

1

Orthogonality: Let (X, <.,.>) be an inner product space. Two vectors $x, y \in X$ are said to be orthogonal, denoted by $x \perp y$ if $\langle x, y \rangle = 0$.

A basis of \mathcal{X} is orthogonal if $x_i \perp x_j$ for all $i \neq j$, where x'_i s are basis vectors of \mathcal{X} . Moreover they are orthonormal basis if $\langle x, y \rangle = 1$. In fact, given any basis of a subspace, one can always obtain an othonormal basis through Gram-Schmidt orthonormalization process as follows:

Lemma (Gram-Schmidt Orthonormalization): Let $(\mathcal{X}, <.,.>)$ be an inner product space and let $S \subseteq \mathcal{X}$ be a subspace of \mathcal{X} . Let $\{s_1, s_2, ..., s_r\}$ be a basis of S. Then, $\{s_1, s_2, ..., s_r\}$, where

$$\overline{s}_k = \begin{cases} \frac{s_1}{\|s_1\|} & \text{for } k = 1\\ \frac{z_k}{\|z_k\|} & \text{for } k = 2:r, \text{ where } z_k := s_k - \sum_{i=1}^{k-1} \langle s_k, \overline{s}_i \rangle \overline{s}_i \end{cases}$$

is a orthonormal basis of S.

Notes for implementation of G-SO:

o.,

System Theory, Lecture Notes #2

Product Operations(Inner, Outer and Cross)

Inner Products(Dot or Scalar Product): Inner products of the vectors $x \in \mathbb{C}^n$ and $y \in \mathbb{C}^n$ is defined as: $\langle x, y \rangle = x_1^* y_1 + x_2^* y_2 + \dots + x_n^* y_n = (x^*)^T . y$ Note that, the dimension of the vectors are $x_{n\times 1}$ and $y_{n\times 1}$, so that it gives a scalar output. If the $x, y \in \mathbb{R}^n$ then it can stated as $\langle x, y \rangle = x_1^T y_1 + x_2^T y_2 + \dots + x_n^T y_n = (x)^T . y$ Moreover, $\langle x, y \rangle = (x)^T . y = \langle y, x \rangle = (y)^T . x$. For $f, g \in C[a, b]$, the inner product is $\langle f, g \rangle = \int_a^b f(t)^* g(t) dt$. Axioms: (i) $(x, x) > 0 \ \forall x \neq 0 \iff x = 0$. (ii) $(x, y) = (y, x) \ \forall x, y \in \mathcal{X}$ (iii) $(ax + \beta y, z) = a(x, z) + \beta(y, z) \ \forall x, y, z \in \mathcal{X}; a, \beta \in \mathbb{C}$ (iv) $(x, ay + \beta z) = a(x, y) + \beta(x, z) \ \forall x, y, z \in \mathcal{X}; a, \beta \in \mathbb{C}$ Note: Inner product spaces are also called as Hilbert Spaces. As the inner product defines norm, then it can be concluded that a Banach Space can be constructed by Hilbert Space. But the reverse is not true as the fact that "for every norm can not define an inner product".

Outer Products: $x > \langle y = x(y^*)^T = \begin{bmatrix} x_1y_1^* & x_1y_2^* & \dots & x_1y_m^* \\ \vdots & \vdots & & \vdots \\ x_ny_1^* & x_ny_2^* & \dots & x_ny_m^* \end{bmatrix}_{n \times m}$ Cross Products: $x \times y = |x||y|sin\theta$

Theorem: (The Parallelogram Law) Let $(\mathcal{X}, <., .>)$ be inner product space and define $||x||^2 = \langle x, x \rangle.$ Then, for any $x, y \in \mathcal{X}$ $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$ **Theorem**: (The Pythagorean) Let \mathcal{X} be inner product space and for any $x, y \in \mathcal{X}$, if $x \perp y$ then, $||x + y||^2 = ||x||^2 + ||y||^2$. **Theorem**: Let $(\mathcal{X}, \|.\|)$ be a complex normed linear space and for any $x, y \in X$ such that $||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2}).$ Then, $\langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2 + j||x + jy||^2 - j||x - jy||^2)$ defines an inner product on \mathcal{X} such that $||.||^2 = \langle ., . \rangle$. Moreover, the inner product in $\langle x, y \rangle$ is the only one that generates the norm $\|.\|^2$. Note that, this theorem states the followings: (i) Given $(\mathcal{X}, <., .>)$, the norm $\|.\|$ is derived from an inner product (i.e., $\|.\|^2 = < x, x >$) iff the condition $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$ is satisfied. (ii) When $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$ is satisfied, the inner product in $\langle x, y \rangle =$ $\frac{1}{4}(\|x+y\|^2 - \|x-y\|^2 + j\|x+jy\|^2 - j\|x-jy\|^2)$ is the inner product which produces $\|.\|$. **Ex.**: Consider \mathbb{C}^n , $\|.\|_2$. Then , it is easy to show that $\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2)$ is satisfied and when righthand-side of $\langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2 + j||x + jy||^2 - j||x - y||^2)$ $||x - jy||^2$) is computed, it gives $\sum_{i=1}^n y_i x_i$. Hence 2-norm can be computed from inner product.

5

Ex.: The inf-norm on \mathbb{C}^n is not derived from an inner product: (Counter ex.) For n = 2 assume that $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. So that, $||x + y||_{\infty}^2 + ||x - y||_{\infty}^2 = 8$, but $2 * (||x||_{\infty}^2 + ||y||_{\infty}^2) = 4$. **Theorem:** (Cauchy-Schwarz Inequality) Let $(\mathcal{X}, <., .>)$ be an inner-product space with $||x|| = \langle x, x \rangle^{1/2}$. Then, $|\langle x, y \rangle| \le ||x|| ||y|| \forall x, y \in \mathcal{X}$. Furthermore, the equality holds iff x and y are linearly dependent.

Proof: Let $t \in \mathbb{R}$ and $x, z \in \mathcal{X}, z \neq 0$ (otherwise it becomes $0 \leq 0$ which is always true). Then, $p(t) := ||x + tz||^2 = ||x||^2 + t < x, z > +t < z, x > +t^2 ||z||^2 = ||x||^2 + 2 * t * Re < x, z > +t^2 ||z||^2 \geq 0$. Hence, p(t) is quadratic in t and is always nonnegative. This means its discriminant is always non-positive: $(Re < x, z >)^2 \leq ||x||^2 ||y||^2$. **Ex.** : Since \mathcal{X} is a linear vector space and z is arbitrary(not equals to zero), set z = < x, y > x for

some $y \in \mathcal{X}$, $y \neq 0$ (otherwise it becomes $0 \le 0$ which is always true). Noting that,

$$Re\left\langle x, < x, y > y \right\rangle = Re(\overline{< x, y >} < x, y >) = \overline{< x, y >} < x, y > = | < x, y > |^2$$

It follows from the discriminant inequality

$$\begin{split} | < x, y > |^{4} \leq \|x\|^{2} \langle < x, y > y, < x, y > y \rangle \\ &= \|x\|^{2} < x, y > \overline{< x, y > } \|y\|^{2} \\ &= \|x\|^{2} | < x, y > |^{2} \|y\|^{2} \\ | < x, y > |^{2} \leq \|x\|^{2} \|y\|^{2}. \end{split}$$
System Theory, Lecture Notes #2

6

Lemma: (Rayleigh-Ritz Inequality) Let $Q = Q^T$ and assume that λ_{min} and λ_{max} are minumum and maximum eigenvalues of Q, respectively. Then, the following inequality can be given: $\lambda_{min}(Q)||x||^2 \le x^T Qx \le \lambda_{max}(Q)||x||^2$ Proof: If Q is symmetric then, there exists orthonoal matrix V such that $V^T QV = \Lambda; \Lambda = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$. Multiply this by V and V^T from left and right, respectively: $V * V^T * Q * V = V * \Lambda$ $Q * V = V * \Lambda$ $Q * V = V * \Lambda * V^T$ $x^T Qx = x^T * V * \Lambda * V^T * x = y^T * \Lambda * y$ where $x_{n \times 1}, x_{1 \times n}^T$ (row vector), $y_{1 \times n}^T$ (row vector). Hence, $[y_1 & \cdots & y_n] \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots \lambda_n y_n^2$. Take $\lambda_1(\lambda_n)$ as maximum eigenvalue(minumum eigenvalue) and we can write that(by 2-norm definition) $\lambda_n(y_1^2 + y_2^2 + \cdots + y_n^2) \le x^T Qx \le \lambda_1(y_1^2 + y_2^2 + \cdots + y_n^2)$ $\lambda_{min}(Q) ||x||^2 \le x^T Qx \le \lambda_{max}(Q) ||x||^2$, (unitary matrices do not change the 2-norm)