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Advanced Counting Techniques

Recurrence Relations: An argument can be given that shows the sequence {an}
satisfies the recurrence relation an+1 = an + an−1 and the initial conditions a1 = 2
and a2 = 3.

This recurrence relation and the initial conditions determine the sequence {an}.
Moreover, an explicit formula can be found for an from the equation relating the
terms of the sequence.

 We will show that such relations can be used to study and to solve counting 
problems. For example, suppose that the number of bacteria in a colony doubles
every hour. If a colony begins with five bacteria, how many will be present in n
hour?

To solve this problem, let an be the number of bacteria at the end of n hours.
Because the number of bacteria doubles every hour, the relationship an = 2an−1
holds whenever n is a positive integer. This recurrence relation, together with the
initial condition a0 = 5, uniquely determines an for all nonnegative integers n.

2



15.03.2024

2

Discrete Mathematics, Lecture Notes #4 3

Advanced Counting Techniques

Ex. 1: (Rabbits and the Fibonacci Numbers) Consider this problem, which was
originally posed by Leonardo Pisano:
A young pair of rabbits (one of each sex) is placed on an island.
A pair of rabbits does not breed until they are 2 months old.
After they are 2 months old, each pair of rabbits produces another pair each
month, as shown in the Figure below.

Find a recurrence relation for the number of pairs of rabbits on the island after n
months, assuming that no rabbits ever die.
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Solution: Denote by fn the number of pairs of rabbits after n months. We will show
that fn , n = 1, 2, 3, . . . , are the terms of the Fibonacci sequence. 
The rabbit population can be modeled using a recurrence relation. At the end of the
first month, the number of pairs of rabbits on the island is f1 = 1. Because this pair
does not breed during the second month, f2 = 1 also.
To find the number of pairs after n months, add the number on the island the
previous month, fn−1 , and the number of newborn pairs, which equals fn−2 , because
each newborn pair comes from a pair at least 2 months old. Consequently, the
sequence {fn} satisfies the recurrence relation

fn = fn−1 + fn−2
for n ≥ 3 together with the initial conditions f1 = 1 and f2 = 1. Because this recurrence
relation and the initial conditions uniquely determine this sequence, the number of
pairs of rabbits on the island after n months is given by the nth Fibonacci number.
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Ex. 2: Find a recurrence relation and give initial conditions for the number of bit 
strings of length n that do not have two consecutive 0s. How many such bit strings 
are there of length five?
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Solution: Let an denote the number of bit strings of length n that do not have two
consecutive 0s. 
To obtain a recurrence relation for {an}, note that by the sum rule, the number of bit
strings of length n that do not have two consecutive 0s equals the number of such bit
strings ending with a “0” plus the number of such bit strings ending with a “1”. We
will assume that n ≥ 3, so that the bit string has at least three bits.
The bit strings of length n ending with 1 that do not have two consecutive 0s are
precisely the bit strings of length n − 1 with no two consecutive 0s with a “1“ added
at the end.
Consequently, there are an−1 such bit strings. Bit strings of length n ending with a “0”
that do not have two consecutive 0s must have 1 as their (n − 1)st bit; otherwise they
would end with a pair of 0s. It follows that the bit strings of length n ending with a 0
that have no two consecutive 0s are precisely the bit strings of length n − 2 with no
two consecutive 0s with “10” added at the end. Consequently, there are an−2  such bit 
strings.
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Solution: (continued)

We conclude, as illustrated in the Figure, that an = an−1 + an−2 for n ≥ 3.
The initial conditions are a1 = 2, because both bit strings of length one, 0 and 1 do
not have consecutive 0s, and a2 = 3, because the valid bit strings of length two are
01, 10, and 11. To obtain a5 , we use the recurrence relation three times to find that

a3 = a2 + a1 = 3 + 2 = 5,
a4 = a3 + a2 = 5 + 3 = 8,
a5 = a4 + a3 = 8 + 5 = 13.

Note that: a3 = a2 + a1 = {(01), (10), (11)}+{(0),(1)}=5
a4 = a3 + a2 = {(010), (011), (101), (110), (111)}+{(0),(1)}=8
a5 = a4 + a3 = {(010), (011), (101), (110), (111)}+{(01), (10), (11)}=13
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Ex. 3: A computer system considers a string of decimal digits a valid codeword if it 
contains an even number of 0 digits. 
For instance, 1230407869 is valid, whereas 120987045608 is not valid. Let an be the 
number of valid n-digit codewords. 

Find a recurrence relation for an.

Solution: 

Note that a1 = 9 because there are 10 one-digit strings, and only one, namely, the 
string 0, is not valid. 

A recurrence relation can be derived for this sequence by considering how a valid n-
digit string can be obtained from strings of n − 1 digits.

There are two ways to form a valid string with n digits from a string with one fewer
digit.
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Solution: (Continued…)

 First, a valid string of n digits can be obtained by appending a valid string of n − 1
digits with a digit other than 0. This appending can be done in nine ways. Hence, a
valid string with n digits can be formed in this manner in 9an−1 ways.

Second, a valid string of n digits can be obtained by appending a 0 to a string of length 
n − 1 that is not valid. (This produces a string with an even number of 0 digits because
the invalid string of length n − 1 has an odd number of 0 digits.) The number of ways
that this can be done equals the number of invalid (n − 1)-digit strings. Because there
are 10n−1 strings of length n − 1, and an−1 are valid, there are 10n−1 − an−1 valid n-digit
strings obtained by appending an invalid string of length n − 1 with a 0. Because all
valid strings of length n are produced in one of these two ways, it follows that there 
are

an = 9an−1 + (10n−1 − an−1)= 8an−1 + 10n−1

valid strings of length n.
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Solving Linear Recurrence Relations
Definition: A linear homogeneous recurrence relation of degree k with constant 
coefficients is a recurrence relation of the form

an = c1an−1 + c2an−2 +· · ·+ckan−k,
where c1, c2, . . . , ck are real numbers, and ck ≠ 0.

The recurrence relation in the definition is linear because the right-hand side is a sum
of previous terms of the sequence each multiplied by a function of n. The recurrence
relation is homogeneous because no terms occur that are not multiples of the aj s. The
coefficients of the terms of the sequence are all constants, rather than functions that
depend on n. The degree is k because an is expressed in terms of the previous k terms of
the sequence.

A consequence of the second principle of mathematical induction is that a sequence
satisfying the recurrence relation in the definition is uniquely determined by this
recurrence relation and the k initial conditions:
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Ex. 1: 
The recurrence relation Pn = (1.11)Pn−1 is a linear homogeneous recurrence relation of
degree one.

The recurrence relation fn = fn−1 + fn−2 is a linear homogeneous recurrence relation of 
degree two.

The recurrence relation an = an−5 is a linear homogeneous recurrence relation of 
degree five.

Ex. 2: 
The recurrence relation an = an−1 + an−2

2 is not linear. 

The recurrence relation Hn = 2Hn−1 +1 is not homogeneous. 

The recurrence relation Bn = nBn−1 does not have constant coefficients.
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Solving Linear Homogeneous Recurrence Relations with Constant Coefficients

The basic approach for solving linear homogeneous recurrence relations is to look for
solutions of the form an = rn, where r is a constant. Note that an = rn is a solution of the
recurrence relation an = c1an−1 + c2an−2 +· · ·+ckan−k if and only if 

rn = c1rn−1 + c2rn−2 +· · ·+ckrn−k .

When both sides of this equation are divided by rn−k and the right-hand side is
subtracted from the left, we obtain the equation

rk − c1rk−1 − c2rk−2 −· · ·−ck−1r − ck = 0.

Consequently, the sequence {an} with an = rn is a solution if and only if r is a solution of
this last equation. We call this the characteristic equation of the recurrence relation.
The solutions of this equation are called the characteristic roots of the recurrence
relation. As we will see, these characteristic roots can be used to give an explicit
formula for all the solutions of the recurrence relation.
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Solving Linear Homogeneous Recurrence Relations with Constant Coefficients

We will first develop results that deal with linear homogeneous recurrence relations
with constant coefficients of degree two. Then corresponding general results when the
degree may be greater than two will be stated.

Theorem 1: Let c1 and c2 be real numbers. Suppose that r2 − c1r − c2 = 0 has two distinct
roots r1 and r2. Then the sequence {an} is a solution of the recurrence relation an =
c1an−1 + c2an−2 if and only if an = α1r1

n+ α2r2
n for n = 0, 1, 2, . . . , where α1 and α2 are

constants. 

Proof: We must do two things to prove the theorem. First, it must be shown that if r1 
and r2
are the roots of the characteristic equation, and α1 and α2 are constants, then the 
sequence {an}
with an = α1rn
1
+ α2rn
2 is a solution of the recurrence relation. Second, it must be shown that
if the sequence {an} is a solution, then an = α1rn
1
+ α2rn
2 for some constants α1 and α2.
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This shows that the sequence {an} with an = α1rn
1
+ α2rn
2 is a solution of the recurrence relation.

To show that every solution {an} of the recurrence relation an = c1an−1 + c2an−2
has an = α1rn
1
+ α2rn
2 for n = 0, 1, 2, . . . , for some constants α1 and α2, suppose that {an} is a
solution of the recurrence relation, and the initial conditions a0 = C0 and a1 = C1 hold. It will
be shown that there are constants α1 and α2 such that the sequence {an} with an = α1rn
1
+ α2rn
2
satisfies these same initial conditions. This requires that
a0 = C0 = α1 + α2,
a1 = C1 = α1r1 + α2r2.
We can solve these two equations for α1 and α2. From the first equation it follows that
α2 = C0 − α1. Inserting this expression into the second equation gives
C1 = α1r1 + (C0 − α1)r2.
Hence,
C1 = α1(r1 − r2) + C0r2.
This shows that
α1 = C1 − C0r2
r1 − r2
and
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} are both solutions of the recurrence relation
an = c1an−1 + c2an−2 and both satisfy the initial conditions when n = 0 and n = 1. Because
there is a unique solution of a linear homogeneous recurrence relation of degree two with two
initial conditions, it follows that the two solutions are the same, that is, an = α1rn
1
+ α2rn
2 for

15
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all nonnegative integers n. We have completed the proof by showing that a solution of the 
linear
homogeneous recurrence relation with constant coefficients of degree two must be of the
form an = α1rn
1
+ α2rn
2 , where α1 and α2 are constants.
The characteristic roots of a linear homogeneous recurrence relation with constant 
coefficients
may be complex numbers. Theorem 1 (and also subsequent theorems in this section) still
applies in this case. Recurrence relations with complex characteristic roots will not be 
discussed
in the text. Readers familiar with complex numbers may wish to solve Exercises 38 and 39.
Examples 3 and 4 show how to use Theorem 1 to solve recurrence relations.
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Ex. 3: What is the solution of the recurrence relation
 an = an−1 + 2an−2  with a0 = 2 and a1 = 7? 

Solution: The characteristic equation of the recurrence relation is r2 - r - 2 = 0. Its
roots are r = 2 and r = −1. Hence, the sequence {an} is a solution to the recurrence
relation if and only if

with coefficients α1 , α2. From the initial conditions, it follows that

Then we have α1 =3, α2 = -1. Hence, the solution to the recurrence relation and initial 
conditions is the sequence {an} with

Note that, the characteristic roots of a linear homogeneous recurrence relation with
constant coefficients may be complex numbers. Theorem 1 (and also subsequent
theorems in this section) still applies in this case.3

18



15.03.2024

10

Discrete Mathematics, Lecture Notes #4 19

Ex. 4: Find an explicit formula for the Fibonacci numbers.

Solution: Recall that the sequence of Fibonacci numbers satisfies the recurrence 
relation

and also satisfies the initial conditions

The roots of the characteristic equation:

Therefore, from Theorem it follows that the Fibonacci numbers are given by

with coefficients α1 , α2. With the initial conditions, we have
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Solution: (cont.)…
The solution to these simultaneous equations for α1 , α2 , we obtain

Consequently, the Fibonacci numbers are given by
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Theorem 2: (characteristic root of multiplicity two) 
Let c1 and c2 be real numbers with c2 ≠ 0. Suppose that r2 − c1r − c2 = 0 has one root r0 .  
Then the sequence {an} is a solution of the recurrence relation an = c1an−1 + c2an−2 if and
only if an = α1r0

n +α2nr0
n for n = 0, 1, 2, . . . , where α1 and α2 are constants. 

Ex. 5: What is the solution of the recurrence relation an = 6an−1 − 9an−2 with initial 
conditions a0 = 1 and a1 = 6?
Solution:

Hence, the solution to this recurrence relation is

for some constants α1 and α2 . Using the initial conditions, it follows that

Solving these two equations shows that α1 =1 and α2 =1. Consequently, the solution 
to this recurrence relation and the initial conditions is
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Theorem 3: Let c1,c2, … , ck be real numbers .Suppose that the characteristic equation rk

− c1rk-1 − … − ck = 0 has k distinct roots r1 , r2, …, rk. Then a sequence {an} is a solution of 
the recurrence relation an = c1an−1 + c2an−2 +…+ ckan−k   if and only if an = α1r1

n +α2nr2
n + … 

+ αkrk
n for n = 0, 1, 2, . . . , where α1 ,α2 , …, αk  are constants. 

Ex. 6: Find the solution to the recurrence relation an = 6an−1 − 11an−2 + 6an−3 with 
initial conditions a0 = 2 and 
a1 = 5 and a2 = 15 ?
Solution: The characteristic polynomial of this recurrence relation is

The characteristic roots are

Hence, the solutions to this recurrence relation are of the form

To find the constants α1 , α2, and α3 , use the initial conditions:
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Solution: (Cont.) When these three simultaneous equations are solved for α1 , α2, 
and α3 we find those coefficients are 1, -1, and 2, respectively.

Hence, the unique solution to this recurrence relation and the given initial
conditions is the sequence {an} with

We now state the most general result about linear homogeneous recurrence
relations with constant coefficients, allowing the characteristic equation to have
multiple roots.

23
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Theorem 4: Let c1,c2, … , ck be real numbers .Suppose that the characteristic equation 
rk − c1rk-1 − … − ck = 0 

has t distinct roots r1 , r2, …, rt with multiplicities m1 , m2, …, mt, ,respectively, so that mi
>= 1 for i= 1,2,3,…,t
and m1+m2+ … + mt =k. Then a sequence {an} i a solution of the recurrence relation 
an = c1an-1 + c2an-2 + … + ckan-k
İf and only if

an = (α1,0 + α1,1n+· · ·+α1,m1−1nm1−1)r1
n + (α2,0 + α2,1n+· · ·+α2,m2−1nm2−1)r2

n 
 +…+(αt,0 + αt,1n+· · ·+ αt,mt−1nmt−1)rt

n 

for n = 0, 1, 2, . . . , where αi,j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤ mi − 1.
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Ex. 7: Suppose that the roots of the characteristic equation of a linear homogeneous
recurrence relation are 2, 2, 2, 5, 5, and 9 (that is, there are three roots, the root 2
with multiplicity three, the root 5 with multiplicity two, and the root 9 with
multiplicity one). What is the form of the general solution?
Solution: The general form of the solution is

25
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Ex. 8(520): Find the solution to the recurrence relation
an = −3an−1 − 3an−2 − an−3

with initial conditions a0 = 1, a1 = −2, and a2 = −1.

Solution: The characteristic equation of this recurrence relation is

There is a single root r = −1 of multiplicity three of the characteristic equation.

Hence, the unique solution to this recurrence relation and the given initial
conditions is the sequence {an} with
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Linear Nonhomogeneous Recurrence Relations with Constant Coefficients

The recurrence relation an = 3an−1 + 2n is an example of a linear nonhomogeneous 
recurrence relation with constant coefficients, that is, a recurrence relation of the
form 

an = c1an−1 + c2an−2 +· · ·+ckan−k + F(n)

where c1, c2, . . . , ck are real numbers and F(n) is a function not identically zero
depending only on n. The recurrence relation

an = c1an−1 + c2an−2 +· · ·+ckan−k

is called the associated homogeneous recurrence relation. It plays an important role in
the solution of the nonhomogeneous recurrence relation.

27

Discrete Mathematics, Lecture Notes #4 28

Ex. 9: Each of the recurrence relations

an = an−1 + 2n, 
an = an−1 + an−2 + n2 + n + 1, 

an = 3an−1 + n3n, and 
an = an−1 + an−2 + an−3 + n! 

is a linear nonhomogeneous recurrence relation with constant coefficients. The
associated linear homogeneous recurrence relations are

an = an−1, 
an = an−1 + an−2 ,
an = 3an−1 , and 

an = an−1 + an−2 + an−3 , 
respectively.

The key fact about linear nonhomogeneous recurrence relations with constant
coefficients is that every solution is the sum of a particular solution and a solution
of the associated linear homogeneous recurrence relation, as Theorem 5 shows.
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Theorem 5: If {an
(p)} is a particular solution of the nonhomogeneous linear recurrence

relation with
constant coefficients 

an = c1an-1 + c2an-2 + … + ckan-k +F(n),

then every solution is of the form {an
(p) + an

(h)}, where {an
(h)} is a solution of the

associated homogeneous recurrence relation

an = c1an-1 + c2an-2 + … + ckan-k.

By Theorem 5, we see that the key to solving nonhomogeneous recurrence relations
with constant coefficients is finding a particular solution. Then every solution is a sum
of this solution and a solution of the associated homogeneous recurrence relation.
Although there is no general method for finding such a solution that works for every
function F(n), there are techniques that work for certain types of functions F(n), such
as polynomials and powers of constants.
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Ex. 10(522): Find all solutions of the recurrence relation an = 3an−1 + 2n. What is the
solution with a1 = 3?
Solution: We need to solve its associated linear homogeneous equation and to find a
particular solution for the given nonhomogeneous equation.

The associated linear homogeneous equation and the related solutions are:

For particular solution, 

then

where c and d are constants. 

We get c=-1 and d=-1.5: 
For n=1 and a1 = 3, we obtain: 
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Ex. 11(522): Find all solutions of the recurrence relation
an = 5an−1 − 6an−2 + 7n.

Solution:
This is a linear nonhomogeneous recurrence relation. The solutions of its associated
homogeneous recurrence relation

A reasonable trial solution:

Substituting the terms of this sequence into the recurrence relation implies that

We get C=49/20. Hence, the particular solution :

General solution: 
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In the last two, we made an educated guess that there are solutions of a particular 
form. In both cases we were able to find particular solutions. Thiswas not an
accident. Whenever F(n) is the product of a polynomial in n and the nth power of a
constant, we know exactly what form a particular solution has, as stated in Theorem
6.
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Theorem 6: Suppose that {an} satisfies the linear nonhomogeneous recurrence relation

an = c1an-1 + c2an-2 + … + ckan-k +F(n),
where c1 , c2, …, ck are real numbers, and

F(n)= (btnt+ bt-1nt-1+…+ b1n+b0)sn

where b0,…, bt and s are real numbers.When s is not a root of the characteristic
equation of the associated linear homogeneous recurrence relation, there is a
particular solution of the form

(ptnt pt-1nt-1+…+ p1n+p0)sn. 

When s is a root of this characteristic equation and its multiplicity is m, there is a
particular solution of the form

nm(ptnt pt-1nt-1+…+ p1n+p0)sn. 

Note that in the case when s is a root of multiplicity m of the characteristic equation of 
the associated linear homogeneous recurrence relation, the factor nm ensures that the
proposed particular solution will not already be a solution of the associated linear
homogeneous recurrence relation.
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Ex. 12(523): What form does a particular solution of the linear nonhomogeneous recurrence relation 
an = 6an−1 − 9an−2 + F(n) have when F(n) = 3n, F(n) = n3n, F(n) = n22n, and F(n) =(n2 + 1)3n?

Solution:
The associated linear homogeneous recurrence relation is an = 6an−1 − 9an−2. Its
characteristic equation, r2 − 6r + 9 = (r − 3)2 = 0, has a single root, 3, of multiplicity two.
To apply Theorem 6, with F(n) of the form P(n)sn, where P(n) is a polynomial and s is a
constant, we need to ask whether s is a root of this characteristic equation.
Because s = 3 is a root with multiplicitym = 2but s = 2 is not a root, Theorem 6 tells us that
a particular solution has the form p0n23n if F(n) = 3n, the form n2(p1n + p0)3n if F(n) =
n3n, the form (p2n2 + p1n + p0)2n if F(n) = n22n, and the form n2(p2n2 + p1n + p0)3n
if F(n) = (n2 + 1)3n.
▲
Care must be taken when s = 1 when solving recurrence relations of the type covered by
Theorem 6. In particular, to apply this theorem with F(n) = btnt + bt−1nt−1 +· · ·+b1n + b0,
the parameter s takes the value s = 1 (even though the term 1n does not explicitly appear). By
the theorem, the form of the solution then depends on whether 1 is a root of the characteristic
equation of the associated linear homogeneous recurrence relation. This is illustrated in
Example 13, which shows how Theorem 6 can be used to find a formula for the sum of the first
n positive integers.
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Ex. 13(523): Let an be the sum of the first n positive integers, so that

Note that an satisfies the linear nonhomogeneous recurrence relation an = an−1 + n. (To obtain an, the sum of the
first n positive integers, from an−1, the sum of the first n − 1 positive integers, we add n.) Note that the initial
condition is a1 = 1. The associated linear homogeneous recurrence relation for an is an = an−1. The solutions of this
homogeneous recurrence relation are given by an(h) = c(1)n = c, where c is a constant. To find all solutions of an =
an−1 + n, we need find only a single particular solution. By Theorem 6, because F(n) = n = n · (1)n and s = 1 is a root
of degree one of the characteristic equation of the associated linear homogeneous recurrence relation, there is a 
particular solution of the form n(p1n + p0) = p1n2 + p0n.

Inserting this into the recurrence relation gives p1n2 + p0n = p1(n − 1)2 +p0(n − 1) + n. Simplifying, we see that
n(2p1 − 1) + (p0 − p1) = 0, which means that 2p1 − 1 = 0 and p0 − p1 = 0, so p0 = p1 = 1/2. Hence,

is a particular solution. Hence, all solutions of the original recurrence relation an = an−1 + n are given by 
an = an(h)+ an(p) = c + n(n + 1)/2. Because a1 = 1, we have 1 = a1 = c + 1 · 2/2 =c + 1, so c = 0. It follows that an = n(n 
+ 1)/2.
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