General Chemistry

Principles and Modern Applications
Petrucci • Harwood • Herring $8^{\text {th }}$ Edition

Chapter 4: Chemical Reactions

Philip Dutton
University of Windsor, Canada

Prentice-Hall © 2002

Contents

4-1 Chemical Reactions and Chemical Equations
4-2 Chemical Equations and Stoichiometry
4-3 Chemical Reactions in Solution
4-4 Determining the Limiting reagent
4-5 Other Practical Matters in Reaction Stoichiometry

4-1 Chemical Reactions and Chemical Equations

- A chemical reaction is a process in which one set of substances, called reactants, is converted to a new set of substances, called products.
- In other words, a chemical reaction is the process by which a chemical change occurs.
As reactants are converted to products we observe:
- Color change
- Precipitate formation
- Gas evolution
- Heat absorption or evolution

Chemical Reaction

Nitrogen monoxide + oxygen \rightarrow nitrogen dioxide

Step 1: Write the reaction using chemical symbols.
Step 2: Balance the chemical equation.

$$
2 \mathrm{NO}+1 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

Balancing Equations

- Never introduce extraneous atoms to balance.

$$
\mathrm{NO}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{O}
$$

- Never change a formula for the purpose of balancing an equation.

$$
\mathrm{NO}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{3}
$$

Balancing Equation Strategy

- Balance elements that occur in only one compound on each side first.
- Balance free elements last.
- Balance unchanged polyatomics as groups.
- Fractional coefficients are acceptable and can be cleared at the end by multiplication.

Example 4-2

Writing and Balancing an Equation: The Combustion of a Carbon-Hydrogen-Oxygen Compound.

Liquid triethylene glycol, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}$, is used a a solvent and plasticizer for vinyl and polyurethane plastics. Write a balanced chemical equation for its complete combustion.

Triethylene glycol

Example 4-2

Chemical Equation:

$$
\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}+\frac{15}{2} \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

1. Balance C.
2. Balance H.
3. Balance O. 4. Multiply by two

$$
2 \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}
$$

and check all elements.

4-2 Chemical Equations and Stoichiometry

- Stoichiometry includes all the quantitative relationships involving:
- atomic and formula masses
- chemical formulas.
- Mole ratio is a central conversion factor.

4-2 Chemical Equations and Stoichiometry

- The coefficients in the chemical equation

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

mean that
$2 x$ molecules $\mathrm{H}_{2}+x$ molecules $\mathrm{O}_{2} \longrightarrow 2 x$ molecules $\mathrm{H}_{2} \mathrm{O}$

- Suppose we let $x=6.02214 \times 10^{23}$ (Avogadro s number).
- Then x molecules represents 1 mole. Thus the chemical equation also means that

$$
2 \mathrm{~mol} \mathrm{H}_{2}+1 \mathrm{~mol} \mathrm{O}_{2} \longrightarrow 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Example 4-3

Relating the Numbers of Moles of Reactant and Product.
How many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced by burning 2.72 $\mathrm{mol} \mathrm{H}_{2}$ in an excess of O_{2} ?

Write the Chemical Equation:
Balance the Chemical Equation:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Use the stoichiometric factor or mole ratio in an equation:

$$
n_{\mathrm{H}_{2} \mathrm{O}}=2.72 \mathrm{~mol}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \underline{\mathrm{O}}}{2 \mathrm{~mol} \mathrm{H}_{2}}=2.72 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Example 4-6

Additional Conversion Factors in a Stoichiometric Calculation: Volume, Density, and Percent Composition. The density of 28% (w/w) HCl solution is $1.14 \mathrm{~g} / \mathrm{mL}$. How many mL of this solution is required to react with 1.87 g of Al according to the following reaction? ($\mathrm{Al}: 27$; $\mathrm{HCl}: 36.5 \mathrm{~g} / \mathrm{mol}$)

Example 4-6

Example 4-6

$$
\begin{aligned}
& 2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \\
& n_{A l}=m / M_{A l}=1.87 / 27=0.069 \mathrm{~mol}
\end{aligned}
$$

2 mol Al	6 mol HCl
0.069 mol	x mol HCl

$x=0.207 \mathrm{~mol} \mathrm{HCl}$

100 g HCl	28 g HCl
x	7.58 g HCl
$\mathrm{x}=27.05 \mathrm{~g} \mathrm{HCl}$	

$$
\begin{aligned}
& n_{H C l}=m / M_{H C l} \\
& 0.207=m / 36.5 \\
& \quad m=7.58 \mathrm{~g} \mathrm{HCl}
\end{aligned}
$$

$$
d_{H C l}=m / V
$$

$$
1.14=27.05 / V
$$

$$
V=23.7 \mathrm{~mL} \mathrm{HCl}
$$

4-3 Chemical Reactions in Solution

- Close contact between atoms, ions and molecules necessary for a reaction to occur.
- Solvent
- We will usually use aqueous (aq) solution.
- Solute
- A material dissolved by the solvent.

Molarity

Molarity $(M)=$ Amount of solute (mol solute) Volume of solution (L)

If 0.444 mol of urea is dissolved in enough water to make 1.000 L of solution the concentration is:

$$
c_{\text {urea }}=\frac{0.444 \mathrm{~mol} \text { urea }}{1.000 \mathrm{~L}}=0.444 \mathrm{M} \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}
$$

Example 4-6

Calculating the mass of Solute in a solution of Known Molarity.

We want to prepare exactly 250 mL of an $0.250 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ solution in water. What mass of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ should we use?
$\mathrm{K}_{2} \mathrm{CrO}_{4}=194.02 \mathrm{~g} / \mathrm{mol}$

Molarity $(M)=\frac{\text { Amount of solute (mol solute) }}{\text { Volume of solution }(\mathrm{L})}$
$M_{\mathrm{K} 2 \mathrm{Cro4}}=\mathrm{n} / \mathrm{V}$
$0.250=\mathrm{n} / 0.250 \mathrm{n}=0.0625 \mathrm{~mol}$
$\mathrm{n}=\mathrm{m} / \mathrm{M} \rightarrow 0.0625=\mathrm{m} / 194.02 \mathrm{~m}=12.1 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CrO}_{4}$

Solution Dilution

$$
\begin{aligned}
& M_{\mathrm{i}} \times \mathrm{V}_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}}=\mathrm{n}_{\mathrm{f}}=M_{\mathrm{f}} \times \mathrm{V}_{\mathrm{f}} \\
& M_{\mathrm{f}}=\frac{M_{\mathrm{i}} \times \mathrm{V}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{f}}}=M_{\mathrm{i}} \frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{f}}}
\end{aligned}
$$

Example 4-10

Preparing a solution by dilution.
A particular analytical chemistry procedure requires 0.0100 M $\mathrm{K}_{2} \mathrm{CrO}_{4}$. What volume of $0.250 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ should we use to prepare 0.250 L of $0.0100 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$?

Plan strategy: $\quad M_{\mathrm{f}}=M_{\mathrm{i}} \frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{V}_{\mathrm{f}}} \quad \mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{f}} \frac{M_{\mathrm{f}}}{M_{\mathrm{i}}}$

Calculate:

$$
\mathrm{V}_{\mathrm{K}_{2} \mathrm{CrO}_{4}}=0.2500 \mathrm{~L} \times \frac{0.0100 \mathrm{~mol}}{1.00 \mathrm{~L}} \times \frac{1.000 \mathrm{~L}}{0.250 \mathrm{~mol}}=0.0100 \mathrm{~L}
$$

4-4 Determining Limiting Reagent

- The reactant that is completely consumed determines the quantities of the products formed.

Example 4-12

Determining the Limiting Reactant in a Reaction.

Phosphorus trichloride, PCl_{3}, is a commercially important compound used in the manufacture of pesticides, gasoline additives, and a number of other products. It is made by the direct combination of phosphorus and chlorine

$$
\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{3}(\mathrm{l})
$$

What mass of PCl_{3} forms in the reaction of $125 \mathrm{~g} \mathrm{P}_{4}$ with $323 \mathrm{~g} \mathrm{Cl}_{2}$?

Strategy: Compare the actual mole ratio to the required mole ratio.

Example 4-12

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{Cl}_{2}}=323 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.91 \mathrm{~g} \mathrm{Cl}_{2}}=4.56 \mathrm{~mol} \mathrm{Cl} 2 \\
& \mathrm{n}_{\mathrm{P}_{4}}=125 \mathrm{~g} \mathrm{P}_{4} \times \frac{1 \mathrm{~mol} \mathrm{P}_{4}}{123.9 \mathrm{~g} \mathrm{P}_{4}}=1.01 \mathrm{~mol} \mathrm{P}_{4}
\end{aligned}
$$

Chlorine gas is the limiting reagent.

Example 4-12

$$
\begin{array}{lll}
1 \mathrm{~mol} \mathrm{P}_{4} & 6 \mathrm{~mol} \mathrm{Cl}_{2} & n_{\mathrm{P} 4}=m / M_{\mathrm{P} 4} \\
\mathrm{x} \mathrm{~mol} & 4.56 \mathrm{~mol} \mathrm{Cl}_{2} & 0.76=m / 123.9 \\
\mathrm{x}=0.76 \mathrm{~mol} \mathrm{P}_{4} & \begin{array}{l}
m=94.1 \mathrm{~g} \mathrm{P}_{4} \\
\\
\\
\\
\\
1 \mathrm{~mol} \mathrm{P}_{4}
\end{array} \quad 4 \mathrm{~mol} \mathrm{PCl}_{3} & \\
0.76 \mathrm{~mol} & \mathrm{x} \mathrm{~mol} \mathrm{PCl}_{3} &
\end{array}
$$

$\mathrm{x}=3.04 \mathrm{~mol} \mathrm{PCl} 3$

$$
\begin{aligned}
& n_{\mathrm{PCl} 3}=m / M_{\mathrm{PCl} 3} \\
& 3.04=m / 137 \\
& m=416.5 \mathrm{~g} \mathrm{PCl}_{3}
\end{aligned}
$$

4-5 Other Practical Matters in Reaction Stoichiometry

Theoretical yield is the expected yield from a reactant.
Actual yield is the amount of product actually produced.

$$
\text { Percent yield }=\frac{\text { Actual yield }}{\text { Theoretical Yield }} \times 100 \%
$$

Theoretical, Actual and Percent Yield

- When actual yield $=\%$ yield the reaction is said to be quantitative.
- Side reactions reduce the percent yield.
- By-products are formed by side reactions.

