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Linear Vector Spaces(𝑋, 𝔽; linear vector space is associated with 𝔽) 
Definition: A set 𝑋 is said to be linear vector space(LVS) if operations addition and scalar 
multiplication over the scalar field 𝔽 are defined as  follows :  

and for all 𝑥. 𝑦, 𝑧 ∈ 𝑋 and 𝛼, 𝛽 ∈ 𝔽, the following conditions hold:
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Examples:
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Definition(Linear independence): A set of vectors 𝑥!, … , 𝑥" ⊆ 𝒳 is said to be linearly 
dependent if 

Definition(Span): Given a set of  𝒱 = 𝑥!, … , 𝑥" ⊆ 𝒳, the span of 𝒱	is the set of all linear 
combinations of  𝑥!, … , 𝑥", 

Definitions(Basis and Dimension): A linearly independent  a set of vectors,  𝒱, is said to form a 
basis of 𝒳 is span(𝒱)= 𝒳. The dimension of 𝒳, denoted dim(𝒳), is the number of elements 
N a basis of 𝒳.

Examples: 
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Linear Subspaces

Definitions(Linear Susbspace): Assume that we have (𝒳, 𝔽), a set 𝒮 ⊆ 𝒳 is said to be a linear 
subspace of 𝒳 if

Example: 

Definition: Let 𝒳!and 𝒳# be two linear vector spaces defined over the same field. The direct 
sum of spaces(𝒳!⨁𝒳# or 𝒳!x𝒳#) is defined as the collection of ordered pairs 𝑥!, 𝑥#  where 
𝑥! ⊆ 𝒳! and 𝑥# ⊆ 𝒳#. 
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Vector Norms and Normed Vector Spaces

Definition(Vector Norm): Let 𝒳 be an linear vector space associated with FF. A vector norm 
on 𝒳 is a function . : 𝒳 → ℝ which satisfies the following conditions:

Examples: 
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Convergency, Closedness and Completeness

An infinite sequence of n×1 vectors is written as {𝑥$}$%&' , where the subscript notation denotes 
different vectors rather than etries of a vector. A vector =𝑥 is called as the limit of the sequence if 
for any given 𝜀 > 0 there exists a positive integer, written 𝐾(𝜀) to indicate the integer depends 
on 𝜀, such that

=𝑥 − 𝑥$ < 𝜀, 𝑘 > 𝐾 𝜀 .

Often, we are interested in sequences of vector functions of time, denoted {𝑥$(𝑡)}$%&' , and     
defİned on some interval ( 𝑡&, 𝑡! ). Such a sequence is said to converge(pointwise) on the 
interval if there exists a vector function	 =𝑥(𝑡) such that for every 𝑡( ∈ 𝑡&, 𝑡!  the sequence of 
vectors converge {𝑥$(𝑡()}$%&'  converge to the vector =𝑥(𝑡(). 

In this case, given an 𝜀, the K can depend on both 𝜀 and 𝑡(. The sequence of function converge 
uniformly on  [𝑡&, 𝑡!] if there exists a function =𝑥(𝑡) such that given 𝜀 > 0 there exists a positive 
integer 𝐾(𝜀) such that for every 𝑡( in the interval

 
=𝑥(𝑡() − 𝑥$(𝑡() < 𝜀, 𝑘 > 𝐾 𝜀 .
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For an infinite series of vector functions

                                                                   ∑)%&' 𝑥*(𝑡)                                                                       (*)

with each a 𝑥*(𝑡) defined on [𝑡&, 𝑡!], convergence is defined in terms of sequence of partial 
sums

𝑠$ 𝑡 =J
)%&

'

𝑥*(𝑡)

The series converges to the function =𝑥+ if for each 𝑡( ∈ [𝑡&, 𝑡!],

lim
$→'

=𝑥 𝑡( − 𝑠$(𝑡() = 0

The series (*) is said to converge uniformly to  =𝑥 𝑡  on [𝑡&, 𝑡!]. Namely, given 𝜀 > 0 there exists 
a positive integer 𝐾(𝜀) such that for every t ∈ [𝑡&, 𝑡!],

=𝑥 𝑡 − ∑)%&$ 𝑥*(𝑡) < 𝜀
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Suppose (*) is an infinite series of cont.-diff functions on [𝑡&, 𝑡!] that converges uniformly to 
=𝑥 𝑡  on [𝑡&, 𝑡!], if the series  

Converges uniformly on [𝑡&, 𝑡!], it converges to  d=𝑥 𝑡 /𝑑𝑡.

The infinite series (*) is said to be converge absolutely if the series of real functions 

Converges on the interval. The key property of an absolutely convergent series is that the terms 
in the series can be reordered without changing the fact of convergence.

J
)%&

'
𝑑
𝑑𝑡 𝑥*(𝑡)

J
)%&

'

𝑥* 𝑡
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Examples: 

Definition:(Cauchy Sequence) A sequence 𝑥-  in a normed linear space (𝒳, . ) is said to be 
Cauchy if for any 𝜀 > 0, there exists an 𝑁 such that 𝑛 > 𝑁 implies 𝑥" − 𝑥- < 𝜀.

Definition:(Convergence) A sequence 𝑥$  is said to be converge to 𝑥, denoted by 𝑥$ → 𝑥,
if for any 𝜀 > 0, there exists an 𝑁 such that 𝑛 > 𝑁 implies 𝑥" − 𝑥 < 𝜀.

It is obvious that every convergent sequence is Cauchy. However, not every Cauchy sequence 
converges to a vector in the vector space considered. 

Definition:(Complete Linear Vector Space) A normed (𝒳, . ) is said to be complete if every 
Cauchy sequence in 𝒳 converges to an element in 𝒳.

For elementary algebra , ℝ is complete.

Definition:(Banach Space) A complete normed linear space is called a Banach space.
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Matrices

Represantation :𝐴 ⊆ ℂ"×-; 𝐴 ⊆ ℝ"×-
Arithmetic Operations:

Generally, 𝐴𝐵 ≠ 𝐵𝐴 for two matrices  𝐴, 𝐵 ∈ ℂ-×-. If 𝐴𝐵 = 𝐵𝐴 they are said to be commute.
Adjoint of a matrix 𝐴 = 𝑎/* ∈ ℂ"×- is 𝐴0 =[𝑎*/]∈ ℂ-×".

For real matrices, the adjoint and transpose are equal to each other. Two facts about adjoints 
are 
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Definitions: (Range and Null Space)

The range of A is also called as the image of A(Im(A)) and null space of A is also called as the 
kernel of A(Ker(A)).
Both of the spaces are linear subspaces of A and are never empty.(Zero vector is always a 
member of both.)

Theorem: For  𝐴 ⊆ ℂ"×-, n=dim(R(A))+dim(N(A)). Proof: HW

Theorem: For  𝐴 ⊆ ℂ"×-, R(A)⊥N(𝐴∗)Proof: HW

Definition: The rank of a matrix 𝐴 ⊆ ℂ"×- rank A ,	linearly independent columns is (or 
equivalently, rows) of A. It is said from the definitions:
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Lemma(Sylvester’s Rank Ineq.): For any 𝐴 ⊆ ℂ"×- and B ⊆ ℂ$×-

Definition: (Determinant): Given 𝐴 ⊆ ℂ-×-, the determinant of A is :

where 𝐴 /,*  denotes the submatrix of A obtained by deleting the ith row and jth column. 
Determinant function has the following features:
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Examples:

Some ways to check invertibility:

Definition(Invertibility): A matrix 𝐴 ⊆ ℂ-×- is said to be invertible if there exists a unique matrix 
in ℂ-×-, denoted by 𝐴3!, such that

The matrix 𝐴3! is then called the inverse of A.
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Remark: Given an invertible matrix 𝐴 ∈ ℂ-×-, the inverse of A can be computed as

chere 𝐶 is the cofactor of A which is  𝑐/* = (−1)/4*𝑑𝑒𝑡𝐴[/,*].

For numerical solution(which requires much less  operations )of inverse of such a function, the 
problem should be casted as solution of system equations. That is, solve for 𝑥/ ∈ ℂ-×! such 
that 𝐴𝑥/ = 𝑒/(∀𝑖 = 1. . . 𝑛) where 𝑒/ denotes the ith column of the nth dimensioned identity 
matrix(𝐼-). After solving the problem, the inverse of A can be given as:

Remark: Some useful formulas for inverse operations:
(i)

(ii) 

where Δ ≜ 𝐴 − 𝐵𝐷3!𝐶  and ⋁ ≜ 𝐴3! − 𝐴3!𝐵 𝐶3! + 𝐷𝐴3!𝐵 3!𝐷𝐴3! (if there exists)
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Theorem(Schur’s determinant identity): Given matrices 𝐴 ∈ ℂ-×-, B ∈ ℂ-×", 𝐶 ∈ ℂ"×- and 
𝐷 ∈ ℂ"×" and also A is invertible, the following holds:

Proof: (HW)

Definition: The trace of 𝐴 ∈ ℂ-×- denoted as 𝑇𝑟𝑎𝑐𝑒(𝐴) is the sum of diagonal elements:

Note that trace function is linear. So that, for any 𝐴, 𝐵 ∈ ℂ-×-

Proposition: For A ∈ ℂ"×- and 𝐵 ∈ ℂ-×" Trace(AB)=Trace(BA).

Proof: (HW)
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Eigenvalues and Eigenvectors

For a matrix  A ∈ ℂ-×-	, the equation 𝐴𝑥 = 𝜆𝑥 where x∈ ℂ-(not equal to zero) is called the 
eigenvalue-eigenvector equations of A.

The scalar 𝜆 and the corresponding non-zero vectors 𝑥 that satisfy 𝐴𝑥 = 𝜆𝑥 are called the 
eigenvalue and eigenvectors of A, respectively.

The set of eigenvalues of A(also including the repetitions) is called as spectrum of A, as denoted 
as 𝜎(𝐴).

Consider the rearranged form of above equations

There exists a nontrival solution of to this equation iff the matrix 𝜆𝐼 − 𝐴 is rank deficient as 
𝑝7 𝜆 ≜ det 𝜆𝐼 − 𝐴 = 0  where 𝑝7 𝜆  is the nth-order polynomial in 𝜆  and called as 
characteristic polynomial of A.

Note that, if A is real the spectrum of A is symmetric about the real axis( If 𝜆∗ is an eigenvalue of 
A, then so is 𝜆∗, in other words 𝑝7 𝜆∗ = 0 ⟺ 𝑝7 𝜆∗ = 0 ⟺ 𝑝7 𝜆∗ = 0.)

Charactersitic polynomial: 𝑝7 𝜆 = 𝜆 − 𝜆! 𝜆 − 𝜆# …(𝜆 − 𝜆-).

17

System Theory, Lecture Notes #1 18

Definition(Minimal Polynomial): Minimal polynomial of square matrix A is the monic 
polynomial 𝜙(𝜆) of least degree such that 𝜙 𝜆 = 0.(Monic: The coeff. of highest term is one.)

Proposition: Two important facts regarding the eigenvalues of a matrix, A ∈ ℂ-×- (A may have 
real, complex, distinct or repeted eigenvalues):  

Proof: HW
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Spectral Decomposition
Definition(Similarity): The matrices {A, B} ∈ ℝ-×- are said to be similar is there exists a 
nonsingular S ∈ ℝ-×- such that 𝐵 = 𝑆3!𝐴𝑆,	the transformation 𝐴 → 𝑆3!𝐴𝑆 is called a similarity 
transformation of A under S.

Definition(Diagonalizability): A square matrix is said to be diagonalizable if it is similar to a 
diagonal matrix. 

Theorem: A matrix A ∈ ℝ-×- is diagonalizable iff it has n linearly independent eigenvectors.

Remark: Any square matrix A can be decomposed as A= 𝑀𝐽𝑀3! for some J ∈ ℂ-×- as so-called 
Jordan canonical form with some invertable M ∈ ℂ-×-, as seen below

where 𝑘 ≤ 𝑛 and each 𝐽/ ∈ ℂ-!×-!  is in the following form :
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If each Jordan block is scalar(𝑛/ = 1 for all i=1,..,k), A is said to be diagonalizable. So, it is said 
that A is diagonalizable iff it has n linearly independent eigenvectors. 

In this context, we have two cases as A does or does not have linearly independent 
eigenvectors:

Case 1(A has linearly independent eigenvectors):  In this case 𝐴𝑥 = 𝜆𝑥 can be given a matrix 
equations as follows:

where 

and 𝑥/ is  the eigenvector corresponding to the eigenvalue 𝜆/. Since 𝑈 is now invertible by the 
above theorem , we get

and k=n which means each Jordan block is a scalar.(Spectral Decomposition with U=M and Λ =
𝐽.) 
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A sufficient condition for A to have linearly independent eigenvectors is that it have distinct 
eigenvalues as given lemma below

Lemma: For  A ∈ ℝ-×-, let 𝜆!, … , 𝜆$ with 𝑘 ≤ 𝑛	 be distinct eigenvalues of A and let 𝑥!, . . , 𝑥$ 
be the associated eigenvalues. Then, the set of (𝑥!, . . , 𝑥$) is linearly independent.
Proof: HW

Note that, the reverse implication is not necessarily true. Because, there may be more than one 
independent eigenvector associated with a repeated eigenvalue. 
Ex.: 𝐼-, the identity matrix of dimension n. All n of its igenvalues are equal to 1. However it has n 
linearly independent eigenvectors(taken by its colunms).

Note that: When we talk about the multiplicity of an eigenvalue, we usually mean  its  algebraic 
multiplicity, meaning its multiplicity as a root of the characteristic polynomial. The number of 
linearly independent eigenvectors associated with an eigenvalue is defined as geometric 
multiplicity. Hence, in the case of 𝐼-, algebraic multiplicity and geometric multiplicity  of the 
eigenvalue ,1, are both n.

Note that, Assuming  the matrix A is real, but it has complex eigenvalues(so complex 
eigenvectors). In this case, we may prefer to work with real matrices M and J. Let us to 
accomplish this case as follows:
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If A is real, the eigenvalues of A are symmetric about the real axis and the corresponding 
eigenvectors are complex conjugates of each other. For simplicity, suppose n=2 and the two 
eigenvalues of A are complex congugate to each other. As denoting as the eigenvalues as 𝛼 ±
𝛽𝑗 ∈ ℂ  and the corresponding eigenvectors as x±𝑦𝑗 ∈ ℂ- . Then, we have the following 
transformation     
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Case 2(A does not have linearly independent eigenvectors): ‘’A’’ does have repeated 
eigenvalues and the eigenvectors associated with, are not all linearly independent. For this case, 
we have to resort to generalized eigenvectors and the Jordan form of A.

Suppose 𝜆 is an eigenvalue of algebraic multiplicity q, but with geometric multiplicity 1(𝜆 is a q 
time repeated eigenvalue of A, but there is only one eigenvectors associated with it). Then we 
first solve for eigenvector associated with ’’𝐴𝑥! = 𝜆𝑥!’’  and solve	𝑥#, 𝑥8, … , 𝑥9 such that 

𝐴𝑥# = 𝑥! + 𝜆𝑥#
𝐴𝑥8 = 𝑥# + 𝜆𝑥8

⋮
𝐴𝑥9 = 𝑥93! + 𝜆𝑥9

 In this formulation, 𝑥#, 𝑥8, … , 𝑥9 are called as generalized eigenvectors associated with 𝜆. Then, 
we can show that the set of 𝑥!, 𝑥#, … , 𝑥9  generalized eigenvectors.

By repeating the same process for each of the eigenvalues, we get the diagonal form.
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Theorem(Cayley Hamilton): Every square matrix satisfies its own charactersitic polynomial.

Proof: (HW)
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Ex: 
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• By the conclusion of Cayley Hamilton theorem, it can be said that ‘’similar matrices have the 
same eigenvalues’’.

Lemma: If matrices A, B ∈ ℝ-×- are similar, then 𝜎 𝐴 = 𝜎(𝐵).

Proof: Let 𝐵 = 𝑆3!𝐴𝑆 for the invertable S. Alsıo, we know that the eigenvalues of A and B are 
the roots of  the polynomials 𝑝7(𝜆) and 𝑝:(𝜆).

𝑝: 𝜆 = 𝑑𝑒𝑡 𝜆𝐼 − 𝑆3!𝐴𝑆 = 𝑑𝑒𝑡(𝑆3!(𝜆𝐼 − 𝐴)𝑆)=𝑑𝑒𝑡 𝑆3! det 𝜆𝐼 − 𝐴 det 𝑆 = det 𝜆𝐼 − 𝐴

It is easily seen that, det 𝜆𝐼 − 𝐴  is nothing but 𝑝7(𝜆) . So that, A and B have the same 
characteristic polynomials and the same spectra. 

Remark: For similarity, having the same spectrum is necessary but not sufficient. 

Ex: Consider the following matrices. The eigenvalues of both are zero with multiplicity 2 but 
they are not similar.
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Left Eigenvectors: Let A ∈ ℂ-×-, a scalar 𝜆 ∈ ℂ and a vector x ∈ ℂ- are said to satisfy the 
eigenvalue, the left eigenvector equation if 

𝑥∗𝐴 = 𝜆𝑥∗, 𝑥 ≠ 0.
Note that, there is no distinction between left and right eigenvalue of A. Moreover, if (𝜆, 𝑥) is an 
eigenvalue, right eigenvector of 𝐴, then (𝜆, 𝑥) is an eigenvalue, left eigenvector pair of 𝐴∗.

To see how the right and left eigenvectors are related, assume that 𝐴 has linearly independent 
right eigenvectors. Then, 𝐴 can be decomposed as 𝐴 = 𝑆Λ𝑆3! where 𝑆 is the matrix of right 
eigenvectors as 𝑆 ≜ 𝑥! 𝑥# ⋯ 𝑥- . 

Also, one can show that 𝐴 can be decomposed as  𝐴 = 𝑇3!Λ𝑇 where 𝑇 is the matrix of left 
eigenvectors as follows

𝑇 =≜

𝑧!∗
𝑧#∗
⋮
𝑧-∗

where 𝑧!∗𝐴 = 𝜆/𝑧/∗. The left eigenvector can be obtained from the rows of the inverse of the 
right eigenvector matrix. Therefore A can be decomposed as 
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