3 \\
3 & 6 & 0
\end{array}\right]+180\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
A^{5}=\left[\begin{array}{ccc}
-104 & -450 & -295 \\
133 & 386 & 102 \\
3 & 96 & 225
\end{array}\right]
\end{gathered}
$$

Ö/ A, 2×2 mertebeden bir matris olsun. Eger iz $(A)=8$ ve $|A|=12$ ise A matrisinin ǒ2 degerlenhi bulunuz.

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \text { olsun. } \\
i 2 A & =a_{11}+a_{22}=8 \quad|A|=a_{11} a_{22}-a_{21} a_{12}=12
\end{aligned}
$$

$|A-\lambda I|=0$ don y_{2} degorlesi bulalim.

$$
\begin{aligned}
&|A-\lambda I| \left.=\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array} \right\rvert\,=0 \\
&=(\underbrace{\left(a_{11}-\lambda\right)}_{8}\left(a_{22}-\lambda\right)-a_{21} a_{12}=0 \\
&=\underbrace{a_{11} a_{22}}_{12}-\lambda(\underbrace{a_{11}+a_{22}})+\lambda^{2}-\underbrace{a_{21} a_{12}}=0 \\
& \lambda^{2}-8 \lambda+12=0 \\
& \lambda_{1}=2 \quad \lambda_{22}=6 \text { or2dejerlesi } \\
& \text { bulunur. }
\end{aligned}
$$

OR/

$$
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \text { matrisi veriliyor. Cayley Honitton }
$$

$$
\begin{aligned}
|A-\lambda I|=\left|\begin{array}{ccc}
1-\lambda & -2 & 1 \\
2 & 1-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right| & =\left|\begin{array}{ccc}
1-\lambda & -2 & -(\lambda-1)^{2}+1 \\
2 & 1-\lambda & 2(\lambda-1) \\
1 & 0 & 0
\end{array}\right| \\
& =-\lambda^{3}+3 \lambda^{2}-6 \lambda+4=0 \text { dan }
\end{aligned}
$$

$$
\begin{aligned}
& P(\lambda)=-\lambda^{3}+3 \lambda^{2}-6 \lambda+4=0 \\
& -A^{3}+3 A^{2}-6 A+4 I=0 \\
& -A^{2}+3 A-6 I+4 A^{-1}=0 \\
& 4 A^{-1}=A^{2}-3 A+6 I \\
& A^{-1}=\frac{1}{4}\left(A^{2}-3 A+6 I\right) \\
& A^{-1}=\frac{1}{4}\left(\left[\begin{array}{ccc}
-2 & -4 & 2 \\
4 & -3 & 2 \\
2 & -2 & 2
\end{array}\right]-3\left[\begin{array}{ccc}
1 & -2 & 1 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]+6\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \\
& A^{-1}=\frac{1}{4}\left[\begin{array}{ccc}
1 & 2 & -1 \\
-2 & 0 & 2 \\
-1 & -2 & 5
\end{array}\right]=\left[\begin{array}{ccc}
1 / 4 & 1 / 2 & -1 / 4 \\
-1 / 2 & 0 & 1 / 2 \\
-1 / 4 & -1 / 2 & 5 / 4
\end{array}\right] \\
& -A^{3}+3 A^{2}-6 A+4 I=0 \\
& A^{3}=3 A^{2}-6 A+4 I \Rightarrow A^{4}=3 A^{3}-6 A^{2}+4 A \\
& A^{4}=3\left[3 A^{2}-6 A+4 I\right]-6 A^{2}+4 A=3 A^{2}-16 A+12 I \\
& A^{5}=3 A^{3}-14 A^{2}+12 A=3\left(3 A^{2}-6 A+4 I\right)-14 A^{2}+12 A \\
& A^{5}=-5 A^{2}-6 A+12 I \\
& A^{5}=\left[\begin{array}{ccc}
16 & 32 & -16 \\
-32 & 21 & -10 \\
-16 & 10 & -4
\end{array}\right]
\end{aligned}
$$

OR /

$$
A=\left[\begin{array}{lll}
-3 & 1 & -1 \\
-7 & 5 & -1 \\
-6 & 6 & -2
\end{array}\right]
$$

matrisinin γ_{2} dejerlerini ve bu ì2dejerlere karsılk geles $\delta 2$ vektörlerihi bulunuz.

$$
\begin{aligned}
&|A-\lambda I|=\left|\begin{array}{ccc}
-3-\lambda & 1 & -1 \\
-7 & 5-\lambda & -1 \\
-6 & 6 & -2-\lambda
\end{array}\right|=\left|\begin{array}{ccc}
4-\lambda & \lambda-4 & 0 \\
-7 & 5-\lambda & -1 \\
1 & \lambda+1 & -1-\lambda
\end{array}\right| \\
&=(4-\lambda)\left|\begin{array}{ccc}
1 & -1 & 0 \\
-7 & 5-\lambda & -1 \\
1 & \lambda+1 & -1-\lambda
\end{array}\right| \\
&=(4-\lambda)\left|\begin{array}{ccc}
1 & 0 & 0 \\
-7 & -2-\lambda & -1 \\
1 & 2+\lambda & -1-\lambda
\end{array}\right| \\
&=(4-\lambda)(2+\lambda)\left|\begin{array}{ccc}
-1 & -1 \\
1 & -1-\lambda
\end{array}\right| \\
&=(4-\lambda)(2+\lambda)(1+\lambda+1) \\
&=(4-\lambda)(2+\lambda)(2+\lambda)=0 \\
& \lambda_{1}=4 \quad \lambda_{2}=-2 \lambda_{3}=-2 \text { ó } 2 \text { dejerler }
\end{aligned}
$$

$\lambda_{1}=4$ iain

$$
\begin{gathered}
(A-4 I)=\left[\begin{array}{ccc}
-7 & 1 & -1 \\
-7 & 1 & -1 \\
-6 & 6 & -6
\end{array}\right] \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
(A-4 I) x=0 \text { do } \\
{\left[\begin{array}{ccc}
-7 & 1 & -1 \\
-7 & 1 & -1 \\
-6 & 6 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

$$
\left.\begin{array}{l}
-7 x_{1}+x_{2}-x_{3}=0 \\
-7 x_{1}+x_{2}-x_{3}=0 \\
-6 x_{1}+6 x_{2}-6 x_{3}=0 \\
{\left[\begin{array}{ccc}
-7 & 1 & -1 \\
-7 & 1 & -1 \\
-6 & 6 & -6
\end{array}\right] \sim\left[\begin{array}{ccc}
-7 & 1 & -1 \\
0 & 0 & 0 \\
1 & 5 & -5
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & 36 & -36 \\
0 & 0 & 0 \\
1 & 5 & -5
\end{array}\right]} \\
{\left[\begin{array}{ccc}
0 & 1 & -1 \\
1 & 5 & -5 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 5 & -5 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \quad r=2} \\
n=3 \\
x_{2}-x_{3}=0 \\
x_{2}=1
\end{array}\right] \text { iqin } x_{3}=1 .
$$

$\lambda_{1}=4$ 'e kargilik gelen ȯzvektör $X_{1}=\left[\begin{array}{c}0 \\ 1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& \lambda_{2}=\lambda_{3}=-2 \text { isin } \\
& (A+2 I)=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
-7 & 7 & -1 \\
-6 & 6 & 0
\end{array}\right] \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad(A+2 I) X=0 \\
& {\left[\begin{array}{ccc}
-1 & 1 & -1 \\
-7 & 7 & -1 \\
-6 & 6 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \begin{array}{l}
-x_{1}+x_{2}-x_{3}=0 \\
-7 x_{1}+7 x_{2}-x_{3}=0 \\
-6 x_{1}+6 x_{2}=0
\end{array}} \\
& {\left[\begin{array}{ccc}
-1 & 1 & -1 \\
-7 & 7 & -1 \\
-6 & 6 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
-1 & 1 & -1 \\
0 & 0 & 6 \\
0 & 0 & 6
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 6
\end{array}\right] \times\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

$r=2 \quad n=3 \quad n-r=1$ keygi sbt

$$
\begin{array}{ll}
x_{1}-x_{2}=0 & x_{1}=x_{2} \quad x_{2}=1 \text { icu } \quad x_{1}=1 \quad x_{3}=0 \\
x_{3}=0 & x_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
\end{array}
$$

ǑR/ $\lambda=0$ sayisinin A nin bir "̀zdegeri olması igin gerek ve yeter kosul A nin tersinin bulunmamasidir. Ispatlayiniz.
$\Rightarrow \lambda=0$ degeri A matrisinin bir ózdegeri olsun.

$$
\left|\lambda I_{n}-A\right|=|-A|=(-1)^{n} \cdot|A|=0 \text { esiteiginden }
$$

$|A|=0$ bulunur. Bu ise A nin tersinin mevcut olmamasidir.
$\Leftarrow A$ matrisinin tersi mevcut olmasin.
Bu durumda $|A|=0$ dir.

$$
0=(-1)^{n} \cdot|A|=|-A|=\left|0 \cdot I_{n}-A\right|
$$

esiteiginden $\lambda=0$ dejeri a matrisinin bir ozdegeridir.
OR/ A, n. mertebeden bir matris ve λ, A nin bir ózdegeri olsuna) Bu durumda Anin tersi mencut ise $\frac{1}{\lambda}, A^{-1}$ in bir özdejeridir.

A matrisinin tersi meucut olduggundan $\lambda \neq 0$ dir.

$$
\begin{array}{r}
A X=\lambda X \Rightarrow \frac{1}{\lambda} A X=X \Rightarrow A^{-1}\left(\frac{1}{\lambda} A X\right)=A^{-1} X \\
A^{-1} X=\frac{1}{\lambda} X \Rightarrow \frac{1}{\lambda}, A^{-1} \text { matrisinin } \\
\text { bir obzdejeridir. }
\end{array}
$$

b) λ^{k}, A^{k} nin bir \quad b̌2degeridir. $k=1,2,3 \ldots$ $k=2$ isin gósterelim.
λ ózdegerine karsılik gelen bir b̌zvektö X olsun.

$$
\begin{gathered}
A X=\lambda X \Rightarrow A(A X)=A(\lambda X) \\
A^{2} X=\lambda(\underbrace{A X}_{\lambda X}) \\
A^{2} X=\lambda(\lambda X)=\lambda^{2} X \\
A^{2} X=\lambda^{2} X
\end{gathered}
$$

$$
\lambda^{2}, A^{2} \text { matrisinin bir özdegeridir. }
$$

$k=n$ iain λ^{n}, A^{n} matrisinin bir ǒzdegeri yani

$$
A^{n} x=\lambda^{n} \times \text { olsun. }
$$

$k=n+1$ iain λ^{n+1} in A^{n+1} matrisinin bir oั2değeri olduğunu gösterelim.

$$
A\left(A^{n} x\right)=\lambda\left(\lambda^{n} x\right) \Rightarrow A^{n+1} x=\lambda^{n+1} x
$$

egiteiginden istenen elde edilir.

ÖR/A $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 2 \\ 0 & 4 & 6\end{array}\right] \begin{aligned} & \text { matrisivin tersini } \\ & \text { cayley Hemiltonu }\end{aligned}$
Cayley Hemilton u kullananak bulunuz.

A matrisinin karakteristik polinonunu bulalim.

$$
\begin{aligned}
&|\lambda I-A| \left.=\left|\begin{array}{ccc}
\lambda-1 & 0 & -1 \\
-2 & \lambda-1 & -2 \\
0 & -4 & \lambda-6
\end{array}\right|=(\lambda-1)\left|\begin{array}{cc}
\lambda-1 & -2 \\
-4 & \lambda-6
\end{array}\right| \begin{array}{cc}
-1 & \lambda-1 \\
0 & -4
\end{array} \right\rvert\, \\
&|\lambda I-A|=(\lambda-1)[(\lambda-1)(\lambda-6)-8]-1[8] \\
&=(\lambda-1)\left[\lambda^{2}-6 \lambda-\lambda+6-8\right]-8 \\
&=(\lambda-1)\left[\lambda^{2}-7 \lambda-2\right]-8 \\
&=\lambda^{3}-7 \lambda^{2}-2 \lambda-\lambda^{2}+7 \lambda+2-8 \\
&|\lambda I-A|=\lambda^{3}-8 \lambda^{2}+5 \lambda-6=0 \\
& A^{3}-8 A^{2}+5 A-6 I=0 \\
& A^{-1}\left[\begin{array}{cc}
A^{3}-8 A^{2}+5 A-6 I
\end{array}\right]=0 \\
& A^{2}-8 A+5 I_{3}-6 A-1=D \\
& A^{-1}=\frac{1}{6}\left(\left[\begin{array}{lll}
1 & 4 & 7 \\
4 & 16 \\
8 & 28 & 44
\end{array}\right]-8\left[\begin{array}{ccc}
1 & 0 & 1 \\
2 & 1 & 2 \\
0 & 4 & 6
\end{array}\right]+5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \\
& A^{-1}=\frac{1}{6}\left[\begin{array}{ccc}
-2 & 4 & -1 \\
-12 & 6 & 0 \\
8 & -4 & 1
\end{array}\right]
\end{aligned}
$$

ŐR/2.mertebeden A matrisinin karakteristik denkleminin (polinomunun)

$$
\lambda^{2}-i z A \lambda+|A|=0 \quad \text { oldugunu }
$$

gösteriniz.

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]_{2 \times 2} \text { olsun } \quad \text { iz } A=a_{11}+a_{22} \text { dir } \\
& \left|\lambda I_{2}-A\right|=\left|\begin{array}{cc}
\lambda-a_{11} & -a_{12} \\
-a_{21} & \lambda-a_{22}
\end{array}\right|=0 \text { esitliginden } \\
& \lambda^{2}-\lambda\left(a_{11}+a_{22}\right)+\underbrace{a_{11} a_{22}-a_{12} a_{21}}_{|A|}=0 \text { elde } \\
& \text { edien }
\end{aligned}
$$

Bu ise $\lambda^{2}-\lambda \cdot i z A+|A|=0$ dir.

