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Singular Value Decomposition
Theorem: Given A € F™™ there exists unitary matrices U = [u; up - Um] € F™ M and
V=[v1 vy - Vm]e€F™"andamatrix, where

T e [201 8] , 21 = diagloy, 0y, ..., 0x], k 2 rank(A)
and 01 = g, = -0 > 0 suchthat A = UZV™.

Consider the action of a matrix A on vectors forming the unit circle. If A is decomposed as A =
UZVT, the transformation of the unit circle through A can be visualized as follows:
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Examples :
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Hermitian Matrices
A matrix A € C"™" s said to be Hermitian if A = A*.

Teorem: All eigenvalues of a Hermitian matrix are real.

Proof: Let us to take arbitrary A = A* € C™™ and consider its eigenvalue-eigenvector equation
Ax = Ax. Then, by premultiplying by x* we get x*Ax = Ax*x. Now, take the complex conjugate
transposes of both sides to obtain (x*Ax)*= (Ax*x)*. But (x*Ax)*= x*ATx = Ax*x since A =
A*. Furthermore, since (Ax*x)*= Ax*x. Since x is nonzero, we get A = 1.

By using the unitary matrices(U € C™"; U*U = UU* = 1), a useful fact about the spectral
decomposition of Hermitian matrices can be given as follows:

Theorem: Any Hermitian matrix A = A* € C™" can be spectrally decomposed as A = UAU*
where U is unitary and A = diag (A1, 12, ..., An)

Proof: (Proof by induction over the dimension n). For a Hermitian matrix C1*1, the result is
obvious. Because if A € C1*1 is hermitian it is a real scalar. Then, A is equal to itself and U = 1,
which is unitary.

Now assume that the statement is true for all Hermitian matrices in C*~DX("=D and also
consider A = A* € C™™, Let A, be an eigenvalue of A and x; eigenvector associated with 1. By
the above theorem, A is real and x; can be chosen as x7x; = 1 without loss of generality. Now
let X be unitary matrix with x; as its first column

X2[xy x1 - *n]e€ crn
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Then, the first column of the product X*AX gives
‘Y*A.I‘.l = ‘Xr*{)\l;l’l) = )\1,)(*.1‘.1 = )\16"1
where e; denotes the first column of I,,. Moreover, the first row of X*AX s
AX = (Ax))*X = M2 X = \ie]

since A = A*. We then have

N P
XT"AX = [0 JEJ

where A = A* € (DX gy the induction, we can state A as A = UAT* where U is
unitary and A is real diagonal. Then we obtain the following form

1 o0 A O I 07" .
A‘X{o (?Ho I\HU z?-*] A

U A U=
Note that, U is unitary and A is is real diagonal so that the diagonal entries are the eigenvalues

of A.(A is Hermitian.)
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Congruence Transformation
Two matrices A, B € C™™ are said to be congruent to each other if there exists a nonsingular
T € CY™ such that B =T*AT. The transformation A —» T*AT is called a congruence
transformation of A under T.

Example:

Note that, all eigenvalues of a Hermitian matrix are real, we can group the ones that are
positive, negative and zero. This brings the definition of the inertia of a Hermitian matrix.

Definition(Inertia): Given a matrix A = A* € C"™", the inertia of A is the triplet in(4) =
(ny,n_,ng) where n,, n_ and ny denote the number of positive, negative and zero
eigenvalues, respectively.

Note that, the inertia of a symmetric matrix remains unchanged under congruence
transformation:

Lemma: Given two Hermitian matrices A, B € C"™: A and B congruent < in(4) = in(B).
Proof: (HW)
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Sign Definiteness
A matrix A = A* € C"™ is said to be

(i) Positive definite if
2TAz >0 VaeCm, 2+#0

(ii) Negative definite if
2TAz <0 YaeCm 2+#0

(iii) Positive semidefinite if
2TAr >0 VaeC™ 240

(iv) Negative semidefinite if
2TAr <0 vaedC”. 240

By the definition of Rayleight-Ritz inequality, the sign-definiteness of a Hermitian matrix is
determined completely by the signs of its eigenvalues:

Lemma: A matrix A = A* € C" M s
(i) Positive definite if and only if \; > 0 for alli=1:n
(ii) Negative definite if and only if \j < 0 for alli=1:n
(iii) Positive semi-definite if and only if \; = 0 for alli=1:n

(iv) Negative semi-definite if and only if A; <0 for alli=1:n

where 4; denote the eigenvalue of A
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Corollary : The matrices A = A* € C"" and B = B* € C"™™,

A0 0 A>0
0 B -

B =0
Lemma: Let P = P* > 0. Then the matrix T*PT is also symmetric positive definite for all
nonsingular T € C™™,

Proof: If P > 0, then in(P) = {n, 0,0}. Since inertia of a Hermitian matrix is invariant under
congruence transformation, in(T*PT) = in(P), hence T*PT = 0.

I

Similar to the positive(or non-negative) scalars, we can define the square root of a positive
semidefinite matrix:

Definition(Matrix Square Root): The square root of P = P* > 0 is defined as the matrix P1/2 2
UTAY2U > 0 where P = UAU* is the spectral decomposition of P and

AY? 2 diag{\[21, .., \[ 20}
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Lemma (Schur Complement Formula): Given A = A* € C™", B € C™ ™ and C € C™™, the
following statements are equivalent:

~[A B

i) [B* C] >0,
iDA>0&C—B*A™1B >0,
iii)¢ >0&A—BC™1B* > 0.

Proof: (i) < (ii): By using congruence transformation

A B, [A 0 L 1 -A'B
T [B* C’]Ti[() C’fB*A_lB] where T.f{() 7 ]

0 I
I 0

() & (iid):

.| A B | ¢ B - )
J {B* (7]]7[3 _1} where J:

and repeating the proof of (i) © (ii).
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Theorem: P > 0 © Trace(PS) = 0 for every S = 0.

Then, 0 < u! Pu; = Trace(Pu;ul) for each i. Since each 1; = 0, we get

0 < Z A ’Ii'ace(Pm_u;fF) = Trace (PZ ,\w?-u?) = Trace(P5S).
i

we have

0 < Trace(Pzal) = 2T Pr vz e R™

Hence, P> 0 by definition.
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Proof: (if) Assume P > 0. Let S = 0 be given and decompose it as S = UAUT = ¥, L;u;ul.

(only if) Assume Trace(PS) = 0 for every S = 0. Since xxT = 0 for each for every x € R,
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Matrix Norms

Matrix norm is used as a way of measuring the size of a matrix. A marix norm is any function
[I.]l: €™ - R that satisfy the following properties:

(i) [|[All = 0 for all A € C™>"

(i) ||A]| =0 if and only if A =0

i) |a Al = |a|||All for all A € C*""and ov € C
(ii)

(iii) ||A+ B| < ||A[| + | B|| for all A, B € Ch*n

(iv) |AB|| < ||A]| | B|| for all A, B € Cnxm.

Some examples of matrix norms:
1) 1-norm:

n n
;4‘1 = ZZ ”ij‘-
i=1 j=1
This norm satisfies the first three conditions without needing detailed proof, for the last
condition:
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jABli=Y"

i

Z kb

k

<Y bl < Y faaby
i.g:kl

i.j.k

All1 | B,

= Z ait| Z [br;| | = |
Lj

ik

where the first inequality is obtained by the scalar triangular inequality, and the second one by
adding positive terms to the sum.

1/2
n o n /

2) 2-norm or Frobenius norm(||A||): Al = Z i 2
i=1 j=1
Note that ||A||Z = Trace(A*A).

Frobenius norm is also a valid matrix norm which can be verified as follows:
(Similar to Cauchy-Schwarz leequality)
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2
n
JABIE =313 awbig| <30 | D laal® | | 32 Ibmy?
i k=1 i.j E m
= Z""’LHQ Z|bmj|2 = 4H%HB %‘
ik m.j

3) infinity-Norm(||A]| o = maxi,j|ai'j|) is a vector norm on C™™, but not a matrix norm. This is
because the submultiplicative condition ||AB||e < ||Allel|B|l is violated(For instance,A = B =

11
[ 4]
However, a modified oo — norm can be defined as:

A

lvoo = n[|Alloe =n max [ag),
1<i,j<n

Then, ||A]| .« is an appropriate matrix norm as prove as follows:

AB|l oo = nmax Z i byj| < n 11121.XZ 5, b |
1.7 & 2,7 k

IA

-.*ama.xz | Aol Bl ee
] ’

n|| Ao 7| Bllec = ||A

|N’DC B ~OQ
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Induced Matrix Norm
Let ||. ||« be a vector norm on C™. Then, the induced norm on C™" is defined as
Ax||s
|Allss := max | .
20 |2«

Moreover, it can be shown that:

A

lix = max
fl]]«

Az, = max |Ax|..
fl=]«=1

Note that, it is easy to Show that induced matrix norms are legitimate matrix norms as defined
the above definition(required conditions for the norm).

Condition 1 is clearly satisfied since the induced norm is always nonnegative by definition and
Ax = 0 for all nonzero x € C"iff A = 0.

Condition 2 is also satisfied since

[[a A

lix = max |[|a Az|, = max |af|
flz]l-=1

Az, = |a] max [|[Az|, = |of [|A]]s-
[l=ll-=1 ll=ll-=1

zll.=
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Condition 3 is also satisfied as follows:

A+ Bl = Hnlllax [(A+ DBzl < Hll‘hl\ (] Az |« + || B2 4)
l[+=1

< max ||Az|, + max [|Bx|, = Al + || Bl
([l «=1 [l =1
Condition 4(submultiplicavity) can be demonstrated as
ABx ABz|, ||Bx Al Bx
| AB||; = lllil}iw = nmxu |Be]. < max Ay mas I = [|A|ix]| B[is-
0 |2« 20 || Bx| ||z y#0  |lyllx z20 |||«
It also can be stated as by the definition of induced norm
| Az« < || Al Yae C".
Most common-used induced norms are the p-norms: (p=1,2,inf)
Arx Ax Arl s
[[All;1 = 111(1\ H ! Allso 1= max HQ and || Aljno = max u
HJ ||]_ x#0 xr|l9 x#0 Tlloo
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Examples : Simple characterizations for p-norms:

i
[Alli1 = max é ;.
Jj=1m*
i=1
Proposition: The induced p-norms can be calculated as follows:

(i) Theinduced 1-norm is the maximum column sum:

n
Al = max " ay;|
j=lin £

i=1

i2 = )\ma.r ( A*A )

(iii) The induced inf-norm is the maximum row-sum:
n
All;e sz—lxz i
Al = max > Ja|
i=1
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(ii) The induced 2-norm(spectral norm) is the square root of the maximum eigenvalue of A*A:

16
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Examples:
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Ellipsoids: Given a matrix P € R™", where P = PT > 0 the set
Ep 2 {x e R%:xTPx <1}
is called as ellipsoid associated with P.

Not that, the ellipsoid defined abov is centered at the origin of R™. The ellipsoid centered at
different points as given as
Epx, 2 {x ER™ (x —x)TP(x —xc) < 1}
If P > 0, the volume of an ellipsoid is vol(Ep) = ocn(detP_l)l/2 where a;, is the volume of the
n-dimensional unit 2-ball, i. e.,
—n/2
AN if n is even
: i S eve
(n/2)!

G =
Q-HTF(TI*l)/Q((-n — J_)/.Z)F
n!

Proposition: Given two matrices A > 0andB>0,E4 € €5 © B < A.

Proof: (only if) Suppose B < A and let x € €4. Then, xTBx < xTAx < 1. Therefore, x € €, so
that €4 € €p.

(if) Suppose €4 S € but that B £ 4, i.e., there exists nonzero x, such that xT Bx, > xT Ax,.
Now scale x, to %, so that(lt is assumed Ax, # 0 ) ¥T A%,=1. Then, %, € €, but , %, & € since
#T'B#%,> T A%,=1. This is a conrtradiction due to the assumption £, S €.

if n is odd.
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Ex: Consider the matrices

[ 1.3244  1.1302 0.9364 -‘ [ 1.0400 1.0502 0.7666 —‘
A= 11302 1.6114 0.8643 b= | 1.0502 1.3019 0.9304
{ 0.9364 0.8643 0.8834 J L 0.7666  0.9304 0.6726 J

By calculation, we know that B < A, so that €4 € €g and the inclusion ca n be illustrated as
follows:
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Remark: When P > 0 the definition can be thought of as the unit ball of the vector norm on C"
as follows:||x|| £ (x*Px)/2.

Note that, when P > 0 then one can find nonzero vectors x € C" such that ||x|| = 0, violating
condition for being a norm. It is then called as semi-norm on C™.

P, P
Lemma: Given P = PT = [P; Pz] > 0, let £ £ {x: xTPx < 1}. Then, the projection of £ onto
2 I3

the x; — subspace is given by
Ex, ={z € R™zT(Py — P,P3'P])z < 1}
Proof: the projection on € onto x4 subspace is given by

nbin vol {z: 0= < 1}
st. ref=x]Qu <1.

So the last condition is equivalent to

_ 0
{;r sl Pr < 1} - {Jf cat [ (g 0 } T

Or by the above Proposition:

Q0]
M

1A
—
—

Ry Q- By
| = | - p|"
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By the schur complement formula, this is equivalent to
Q— (P - PPy'r)) <.

And, the minumum volime is Q = P; — P2P3_1P2T.
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Ex. :
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