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State Equation Representation
The basic representation for linear systems is the linear state equation in the following standard 
from

�̇� 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵(𝑡)𝑢 𝑡
𝑦 𝑡 = 𝐶 𝑡 𝑥 𝑡 + 𝐷(𝑡)𝑢(𝑡)

where 𝐴 𝑡 !×!, 𝐵(𝑡)!×#, 𝐶(𝑡)$×! and 𝐷(𝑡)$×# are continuous, real-valued functions defined 
for all 𝑡 ∈ (−∞,∞). If those coefficient matrices are constant, then it defines a time invariant 
system. Therefore, the linear equations are called as time varying if any entry of any coefficient 
matrix varies with time.

For practical problems, there is a fixed initial time 𝑡%, and the properties of the solution 𝑥(𝑡) of 
a linear state equation for given initial state 𝑥 𝑡% = 𝑥% and input signal 𝑢(𝑡) specified for 𝑡 ∈
(𝑡%, ∞) are of interest for 𝑡 ≥ 𝑡%. 

However from a mathematical viewpoint there are occasions when solutions backward in time 
are of interest, and this is the reason that the interval of the definition of the input signal and 
coefficient matrices in the state equation is (−∞,∞). 

Hence, the solution of the 𝑥(𝑡) for  𝑡 < 𝑡%, as well as 𝑡 ≥ 𝑡%, mathematically valid. 

Moreover, if the state equation is defined and of interest only in a smaller interval as 𝑡 ∈ [0,∞)
 the domain of definition of the coefficient matrices can be extended to −∞,∞ . (e. g. , 𝐴 𝑡 =
𝐴 0  for 𝑡 < 0). 
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A system is a mapping from an input linear vector space 𝑈 to an output 𝑌 and usually it is 
customary to use block diagrams to descibe this relationship.

Definition: A system(𝑆) is said to be  
(a) Linear if:

(b) Nonlinear if it is not linear.

(c) Time-invariant if 

(d) Time-varying if it is not time-invariant

(e) Causal if, the output depends on past and current inputs but not future inputs.
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Ex. : Time-varying versions of the basic linear circuit elements can be devised in simple ways. A 
time-varying resistor exhibits the voltage/current charactersitic

𝑣 𝑡 = 𝑟 𝑡 𝑖(𝑡)

where 𝑟 𝑡  is a fixed time function. For ex., if 𝑟 𝑡  is sinusoid, then this is the basis for some 
modulation schemes in commnication systems.

A time-varying capacitor exhibits a time-varying charge/voltage characteristic, q 𝑡 = 𝑐 𝑡 𝑣(𝑡). 
Here, 𝑐 𝑡  is fixed time function describing, for ex., the variation in plate spacing of a parallel-
plate capacitor. Since current is the instantaneous rate of change of charge, the voltage/current 
relationship for a time-varying capacitor has the form

𝑖 𝑡 = 𝑐 𝑡
𝑑𝑣 𝑡
𝑑𝑡 +

𝑑𝑐 𝑡
𝑑𝑡 𝑣(𝑡)

In a similar way, a time-varying inductor exhibits a time-varying flux/current characteristic, and 
this leads to the voltage/current relation.

𝑣 𝑡 = 𝑙 𝑡
𝑑𝑖 𝑡
𝑑𝑡 +

𝑑𝑙 𝑡
𝑑𝑡 𝑖(𝑡)
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Ex. : Consider the series circuit shown in the Figure. 

Suppose that the output signal 𝑦(𝑡) is the voltage across the resistor and choose the state 
variables as the voltage 𝑥&(𝑡)  across the capacitor and the current 𝑥'(𝑡)  through the 
inductor(current through the entire series circuit). Then the Kichhoff’s voltage law for this 
circuit gives the following equations and linear system description:  

̇𝑥' 𝑡 =
−1
𝑙(𝑡) 𝑟 𝑡 + ̇𝑙 𝑡 𝑥' 𝑡 +

1
𝑙 𝑡 𝑢(𝑡)

̇𝑥& 𝑡 =
−�̇� 𝑡
𝑐(𝑡) 𝑥& 𝑡 +

1
𝑐(𝑡) 𝑥' 𝑡

𝑦 𝑡 = 𝑟(𝑡)𝑥' 𝑡
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Ex. : Consider an nth order linear differiantial equation system :

Assume that 𝑎! = 1 without loss of generality and let us define

Then, we have

Since 

We can write that
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Ex. : Suppose we have a two degree of spring-mass-damper system with the forces of 𝑓&(𝑡) and 
𝑓'(𝑡) acting on the masses shown below

The differential equations of motion can be given as

where 𝑥& and 𝑥' denote the absolute positions of 𝑚& and 𝑚'. (𝑥 = 𝑥!	𝑥"	�̇�!	�̇�" #; u = 𝐹!	𝐹" # ) 

Assume that the accelerations of the two masses are measured, we get the output as

7

System Theory, Lecture Notes #2 8

State Transformation

We can use different states in order to describe the same dynamical system as the fact that 
state vectors are not unique to describe a linear system. Assume that one wants to obtain 
equations for the any system in the examples using a new state vector as 𝑧 ≜ 𝑇𝑥 for some 
invertible 𝑇 ∈ ℝ!×!. Then, we immediately have 𝑥 = 𝑇(&𝑧, so that �̇� = 𝑇(&�̇�. We obtain

By pre-multiplying the first equation by 𝑇, we get the equivalent system description 

where 

Note that, the direct feedforward matrix 𝐷 is unchanged in the two representations. By the 
state transformation (or commonly used as coordinate transformation) the only internal 
description of the system has been changed, but the essential input/output description has not 
been changed. 
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Ex. : State transformation can be given physical interpretations. To Show this let us to consider 
again two degree of spring-mass-damper system with the forces of 𝑓&(𝑡) and 𝑓'(𝑡) acting on 
the masses shown below. Let us to use the relative positions 𝑧& and 𝑧' in deriving the equations 
of motion, that is 𝑧& ≜ 𝑥& and 𝑧' ≜ 𝑥' − 𝑥&.(Note that: 𝑧& + 𝑧' = 𝑥'⟹ ̈𝑥' = 𝑚'( ̈𝑧& + ̈𝑧'))

We obtain 

And let us define z ≜ 𝑧&	𝑧'	�̇�&	�̇�' ). Hence, the state-space representation of the system:

Note that, same result has also been obtained by state transformation as follows:
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Linearization
A linear state equation is useful as an approximation to a nonlinear state equation in the 
following sense 

�̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 ; 𝑥 𝑡% = 𝑥%
�̇�* = 𝑓* 𝑥& 𝑡 , … , 𝑥! 𝑡 ; 𝑢& 𝑡 , … , 𝑢# 𝑡 ; 𝑡 , 𝑥* 𝑡% = 𝑥*+

for 𝑖 = 1, … , 𝑛. Suppose  (�̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 ) has been solved for a particular input signal 
which is called as nominal input R𝑢(𝑡), and a particular initial state called as the nominal initial 
state, R𝑥(𝑡).  And, let us to interest of the behaviour of the nonlinear state equation for an input 
and initial state that are close to the nominal values. Namely, u t = R𝑢 𝑡 + 𝑢, and 𝑥% = R𝑥% +
𝑥%, where 𝑥%,  and 𝑢,  are appropriately small for 𝑡 ≥ 𝑡%. So that we assume the 
corresponding solution remains close to R𝑥(𝑡), at each t and it can be written 𝑥 𝑡 = R𝑥 𝑡 +
𝑥,(𝑡). Hence, the notation can be given as

𝑑
𝑑𝑡 R𝑥 𝑡 +

𝑑
𝑑𝑡 𝑥,(𝑡)=f( R𝑥 𝑡 + 𝑥,(𝑡), R𝑢 𝑡 + 𝑢,(t),t)

Assuming the derivatives exists, we can expand the right side using Taylor series about R𝑥(𝑡) and 
R𝑢(𝑡)  and then retain only the terms through first order. This provides a reasonable 
approximation since 𝑢,(t) are assumed 𝑥,(𝑡) are assumed to be small for all t :  
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where ⁄𝜕𝑓 𝜕𝑥 denotes the Jacobian( ⁄𝜕𝑓𝑖 𝜕𝑥𝑗). Since 

As performing  this expansion for 𝑖 = 1, . . , 𝑛 and rearranging into vector matrix form gives 

The relation between 𝑥,(𝑡) and 𝑢,(𝑡) is approximately described by a time varying linear state 
equation of the form 
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where A(t) and B(t) are the matrices of partial derivatives evaluated using the nominal 
trajectory data:

If there is a nonlinear equation 

the function ℎ(𝑥, 𝑢, 𝑡) can be expanded about 𝑥 = R𝑥(𝑡) and u= R𝑢(𝑡) in a similar fashion, after 
dropping higher-order terms, the approximate description

where 𝑦, 𝑡 = 𝑦 𝑡 − R𝑦(𝑡) and R𝑦 𝑡 = ℎ(R𝑥 𝑡 , R𝑢 𝑡 , 𝑡). 
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Ex.(Lin.)
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