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Singular Value Decomposition
Theorem: Given A ∈ ℱ!×#, there exists unitary matrices 𝑈 = 𝑢$ 𝑢% … 𝑢! ∈ ℱ!×# and 
𝑉 = 𝑣$ 𝑣% … 𝑣! ∈ ℱ#×# and a matrix Σ, where 

Σ ≜ Σ$ 0
0 0 , Σ$ = 𝑑𝑖𝑎𝑔 𝜎$, 𝜎%, … , 𝜎& , 𝑘 ≜ 𝑟𝑎𝑛𝑘 𝐴

and  𝜎$ ≥ 𝜎% ≥ ⋯𝜎& > 0 such that 𝐴 = 𝑈Σ𝑉∗.

Consider the action of a matrix A on vectors forming the unit circle. If A is decomposed as 𝐴 =
𝑈Σ𝑉(, the transformation of the unit circle through A can be visualized as follows: 
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Examples :
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Hermitian Matrices
A matrix  A ∈ ℂ#×# is said to be Hermitian if 𝐴 = 𝐴∗.

Teorem: All eigenvalues of a Hermitian matrix are real.
Proof: Let us to take arbitrary 𝐴 = 𝐴∗ ∈ ℂ#×# and consider its eigenvalue-eigenvector equation 
𝐴𝑥 = 𝜆𝑥. Then, by premultiplying by 𝑥∗ we get 𝑥∗𝐴𝑥 = 𝜆𝑥∗𝑥. Now, take the complex conjugate 
transposes of both sides to obtain (𝑥∗𝐴𝑥)∗= (𝜆𝑥∗𝑥)∗. But  (𝑥∗𝐴𝑥)∗= 𝑥∗𝐴(𝑥 = 𝜆𝑥∗𝑥 since 𝐴 =
𝐴∗. Furthermore, since (𝜆𝑥∗𝑥)∗= 𝜆𝑥∗𝑥. Since 𝑥 is nonzero, we get 𝜆 = 𝜆. 

By using the unitary matrices(U ∈ ℂ#×#; 𝑈∗𝑈 = 𝑈𝑈∗ = 𝐼), a useful fact about the spectral 
decomposition of Hermitian matrices can be given as follows:

Theorem: Any Hermitian matrix  A = 𝐴∗ ∈ ℂ#×# can be spectrally decomposed as 𝐴 = 𝑈Λ𝑈∗ 
where 𝑈 is unitary and Λ = 𝑑𝑖𝑎𝑔(𝜆$, 𝜆%, … , 𝜆#)
Proof: (Proof by induction over the dimension n). For a Hermitian matrix ℂ$×$, the result is 
obvious. Because if  𝐴 ∈ ℂ$×$ is hermitian it is a real scalar. Then, Λ is equal to itself and 𝑈 = 1, 
which is unitary.
Now assume that the statement is true for all Hermitian matrices in ℂ(#*$)×(#*$) and also 
consider A = 𝐴∗ ∈ ℂ#×#. Let 𝜆$ be an eigenvalue of A and 𝑥$ eigenvector associated with 𝜆$. By 
the above theorem, 𝜆$ is real and 𝑥$ can be chosen as 𝑥$∗𝑥$ = 1 without loss of generality. Now 
let 𝑋 be unitary matrix with 𝑥$ as its first column

𝑋 ≜ 𝑥$ 𝑥$ … 𝑥# ∈ ℂ#×#
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Then, the first column of the product 𝑋∗𝐴𝑋 gives  

where 𝑒$ denotes the first column of 𝐼#. Moreover, the first row of 𝑋∗𝐴𝑋 is

since 𝐴 = 𝐴∗. We then have 

where  F𝐴 = F𝐴∗ ∈ ℂ(#*$)×(#*$). By the induction, we can state F𝐴 as F𝐴 = G𝑈GΛG𝑈∗ where  G𝑈 is 
unitary and GΛ is real diagonal. Then we obtain the following form

Note that, 𝑈 is unitary and Λ is is real diagonal so that the diagonal entries are the eigenvalues 
of A.(A is Hermitian.)
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Congruence Transformation
Two matrices A, B ∈ ℂ#×# are said to be congruent to each other if there exists a nonsingular 
T ∈ ℂ#×#  such that  𝐵 = 𝑇∗𝐴𝑇 . The transformation 𝐴 → 𝑇∗𝐴𝑇  is called a congruence 
transformation of A under T.

Example: 

Note that, all eigenvalues of a Hermitian matrix are real, we can group the ones that are 
positive, negative and zero. This brings the definition of the inertia of a Hermitian matrix.

Definition(Inertia): Given a matrix A = 𝐴∗ ∈ ℂ#×#, the inertia of A is the triplet 𝑖𝑛 𝐴 =
𝑛,, 𝑛*, 𝑛-  where 𝑛, , 𝑛*  and 𝑛-  denote the number of positive, negative and zero 

eigenvalues, respectively.

Note that, the inertia of a symmetric matrix remains unchanged under congruence 
transformation:
Lemma: Given two Hermitian matrices A, B ∈ ℂ#×#: 𝐴	𝑎𝑛𝑑	𝐵	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 ⟺ 𝑖𝑛 𝐴 = 𝑖𝑛(𝐵).
Proof: (HW)
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Sign Definiteness
A matrix  A = 𝐴∗ ∈ ℂ#×# is said to be

By the definition of Rayleight-Ritz inequality, the sign-definiteness of a Hermitian matrix is 
determined completely by the signs of its eigenvalues:

Lemma: A matrix A = 𝐴∗ ∈ ℂ#×# is 

where 𝜆. denote the eigenvalue of A 
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Corollary : The matrices  A = 𝐴∗ ∈ ℂ#×#  and B = 𝐵∗ ∈ ℂ!×!,

Lemma: Let  P = 𝑃∗ > 0. Then the matrix 𝑇∗𝑃𝑇 is also symmetric positive definite for all 
nonsingular T ∈ ℂ#×#.
Proof: If 𝑃 > 0, then 𝑖𝑛 𝑃 = {𝑛, 0,0}. Since inertia of a Hermitian matrix is invariant under 
congruence transformation, 𝑖𝑛 𝑇∗𝑃𝑇 = 𝑖𝑛(𝑃), hence 𝑇∗𝑃𝑇 ≥ 0.

Similar to the positive(or non-negative) scalars, we can define the square root of a positive 
semidefinite matrix:

Definition(Matrix Square Root): The square root of P = 𝑃∗ ≥ 0 is defined as the matrix 𝑃$/% ≜
𝑈(Λ$/%𝑈 ≥ 0 where P = 𝑈Λ𝑈∗ is the spectral decomposition of P and 
Λ$/% ≜ 𝑑𝑖𝑎𝑔{ 𝜆$, … , 𝜆#}.
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Lemma (Schur Complement Formula): Given A = 𝐴∗ ∈ ℂ#×#, B ∈ ℂ#×! and C ∈ ℂ!×!, the 
following statements are equivalent:

𝑖) 𝐴 𝐵
𝐵∗ 𝐶 > 0,

𝑖𝑖)𝐴 > 0	&	𝐶 − 𝐵∗𝐴*$𝐵 > 0,

𝑖𝑖𝑖)𝐶 > 0	&	𝐴 − 𝐵𝐶*$𝐵∗ > 0.

Proof: (𝑖) ⇔ (𝑖𝑖): By using congruence transformation

(𝑖) ⇔ (𝑖𝑖𝑖):

and repeating the proof of (𝑖) ⇔ (𝑖𝑖). 
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Theorem: 𝑃 ≥ 0	 ⇔ 𝑇𝑟𝑎𝑐𝑒(𝑃𝑆) ≥ 0 𝑓𝑜𝑟	𝑒𝑣𝑒𝑟𝑦	𝑆 ≥ 0.

Proof: (if) Assume 𝑃 ≥ 0. Let 𝑆 ≥ 0 be given and decompose it as 𝑆 = 𝑈Λ𝑈( = ∑.0$# 𝜆.𝑢.𝑢.(.
Then, 0 ≤ 𝑢.(𝑃𝑢. = 𝑇𝑟𝑎𝑐𝑒(𝑃𝑢.𝑢.() for each 𝑖. Since each 𝜆. ≥ 0,	we	get	

(only	if)	Assume	𝑇𝑟𝑎𝑐𝑒(𝑃𝑆) ≥ 0 𝑓𝑜𝑟	𝑒𝑣𝑒𝑟𝑦	𝑆 ≥ 0. Since 𝑥𝑥( ≥ 0 for each 𝑓𝑜𝑟	𝑒𝑣𝑒𝑟𝑦	𝑥 ∈ ℝ#, 
we have

Hence, P≥ 0 by definition.
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Matrix Norms 

Matrix norm is used as a way of measuring the size of a matrix. A marix norm is any function
. : 	ℂ#×# → ℝ that satisfy the following properties:

Some examples of matrix norms:
1) 1-norm:

This norm satisfies the first three conditions without needing detailed proof, for the last 
condition:
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where the first inequality is obtained by the scalar triangular inequality, and the second one by 
adding positive terms to the sum.

2) 2-norm or Frobenius norm( 𝐴 1):

Note that 𝐴 1
% = 𝑇𝑟𝑎𝑐𝑒(𝐴∗𝐴).

Frobenius norm is also a valid matrix norm which can be verified as follows:
(Similar to Cauchy-Schwarz Ieequality)
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3) İnfinity-Norm( 𝐴 2 ≜ 𝑚𝑎𝑥.,4 𝑎.,4 ) is a vector norm on ℂ#×#, but not a matrix norm. This is 
because the submultiplicative condition 𝐴𝐵 2 ≤ 𝐴 2 𝐵 2 is violated(For instance,𝐴 = 𝐵 =
1 1
1 1  )

However, a modified ∞− 𝑛𝑜𝑟𝑚 can be defined as:

Then, 𝐴 ~2 is an appropriate matrix norm as prove as follows:
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Induced Matrix Norm
Let . ∗ be a vector norm on ℂ#. Then, the induced norm on ℂ#×# is defined as 

Moreover, it can be shown that:

Note that, it is easy to Show that induced matrix norms are legitimate matrix norms as defined 
the above definition(required conditions for the norm).

Condition 1 is clearly satisfied since the induced norm is always nonnegative by definition and 
𝐴𝑥 = 0 for all nonzero 𝑥 ∈ ℂ# iff 𝐴 = 0.

Condition 2 is also satisfied since   
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Condition 3 is also satisfied as follows:

Condition 4(submultiplicavity) can be demonstrated as

It  also can be stated as by the definition of induced norm

Most common-used induced norms are the p-norms: (p=1,2,inf)
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Examples : Simple characterizations for p-norms:

Proposition: The induced p-norms can be calculated as follows:

(i) The induced 1-norm is the maximum column sum:

(ii) The induced 2-norm(spectral norm) is the square root of the maximum eigenvalue of 𝐴∗𝐴:

(iii) The induced inf-norm is the maximum row-sum: 

Proof:
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Examples:
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Ellipsoids: Given a matrix 𝑃 ∈ ℝ#×#, where 𝑃 = 𝑃( ≥ 0 the set 
ℰ6 ≜ 𝑥 ∈ ℝ#: 𝑥(𝑃𝑥 ≤ 1

is called as ellipsoid associated with P.

Not that, the ellipsoid defined abov is centered at the origin of ℝ#. The ellipsoid centered at 
different points as given as  

ℰ6,7! ≜ 𝑥 ∈ ℝ#: (𝑥 − 𝑥8)(𝑃(𝑥 − 𝑥8) ≤ 1 .
If 𝑃 > 0, the volume of an ellipsoid is 𝑣𝑜𝑙 ℰ6 = 𝛼#(𝑑𝑒𝑡𝑃*$)$/% where 𝛼# is the volume of the 
n-dimensional unit 2-ball, i. e. ,  

Proposition: Given two matrices 𝐴 ≥ 0 and B ≥ 0, ℇ9 ⊆ ℇ: ⇔ 𝐵 ≤ 𝐴.
Proof: (only if) Suppose 𝐵 ≤ 𝐴 and let x ⊆ ℇ9. Then, 𝑥(𝐵𝑥 ≤ 𝑥(𝐴𝑥 ≤ 1. Therefore, x ⊆ ℇ:, so 
that ℇ9 ⊆ ℇ:.
(if) Suppose ℇ9 ⊆ ℇ: but that 𝐵 ≰ 𝐴, i.e., there exists nonzero 𝑥∗ such that 𝑥∗(𝐵𝑥∗ > 𝑥∗(𝐴𝑥∗. 
Now scale 𝑥∗ to x𝑥∗ so that(It is assumed 𝐴𝑥∗ ≠ 0 ) x𝑥∗(𝐴x𝑥∗=1. Then, x𝑥∗ ∈ ℇ9 but  , x𝑥∗ ∉ ℇ: since 
x𝑥∗(𝐵 x𝑥∗> x𝑥∗(𝐴x𝑥∗=1. This is a conrtradiction due to the assumption ℇ9 ⊆ ℇ:.
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Ex: Consider the matrices

By calculation, we know that 𝐵 < 𝐴, so that ℇ9 ⊆ ℇ: and the inclusion ca n be illustrated as 
follows:   
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Remark: When 𝑃 > 0 the definition can be thought of as the unit ball of the vector norm on ℂ# 
as follows: 𝑥 ≜ (𝑥∗𝑃𝑥)$/%.

Note that, when 𝑃 ≥ 0 then one can find nonzero vectors x ∈ ℂ# such that 𝑥 = 0, violating 
condition for being a norm. It is then called as semi-norm on ℂ#.

Lemma: Given 𝑃 = 𝑃( =
𝑃$ 𝑃%
𝑃%( 𝑃;

> 0, let ℰ ≜ 𝑥: 𝑥(𝑃𝑥 ≤ 1 . Then, the projection of ℰ onto 

the 𝑥$ − 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 is given by 
ℰ7" = 𝑧 ∈ ℝ#: 𝑧((𝑃$ − 𝑃%𝑃;*$𝑃%()𝑧 ≤ 1

Proof: the projection on ℰ onto 𝑥$ subspace is given by 

So the last condition is equivalent to

Or by the above Proposition:
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By the schur complement formula, this is equivalent to

And, the minumum volüme is 𝑄 = 𝑃$ − 𝑃%𝑃;*$𝑃%(. 
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Ex. :
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