

Definition: Let p and q be propositions. The conjunction of p and q, denoted by $p \land q$, is the proposition "p and q." The conjunction $p \land q$ is true when both p and q are true and is false otherwise. Following table displays the truth table of $p \land q$. This table has a row for each of the four possible combinations of truth values of p and q. The four rows correspond to the pairs of truth values TT, TF, FT, and FF, where the first truth value in the pair is the truth value of p and the second truth value is the truth value of q. Truth table for conjunction with "and " operator of two proposition pЛq р q Т Т Т F F Т F Т F F F E Discrete Mathematics, Lecture Notes #1 10 10

	Ex. 10 : Let <i>p</i> be the statement "You can take the flight," and let <i>q</i> be the statement "You buy a ticket." Then $p \leftrightarrow q$ is the statement "You can take the flight if and only if you buy a ticket."										
	Solution:										
This statement is true if p and q are either both true or both false, that is, if you buy a ticket and can take the flight or if you do not buy a ticket and you cannot take the flight.											
It is	false when p c flight (such as	and q hav when yo	e oppos u get a j	ite truth v free trip) d	alues, that is, and	when you do	o not buy a ticket, but you car	take the			
when you buy a ticket but you cannot take the flight (such as when the airline bumps you).											
Truth Tables of Compound Propositions											
•	 There are four important logical connectives (and their negations)which are "conjunctions", "disjunctions", "conditional statements", and "biconditional statements". 										
 These connectives are used to build up complicated compound propositions involving any number of propositional variables. 											
	Ex. 11: Construct	the truth ta	ble of the	compound p	proposition						
				6	$p \lor \neg q) \to (p \land q).$						
	Solution:	р	q	$\neg q$	$p \lor \neg q$	$p \wedge q$	$(p \lor \neg q) \to (p \land q)$				
		Т	Т	F	Т	Т	Т				
		Т	F	Т	Т	F	F				
		F	Т	F	F	F	Т				
		F	F	Т	Т	F	F				
Discrete Mathematics, Lecture Notes #1								18			

	Precedence of Logical Operators							
•	Compound propositions can be constructed by using the negation operator and the logical operators							
•	Parentheses are used to specify the order in which logical operators in a compound proposition are to be applied. For instance, $(p \lor q) \land (\neg r)$ is the conjunction of $p \lor q$ and $\neg r$.							
•	However, to reduce the number of parentheses, we specify that the negation operator is applied before all other logical operators. This means that $\neg p \land q$ is the conjunction of $\neg p$ and q , namely, ($\neg p) \land q$, not the negation of the conjunction of p and q , namely $\neg (p \land q)$.							
•	Conjunction operator takes precedence over the disjunction operator, so that $p \land q \lor r$ means $(p \land q) \lor r$ rather than $p \land (q \lor r)$. (But, parantheses are used to make clear the statements.)							
•	Conditional and biconditional operators \rightarrow and \leftrightarrow have lower precedence than the conjunction and disjunction operators, \land and \lor . $p \lor q \Rightarrow r$ is the same as $(p \lor q) \Rightarrow r$.)							
•	Condi	Conditional operator has precedence over the biconditional operator.						
	Precedence of operators		Logic and Bit Operations					
	Opr.	Rank	 A bit is a symbol with two possible values, namely, 0 (zero) and 1 (one). This meaning of the word bit comes 	Truth Value/ Bit				
	-	1	from binary digit, because zeros and ones are the digits	т	1			
	Λ	2	used in binary representations of numbers(represents T (true), 0 represents F (false)).	' F	1			
	V	3	(true), 0 represents F (false)). F 0					
	\rightarrow	• A variable is called a Boolean variable(represented by bits) if its value is either true or false.						
	\leftrightarrow	5						
			Discrete Mathematics, Lecture Notes #1		19			

 Computer bit operations correspond to the logical connectives. By replacing true by a one and false by a zero in the truth tables for the operators ∧, ∨, and ⊕. 									
• The notation of OR, AND, and XOR for the operators V, ∧, and ⊕ can be used, respectively, in various programming languages.									
	Bit operators of ∧, ∨, and ⊕								
	а	b	a∨b	a∧b	a⊕b				
	0	0	0	0	0				
	0	1	1	0	1				
	1	0	1	0	1				
	1	1	1	1	0				
Definition 7: A bit string is a sequence of zero or more bits. The length of this string is the number of bits in the string. Ex. 12: 101010011 is a bit string of length nine.									
•Bitwise OR, bitwise AND, and bitwise XOR of two strings of the same length to be the strings that have as									
their bits the OR, AND, and XOR of the corresponding bits in the two strings, respectively. Ex. 13: Find the bitwise "or", bitwise "and", and bitwise "xor" of the bit string 0110110110 and 1100011101.									
<u>Solution:</u> 01 1011 0110									
11 0001 1101									
11 1011 1111 bitwise OR									
01 0001 0100 bitwise AND									
		10 101	0 1011	bitwise X	OR	20			

