System Theory, KOM5108 Lecture \#2

Instructor: Dr. Yavuz Eren

Lecture Book: "Linear System Theory, W.J. Rugh"

Spring 2024

1

Singular Value Decomposition
Theorem: Given $\mathrm{A} \in \mathcal{F}^{m \times n}$, there exists unitary matrices $U=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{m}\end{array}\right] \in \mathcal{F}^{m \times n}$ and $V=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{m}\end{array}\right] \in \mathcal{F}^{n \times n}$ and a matrix Σ, where

$$
\Sigma \triangleq\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right], \Sigma_{1}=\operatorname{diag}\left[\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right], k \triangleq \operatorname{rank}(A)
$$

and $\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{k}>0$ such that $A=U \Sigma V^{*}$.
Consider the action of a matrix A on vectors forming the unit circle. If A is decomposed as $A=$ $U \Sigma V^{T}$, the transformation of the unit circle through A can be visualized as follows:

$\Sigma V^{\top} x$
$A x=U \Sigma V^{\top} x$

2

Examples:

3

Hermitian Matrices

A matrix $\mathrm{A} \in \mathbb{C}^{n \times n}$ is said to be Hermitian if $A=A^{*}$.
Teorem: All eigenvalues of a Hermitian matrix are real.
Proof: Let us to take arbitrary $A=A^{*} \in \mathbb{C}^{n \times n}$ and consider its eigenvalue-eigenvector equation $A x=\lambda x$. Then, by premultiplying by x^{*} we get $x^{*} A x=\lambda x^{*} x$. Now, take the complex conjugate transposes of both sides to obtain $\left(x^{*} A x\right)^{*}=\left(\lambda x^{*} x\right)^{*}$. But $\left(x^{*} A x\right)^{*}=x^{*} A^{T} x=\lambda x^{*} x$ since $A=$ A^{*}. Furthermore, since $\left(\lambda x^{*} x\right)^{*}=\lambda x^{*} x$. Since x is nonzero, we get $\lambda=\lambda$.

By using the unitary matrices $\left(U \in \mathbb{C}^{n \times n} ; U^{*} U=U U^{*}=I\right)$, a useful fact about the spectral decomposition of Hermitian matrices can be given as follows:

Theorem: Any Hermitian matrix $\mathrm{A}=A^{*} \in \mathbb{C}^{n \times n}$ can be spectrally decomposed as $A=U \Lambda U^{*}$ where U is unitary and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$
Proof: (Proof by induction over the dimension n). For a Hermitian matrix $\mathbb{C}^{1 \times 1}$, the result is obvious. Because if $A \in \mathbb{C}^{1 \times 1}$ is hermitian it is a real scalar. Then, Λ is equal to itself and $U=1$, which is unitary.
Now assume that the statement is true for all Hermitian matrices in $\mathbb{C}^{(n-1) \times(n-1)}$ and also consider $\mathrm{A}=A^{*} \in \mathbb{C}^{n \times n}$. Let λ_{1} be an eigenvalue of A and x_{1} eigenvector associated with λ_{1}. By the above theorem, λ_{1} is real and x_{1} can be chosen as $x_{1}^{*} x_{1}=1$ without loss of generality. Now let X be unitary matrix with x_{1} as its first column

$$
X \triangleq\left[\begin{array}{llll}
x_{1} & x_{1} & \cdots & x_{n}
\end{array}\right] \in \mathbb{C}^{n \times n}
$$

System Theory, Lecture Notes \#1

Then, the first column of the product $X^{*} A X$ gives

$$
X^{*} A x_{1}=X^{*}\left(\lambda_{1} x_{1}\right)=\lambda_{1} X^{*} x_{1}=\lambda_{1} e_{1}
$$

where e_{1} denotes the first column of I_{n}. Moreover, the first row of $X^{*} A X$ is

$$
x_{1}^{*} A X=\left(A x_{1}\right)^{*} X=\lambda_{1} x_{1}^{*} X=\lambda_{1} e_{1}^{*}
$$

since $A=A^{*}$. We then have

$$
X^{*} A X=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \tilde{A}
\end{array}\right]
$$

where $\tilde{A}=\tilde{A}^{*} \in \mathbb{C}^{(n-1) \times(n-1)}$. By the induction, we can state \tilde{A} as $\tilde{A}=\widetilde{U} \widetilde{\Lambda} \widetilde{U}^{*}$ where \widetilde{U} is unitary and $\widetilde{\Lambda}$ is real diagonal. Then we obtain the following form

$$
A=\underbrace{X\left[\begin{array}{cc}
I & 0 \\
0 & \tilde{U}
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \tilde{\Lambda}
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{cc}
I & 0 \\
0 & \tilde{U}
\end{array}\right]^{*} X^{*}}_{U^{*}} .
$$

Note that, U is unitary and Λ is is real diagonal so that the diagonal entries are the eigenvalues of A.(A is Hermitian.)

5

Congruence Transformation

Two matrices $\mathrm{A}, \mathrm{B} \in \mathbb{C}^{n \times n}$ are said to be congruent to each other if there exists a nonsingular $\mathrm{T} \in \mathbb{C}^{n \times n}$ such that $B=T^{*} A T$. The transformation $A \rightarrow T^{*} A T$ is called a congruence transformation of A under T.

Example:

Note that, all eigenvalues of a Hermitian matrix are real, we can group the ones that are positive, negative and zero. This brings the definition of the inertia of a Hermitian matrix.

Definition(Inertia): Given a matrix $\mathrm{A}=A^{*} \in \mathbb{C}^{n \times n}$, the inertia of A is the triplet $\operatorname{in}(A)=$ $\left(n_{+}, n_{-}, n_{0}\right)$ where n_{+}, n_{-}and n_{0} denote the number of positive, negative and zero eigenvalues, respectively.

Note that, the inertia of a symmetric matrix remains unchanged under congruence transformation:
Lemma: Given two Hermitian matrices $A, B \in \mathbb{C}^{n \times n}: A$ and B congruent $\Leftrightarrow \operatorname{in}(A)=\operatorname{in}(B)$. Proof: (HW)

Sign Definiteness

A matrix $\mathrm{A}=A^{*} \in \mathbb{C}^{n \times n}$ is said to be
(i) Positive definite if
(ii) Negative definite if

$$
x^{T} A x>0 \quad \forall x \in \mathbb{C}^{n}, \quad x \neq 0
$$

$$
x^{T} A x<0 \quad \forall x \in \mathbb{C}^{n}, \quad x \neq 0
$$

(iii) Positive semidefinite if

$$
x^{T} A x \geq 0 \quad \forall x \in \mathbb{C}^{n}, \quad x \neq 0
$$

(iv) Negative semidefinite if

$$
x^{T} A x \leq 0 \quad \forall x \in \mathbb{C}^{n}, \quad x \neq 0
$$

By the definition of Rayleight-Ritz inequality, the sign-definiteness of a Hermitian matrix is determined completely by the signs of its eigenvalues:

Lemma: A matrix $\mathrm{A}=A^{*} \in \mathbb{C}^{n \times n}$ is
(i) Positive definite if and only if $\lambda_{i}>0$ for all $i=1: n$
(ii) Negative definite if and only if $\lambda_{i}<0$ for all $i=1: n$
(iii) Positive semi-definite if and only if $\lambda_{i} \geq 0$ for all $i=1: n$
(iv) Negative semi-definite if and only if $\lambda_{i} \leq 0$ for all $i=1: n$
where λ_{i} denote the eigenvalue of A

7

Corollary : The matrices $\mathrm{A}=A^{*} \in \mathbb{C}^{n \times n}$ and $\mathrm{B}=B^{*} \in \mathbb{C}^{m \times m}$,

$$
\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right] \geq 0 \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
A \geq 0 \\
B \geq 0
\end{array}\right.
$$

Lemma: Let $\mathrm{P}=P^{*}>0$. Then the matrix $T^{*} P T$ is also symmetric positive definite for all nonsingular $T \in \mathbb{C}^{n \times n}$.
Proof: If $P>0$, then $\operatorname{in}(P)=\{n, 0,0\}$. Since inertia of a Hermitian matrix is invariant under congruence transformation, in $\left(T^{*} P T\right)=\operatorname{in}(P)$, hence $T^{*} P T \geq 0$.

Similar to the positive(or non-negative) scalars, we can define the square root of a positive semidefinite matrix:

Definition(Matrix Square Root): The square root of $\mathrm{P}=P^{*} \geq 0$ is defined as the matrix $P^{1 / 2} \triangleq$ $U^{T} \Lambda^{1 / 2} U \geq 0$ where $\mathrm{P}=U \Lambda U^{*}$ is the spectral decomposition of P and $\Lambda^{1 / 2} \triangleq \operatorname{diag}\left\{\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right\}$.

Lemma (Schur Complement Formula): Given $\mathrm{A}=A^{*} \in \mathbb{C}^{n \times n}, \mathrm{~B} \in \mathbb{C}^{n \times m}$ and $\mathrm{C} \in \mathbb{C}^{m \times m}$, the following statements are equivalent:
i) $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right]>0$,
ii) $A>0 \& C-B^{*} A^{-1} B>0$,
iii) $C>0 \& A-B C^{-1} B^{*}>0$.

Proof: $(i) \Leftrightarrow$ (ii): By using congruence transformation

$$
T^{*}\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right] T=\left[\begin{array}{cc}
A & 0 \\
0 & C-B^{*} A^{-1} B
\end{array}\right], \quad \text { where } \quad T:=\left[\begin{array}{cc}
I & -A^{-1} B \\
0 & I
\end{array}\right]
$$

$(i) \Leftrightarrow(i i i):$

$$
J^{*}\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right] J=\left[\begin{array}{cc}
C & B^{*} \\
B & A
\end{array}\right], \quad \text { where } \quad J:=\left[\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right]
$$

and repeating the proof of $(i) \Leftrightarrow(i i)$.

9

Theorem: $P \geq 0 \Leftrightarrow$ Trace $(P S) \geq 0$ for every $S \geq 0$.
Proof: (if) Assume $P \geq 0$. Let $S \geq 0$ be given and decompose it as $S=U \Lambda U^{T}=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}$. Then, $0 \leq u_{i}^{T} P u_{i}=\operatorname{Trace}\left(P u_{i} u_{i}^{T}\right)$ for each i. Since each $\lambda_{i} \geq 0$, we get

$$
0 \leq \sum \lambda_{i} \operatorname{Trace}\left(P u_{i} u_{i}^{T}\right)=\operatorname{Trace}\left(P \sum_{i} \lambda_{i} u_{i} u_{i}^{T}\right)=\operatorname{Trace}(P S)
$$

(only if) Assume Trace $(P S) \geq 0$ for every $S \geq 0$. Since $x x^{T} \geq 0$ for each for every $x \in \mathbb{R}^{n}$, we have

$$
0 \leq \operatorname{Trace}\left(P x x^{T}\right)=x^{T} P x \quad \forall x \in \mathbb{R}^{n} .
$$

Hence, $P \geq 0$ by definition.

Matrix Norms

Matrix norm is used as a way of measuring the size of a matrix. A marix norm is any function
$\|\cdot\|: \mathbb{C}^{n \times n} \rightarrow \mathbb{R}$ that satisfy the following properties:
(i) $\|A\| \geq 0$ for all $A \in \mathbb{C}^{n \times n}$
(i') $\|A\|=0$ if and only if $A=0$
(ii) $\|\alpha A\|=|\alpha|\|A\|$ for all $A \in \mathbb{C}^{n \times n}$ and $\alpha \in \mathbb{C}$
(iii) $\|A+B\| \leq\|A\|+\|B\|$ for all $A, B \in \mathbb{C}^{n \times n}$
(iv) $\|A B\| \leq\|A\|\|B\|$ for all $A, B \in \mathbb{C}^{n \times n}$.

Some examples of matrix norms:

1) 1-norm:

$$
\|A\|_{1}:=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

This norm satisfies the first three conditions without needing detailed proof, for the last condition:

11

$$
\begin{aligned}
\|A B\|_{1}=\sum_{i, j}\left|\sum_{k} a_{i k} b_{k j}\right| \leq \sum_{i, j, k}\left|a_{i k} b_{k j}\right| & \leq \sum_{i, j, k, l}\left|a_{i k} b_{l j}\right| \\
& =\left(\sum_{i, k}\left|a_{i k}\right|\right)\left(\sum_{l, j}\left|b_{l j}\right|\right)=\|A\|_{1}\|B\|_{1},
\end{aligned}
$$

where the first inequality is obtained by the scalar triangular inequality, and the second one by adding positive terms to the sum.
2) 2-norm or Frobenius norm $\left(\|A\|_{F}\right)$:

$$
\|A\|_{2}:=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2} .
$$

Note that $\|A\|_{F}^{2}=\operatorname{Trace}\left(A^{*} A\right)$.
Frobenius norm is also a valid matrix norm which can be verified as follows:
(Similar to Cauchy-Schwarz leequality)

$$
\begin{aligned}
\|A B\|_{F}^{2}=\sum_{i, j}\left|\sum_{k=1}^{n} a_{i k} b_{k j}\right|^{2} & \leq \sum_{i, j}\left(\sum_{k}\left|a_{i k}\right|^{2}\right)\left(\sum_{m}\left|b_{m j}\right|^{2}\right) \\
& =\left(\sum_{i, k}\left|a_{i k}\right|^{2}\right)\left(\sum_{m, j}\left|b_{m j}\right|^{2}\right)=\|A\|_{F}^{2}\|B\|_{F}^{2} .
\end{aligned}
$$

3) Infinity-Norm $\left(\|A\|_{\infty} \triangleq \max _{i, j}\left|a_{i, j}\right|\right)$ is a vector norm on $\mathbb{C}^{n \times n}$, but not a matrix norm. This is because the submultiplicative condition $\|A B\|_{\infty} \leq\|A\|_{\infty}\|B\|_{\infty}$ is violated(For instance, $A=B=$ $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$)
However, a modified ∞ - norm can be defined as:

$$
\|A\|_{\sim \infty}:=n\|A\|_{\infty}=n \max _{1 \leq i, j \leq n}\left|a_{i j}\right|,
$$

Then, $\|A\|_{\sim \infty}$ is an appropriate matrix norm as prove as follows:

$$
\begin{aligned}
\|A B\|_{\sim \infty}=n \max _{i, j}\left|\sum_{k} a_{i k} b_{k j}\right| & \leq n \max _{i, j} \sum_{k}\left|a_{i k} b_{k j}\right| \\
& \leq n \max _{i, j} \sum_{k}\|A\|_{\infty}\|B\|_{\infty} \\
& =n\|A\|_{\infty} n\|B\|_{\infty}=\|A\|_{\sim \infty}\|B\|_{\sim \infty}
\end{aligned}
$$

Induced Matrix Norm

Let $\|.\|_{*}$ be a vector norm on \mathbb{C}^{n}. Then, the induced norm on $\mathbb{C}^{n \times n}$ is defined as

$$
\|A\|_{i *}:=\max _{x \neq 0} \frac{\|A x\|_{*}}{\|x\|_{*}} .
$$

Moreover, it can be shown that:

$$
\|A\|_{i *}=\max _{\|x\|_{*} \leq 1}\|A x\|_{*}=\max _{\|x\|_{*}=1}\|A x\|_{* *} .
$$

Note that, it is easy to Show that induced matrix norms are legitimate matrix norms as defined the above definition(required conditions for the norm).

Condition 1 is clearly satisfied since the induced norm is always nonnegative by definition and $A x=0$ for all nonzero $x \in \mathbb{C}^{n}$ iff $A=0$.

Condition 2 is also satisfied since

$$
\|\alpha A\|_{i *}=\max _{\|x\|_{*}=1}\|\alpha A x\|_{*}=\max _{\|x\|_{*}=1}|\alpha|\|A x\|_{*}=|\alpha| \max _{\|x\|_{*}=1}\|A x\|_{*}=|\alpha|\|A\|_{i *}
$$

Condition 3 is also satisfied as follows:

$$
\begin{aligned}
\|A+B\|_{i *}=\max _{\|x\|_{*}=1}\|(A+B) x\|_{*} & \leq \max _{\|x\|_{*}=1}\left(\|A x\|_{*}+\|B x\|_{*}\right) \\
& \leq \max _{\|x\|_{*}=1}\|A x\|_{*}+\max _{\|x\|_{*}=1}\|B x\|_{*}=\|A\|_{i_{*}}+\|B\|_{i^{*}}
\end{aligned}
$$

Condition 4(submultiplicavity) can be demonstrated as

$$
\|A B\|_{i *}=\max _{x \neq 0} \frac{\|A B x\|_{*}}{\|x\|_{*}}=\max _{x \neq 0} \frac{\|A B x\|_{*}}{\|B x\|_{*}} \frac{\|B x\|_{*}}{\|x\|_{*}} \leq \max _{y \neq 0} \frac{\|A y\|_{*}}{\|y\|_{*}} \max _{x \neq 0} \frac{\|B x\|_{*}}{\|x\|_{*}}=\|A\|_{i *}\|B\|_{i *}
$$

It also can be stated as by the definition of induced norm

$$
\|A x\|_{*} \leq\|A\|_{i *}\|x\|_{*} \quad \forall x \in \mathbb{C}^{n}
$$

Most common-used induced norms are the p-norms: ($p=1,2, \inf$)

$$
\|A\|_{i 1}:=\max _{x \neq 0} \frac{\|A x\|_{1}}{\|x\|_{1}}, \quad\|A\|_{i 2}:=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}, \quad \text { and } \quad\|A\|_{i \infty}:=\max _{x \neq 0} \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}
$$

Examples : Simple characterizations for p-norms:

$$
\|A\|_{i 1}=\max _{j=1: n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

Proposition: The induced p-norms can be calculated as follows:
(i) The induced 1-norm is the maximum column sum:

$$
\|A\|_{i 1}=\max _{j=1: n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

(ii) The induced 2-norm(spectral norm) is the square root of the maximum eigenvalue of $A^{*} A$:

$$
\|A\|_{i 2}=\sqrt{\lambda_{\max }\left(A^{*} A\right)}
$$

(iii) The induced inf-norm is the maximum row-sum:

$$
\|A\|_{i \infty}=\max _{i=1: n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

Examples:

17

Ellipsoids: Given a matrix $P \in \mathbb{R}^{n \times n}$, where $P=P^{T} \geq 0$ the set

$$
\mathcal{E}_{P} \triangleq\left\{x \in \mathbb{R}^{n}: x^{T} P x \leq 1\right\}
$$

is called as ellipsoid associated with P .
Not that, the ellipsoid defined abov is centered at the origin of \mathbb{R}^{n}. The ellipsoid centered at different points as given as

$$
\mathcal{E}_{P, x_{c}} \triangleq\left\{x \in \mathbb{R}^{n}:\left(x-x_{c}\right)^{T} P\left(x-x_{c}\right) \leq 1\right\} .
$$

If $P>0$, the volume of an ellipsoid is $\operatorname{vol}\left(\mathcal{E}_{P}\right)=\alpha_{n}\left(\operatorname{det} P^{-1}\right)^{1 / 2}$ where α_{n} is the volume of the n-dimensional unit 2-ball, i. e. ,

$$
\alpha_{n}= \begin{cases}\frac{\pi^{n / 2}}{(n / 2)!} & \text { if } n \text { is even } \\ \frac{2^{n} \pi^{(n-1) / 2}((n-1) / 2)!}{n!} & \text { if } n \text { is odd. }\end{cases}
$$

Proposition: Given two matrices $A \geq 0$ and $\mathrm{B} \geq 0, \varepsilon_{A} \subseteq \varepsilon_{B} \Leftrightarrow B \leq A$.
Proof: (only if) Suppose $B \leq A$ and let $\mathrm{x} \subseteq \varepsilon_{A}$. Then, $x^{T} B x \leq x^{T} A x \leq 1$. Therefore, $\mathrm{x} \subseteq \varepsilon_{B}$, so that $\varepsilon_{A} \subseteq \varepsilon_{B}$.
(if) Suppose $\varepsilon_{A} \subseteq \varepsilon_{B}$ but that $B \nsubseteq A$, i.e., there exists nonzero x_{*} such that $x_{*}^{T} B x_{*}>x_{*}^{T} A x_{*}$. Now scale x_{*} to \tilde{x}_{*} so that(It is assumed $\left.A x_{*} \neq 0\right) \tilde{x}_{*}^{T} A \tilde{x}_{*}=1$. Then, $\tilde{x}_{*} \in \varepsilon_{A}$ but , $\tilde{x}_{*} \notin \varepsilon_{B}$ since $\tilde{x}_{*}^{T} B \tilde{x}_{*}>\tilde{x}_{*}^{T} A \tilde{x}_{*}=1$. This is a conrtradiction due to the assumption $\varepsilon_{A} \subseteq \varepsilon_{B}$.

Ex: Consider the matrices
$A=\left[\begin{array}{lll}1.3244 & 1.1302 & 0.9364 \\ 1.1302 & 1.6114 & 0.8643 \\ 0.9364 & 0.8643 & 0.8834\end{array}\right] \quad B=\left[\begin{array}{lll}1.0400 & 1.0502 & 0.7666 \\ 1.0502 & 1.3019 & 0.9304 \\ 0.7666 & 0.9304 & 0.6726\end{array}\right]$

By calculation, we know that $B<A$, so that $\varepsilon_{A} \subseteq \varepsilon_{B}$ and the inclusion ca n be illustrated as follows:

Remark: When $P>0$ the definition can be thought of as the unit ball of the vector norm on \mathbb{C}^{n} as follows: $\|x\| \triangleq\left(x^{*} P x\right)^{1 / 2}$.

Note that, when $P \geq 0$ then one can find nonzero vectors $\mathrm{x} \in \mathbb{C}^{n}$ such that $\|x\|=0$, violating condition for being a norm. It is then called as semi-norm on \mathbb{C}^{n}.

Lemma: Given $P=P^{T}=\left[\begin{array}{ll}P_{1} & P_{2} \\ P_{2}^{T} & P_{3}\end{array}\right]>0$, let $\mathcal{E} \triangleq\left\{x: x^{T} P x \leq 1\right\}$. Then, the projection of \mathcal{E} onto the $x_{1}-$ subspace is given by

$$
\mathcal{E}_{x_{1}}=\left\{z \in \mathbb{R}^{n}: z^{T}\left(P_{1}-P_{2} P_{3}^{-1} P_{2}^{T}\right) z \leq 1\right\}
$$

Proof: the projection on \mathcal{E} onto x_{1} subspace is given by

$$
\begin{array}{ll}
\min _{Q} & \operatorname{vol}\left\{z: z^{T} Q z \leq 1\right\} \\
\text { s.t. } & x \in \mathcal{E} \Rightarrow x_{1}^{T} Q x_{1} \leq 1
\end{array}
$$

So the last condition is equivalent to

$$
\left\{x: x^{T} P x \leq 1\right\} \subseteq\left\{x: x^{T}\left[\begin{array}{cc}
Q & 0 \\
0 & 0
\end{array}\right] x \leq 1\right\}
$$

Or by the above Proposition:

$$
\left[\begin{array}{ll}
Q & 0 \\
0 & 0
\end{array}\right] \leq\left[\begin{array}{ll}
P_{1} & P_{2} \\
P_{2}^{T} & P_{3}
\end{array}\right] \Longleftrightarrow\left[\begin{array}{cc}
Q-P_{1} & -P_{2} \\
-P_{2}^{T} & -P_{3}
\end{array}\right]<0
$$

By the schur complement formula, this is equivalent to

$$
Q-\left(P_{1}-P_{2} P_{3}^{-1} P_{2}^{T}\right) \leq 0
$$

And, the minumum volüme is $Q=P_{1}-P_{2} P_{3}^{-1} P_{2}^{T}$.

Ex. :

