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Orthogonality: Let 𝒳,<. , . >  be an inner product space. Two vectors 𝑥, 𝑦 ∈ 𝒳 are said to be 
orthogonal, denoted by 𝑥 ⊥ 𝑦 if < 𝑥, 𝑦 >= 0.

A basis of 𝒳 is orthogonal if 𝑥! ⊥ 𝑥" for all i ≠ 𝑗, where 𝑥!#s are basis vectors of 𝒳. Moreover 
they are orthonormal bais if < 𝑥, 𝑦 >= 1. In fact, given any basis of a subspace, one can always 
obtain an othonormal basis through Gram-Schmidt orthonormalization process as follows:

Lemma (Gram-Schmidt Orthonormalization): Let 𝒳,<. , . >  be an inner product space and let 
𝑆 ⊆ 𝒳 be a subspace of 𝒳. Let 𝑠$, 𝑠%, … , 𝑠&  be a basis of 𝑆. Then, 𝑠$, 𝑠%, … , 𝑠& , where

is a orthonormal basis of 𝑆.

Notes for implementation of G-SO:
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Continued...
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Product Operations(Inner, Outer and Cross)
Inner Products(Dot or Scalar Product): Inner products of the vectors 𝑥 ∈ ℂ' and 𝑦 ∈ ℂ' is 
defined as:

< 𝑥, 𝑦 >= 𝑥$∗𝑦$ + 𝑥%∗𝑦% +⋯+ 𝑥'∗𝑦' = 𝑥∗ ). 𝑦
Note that, the dimension of the vectors are  𝑥'×$ and 𝑦'×$, so that it gives a scalar output.

If the 𝑥, 𝑦 ∈ ℝ' then it can stated as < 𝑥, 𝑦 >= 𝑥$)𝑦$ + 𝑥%)𝑦% +⋯+ 𝑥')𝑦' = 𝑥 ). 𝑦
Moreover, < 𝑥, 𝑦 >= 𝑥 ). 𝑦 =< 𝑦, 𝑥 >= 𝑦 ). 𝑥.
For 𝑓, 𝑔 ∈ 𝒞[𝑎, 𝑏], the inner product is < 𝑓, 𝑔 >= ∫+

,𝑓 𝑡 ∗𝑔 𝑡 𝑑𝑡.
Axioms: (i) 𝑥, 𝑥 > 0	∀𝑥 ≠ 0	 ⟺ 𝑥 = 0.
(ii) 𝑥, 𝑦 = (𝑦, 𝑥)	∀𝑥, 𝑦 ∈ 𝒳
(iii) 𝛼𝑥 + 𝛽𝑦, 𝑧 = 𝛼 𝑥, 𝑧 + 𝛽 𝑦, 𝑧 	∀𝑥, 𝑦, 𝑧 ∈ 𝒳; 𝛼, 𝛽 ∈ ℂ
(iv) 𝑥, 𝛼𝑦 + 𝛽𝑧 = 𝛼 𝑥, 𝑦 + 𝛽 𝑥, 𝑧 	∀𝑥, 𝑦, 𝑧 ∈ 𝒳; 𝛼, 𝛽 ∈ ℂ
Note: Inner product spaces are also called as Hilbert Spaces. As the inner prıoduct defines norm, 
then it can be concluded that a Banach Space can be constructed by Hilbert Space. But the 
reverse is not true as the fact that ‘’for every norm can not define an inner product’’.

Outer Products: 𝑥 >< 𝑦 = 𝑥 𝑦∗ ) =
𝑥$𝑦$∗ 𝑥$𝑦%∗ … 𝑥$𝑦-∗
⋮ ⋮ ⋮

𝑥'𝑦$∗ 𝑥'𝑦%∗ … 𝑥'𝑦-∗ '×-
Cross Products: x×𝑦 = 𝑥 𝑦 𝑠𝑖𝑛𝜃
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Theorem: (The Parallelogram Law) Let (𝒳,<. , . >) be inner product space and define 
𝑥 % =< 𝑥, 𝑥 >. 

Then, for any 𝑥, 𝑦 ∈ 𝒳
𝑥 + 𝑦 % + 𝑥 − 𝑦 % = 2 𝑥 % + 2 𝑦 %.

Theorem: (The Pythagorean) Let 𝒳 be inner product space and for any 𝑥, 𝑦 ∈ 𝒳, if x ⊥ 𝑦 then,
𝑥 + 𝑦 % = 𝑥 % + 𝑦 %.

Theorem: Let (𝒳, . ) be a complex normed linear space and for any 𝑥, 𝑦 ∈ 𝑋 such that
𝑥 + 𝑦 % + 𝑥 − 𝑦 % = 2( 𝑥 %+ 𝑦 %).

Then, < 𝑥, 𝑦 >= $. ( 𝑥 + 𝑦
% − 𝑥 − 𝑦 % +𝑗 𝑥 + 𝑗𝑦 % − 𝑗 𝑥 − 𝑗𝑦 %) defines an inner product 

on	𝒳 such that . % =<. , . >. Moreover, the inner product in (< 𝑥, 𝑦 >) is the only one that 
generates the norm . %.

Note that, this theorem states the followings:
(i) Given (𝒳,<. , . >), the norm  .  is derived from an inner product (i.e., . % =< 𝑥, 𝑥 >) iff 
the condition 𝑥 + 𝑦 % + 𝑥 − 𝑦 % = 2( 𝑥 %+ 𝑦 %) is satisfied.
(ii) When 𝑥 + 𝑦 % + 𝑥 − 𝑦 % = 2( 𝑥 %+ 𝑦 %) is satisfied, the inner product in < 𝑥, 𝑦 >= 
$
. ( 𝑥 + 𝑦

% − 𝑥 − 𝑦 % +𝑗 𝑥 + 𝑗𝑦 % − 𝑗 𝑥 − 𝑗𝑦 %) is the inner product which produces . .

Ex.:  Consider ℂ', . %. Then , it is easy to show that 𝑥 + 𝑦 % + 𝑥 − 𝑦 % = 2( 𝑥 %+ 𝑦 %) is 
satisfied and when righthand-side of < 𝑥, 𝑦 >= $. ( 𝑥 + 𝑦

% − 𝑥 − 𝑦 % +𝑗 𝑥 + 𝑗𝑦 % −
𝑗 𝑥 − 𝑗𝑦 %) is computed, it gives ∑!/$' 𝑦!𝑥!. Hence 2-norm can be computed from inner 
product.
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Theorem: (Cauchy-Schwarz Inequality) Let (𝒳,<. , . >) be an inner-product space with 𝑥 =
< 𝑥, 𝑥 >$/%. Then, < 𝑥, 𝑦 > ≤ 𝑥 𝑦 	∀𝑥, 𝑦 ∈ 𝒳. Furthermore, the equality holds iff 𝑥 and 𝑦 
are linearly dependent.

Proof: Let 𝑡 ∈ ℝ and 𝑥, 𝑧 ∈ 𝒳, 𝑧 ≠ 0(otherwise it becomes 0 ≤ 0 which is always true). Then,
𝑝(𝑡) ≔ 𝑥 + 𝑡𝑧 % = 𝑥 % + 𝑡 < 𝑥, 𝑧 > +𝑡 < 𝑧, 𝑥 > +𝑡% 𝑧 % = 𝑥 % + 2 ∗ 𝑡 ∗ 𝑅𝑒 < 𝑥, 𝑧 >
+ 𝑡% 𝑧 % ≥ 0. Hence, 𝑝(𝑡) is quadratic in 𝑡 and is always  nonnegative. This means its 
discriminant is always non-positive: (𝑅𝑒 < 𝑥, 𝑧 >)%≤ 𝑥 % 𝑦 %.
Ex. : Since 𝒳 is a linear vector space and 𝑧 is arbitrary(not equals to zero), set z =< 𝑥, 𝑦 > 𝑥 for 
some y ∈ 𝒳, 𝑦 ≠ 0 (otherwise it becomes 0 ≤ 0 which is always true). Noting that,

İt follows from the discriminant inequality 

Ex.: The inf-norm on ℂ' is not derived from an inner product: (Counter ex.) For 𝑛 = 2 assume 

that 𝑥 = 1
1  and y= 1

−1 . So that, 𝑥 + 𝑦 1
% + 𝑥 − 𝑦 1

% = 8, but 2 ∗ ( 𝑥 1
% + 𝑦 1

% ) = 4.
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As for the equality version of Cauchy-Schwarz inequality, it occurs iff the discriminant is equal to 
zero. This condition, combined with 𝑝(𝑡) ≥ 0 implies that 𝑝(𝑡) must have a repeated root for 
some 𝑡∗ ∈ ℝ. Therefore, 𝑡∗ must satisfy < 𝑥 + 𝑡∗𝑧, 𝑥 + 𝑡∗𝑧 ≥ 0, which is true iff 𝑥 + 𝑡∗𝑧 = x +
t < x, y > y = 0, which means x and y are linearly dependent.∎

Theorem: (Hölder Ine.) Suppose two real numbers 𝑝 and 𝑞 ara bigger than one such that
$
2+

$
3 = 1.  

Then, ∫4
1 𝑥 𝑡 𝑦(𝑡) 𝑑𝑡 ≤ 𝑥 2 𝑦 3.

Theorem : (Minkowski Ine.) Given 𝑝 bigger or equal than one such that 
𝑥 + 𝑦 2 ≤ 𝑥 2 + 𝑦 2.
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Lemma: (Rayleigh-Ritz Inequality) Let 𝑄 = 𝑄)and assume that 𝜆-!' and 𝜆-+5 are minumum 
and maximum eigenvalues of 𝑄, respectively. Then, the following inequality can be given: 

𝜆-!'(𝑄) 𝑥 % ≤ 𝑥)𝑄𝑥 ≤ 𝜆-+5(𝑄) 𝑥 %

Proof: If 𝑄 is symmetric then, there exists orthonoal matrix 𝑉 such that

𝑉)𝑄𝑉 = Λ; Λ =
𝜆$ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆'

.

Multiply this by 𝑉 and 𝑉) from left and right, respectively :
𝑉 ∗ 𝑉) ∗ 𝑄 ∗ 𝑉 = 𝑉 ∗ Λ

𝑄 ∗ 𝑉 = 𝑉 ∗ Λ
𝑄 ∗ 𝑉 ∗ 𝑉) = 𝑉 ∗ Λ ∗ 𝑉)

𝑄 = 𝑉 ∗ Λ ∗ 𝑉)
𝑥)𝑄𝑥 = 𝑥) ∗ 𝑉 ∗ Λ ∗ 𝑉)∗ 𝑥 = 𝑦) ∗ Λ ∗ 𝑦

where 𝑥'×$, 𝑥$×') (row vector), 𝑦$×') (row vector). Hence,

𝑦$ … 𝑦'
𝜆$ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆'

𝑦$
⋮
𝑦'

= 𝜆$𝑦$% + 𝜆%𝑦%% +⋯𝜆'𝑦'%.

Take 𝜆$(𝜆')as maximum eigenvalue(minumum eigenvalue) and we can write that(by 2-norm 
definition)

𝜆'(𝑦$% + 𝑦%% +⋯+ 𝑦'%) ≤ 𝑥)𝑄𝑥 ≤ 𝜆$(𝑦$% + 𝑦%% +⋯+ 𝑦'%)

𝜆-!'(𝑄) 𝑥 % ≤ 𝑥)𝑄𝑥 ≤ 𝜆-+5(𝑄) 𝑥 %,(uinitary matrices do not change the 2-norm)
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