

Material Removal Processes

- A family of shaping operations, the common feature of which is removal of material from a starting workpart so the remaining part has the desired shape
- Categories:
 - Machining material removal by a sharp cutting tool, e.g., turning, milling, drilling
 - Abrasive processes material removal by hard, abrasive particles, e.g., grinding
 - Nontraditional processes various energy forms other than sharp cutting tool to remove material

Figure 21.2 - (a) A cross-sectional view of the machining process, (b) tool with negative rake angle; compare with positive rake angle in (a)

Why Machining is Important

- Variety of work materials can be machined
 - Most frequently applied to metals
- Variety of part shapes and special geometry features possible, such as:
 - Screw threads
 - Accurate round holes
 - Very straight edges and surfaces
- Good dimensional accuracy and surface finish

<section-header><section-header><section-header><list-item><list-item><list-item>

©2002 John Wiley & Sons, Inc. M. P. Groover,

Continuous with BUE

- Ductile materials
- Low-to-medium cutting speeds
- Tool-chip friction causes portions of chip to adhere to rake face
- BUE formation is cyclical; it forms, then breaks off

Figure 21.9 - Four types of chip formation in metal cutting: (c) continuous with built-up edge

Forces Acting on Chip

- Friction force F and Normal force to friction N
- Shear force F_s and Normal force to shear F_n

Work Holding for Drill Presses

- · Workpart can be clamped in a vise, fixture, or jig
 - Vise general purpose workholder with two jaws
 - Fixture workholding device that is usually custom-designed for the particular workpart
 - Drill jig similar to fixture but also provides a means of guiding the tool during drilling

Surface Contouring

Ball-nose cutter is fed back and forth across the work along a curvilinear path at close intervals to create a three dimensional surface form

Figure 22.20 (f) surface contouring

Machining Centers

Highly automated machine tool capable of performing multiple machining operations under CNC control in one setup with minimal human attention

- Typical operations are milling and drilling
- Three, four, or five axes
- Other features:
 - Automatic tool-changing
 - Pallet shuttles
 - Automatic workpart positioning

Dept. of Naval Architecture and Marine Engineering

High Speed Machining (HSM)

Cutting at speeds significantly higher than those used in conventional machining operations

- A persistent trend throughout history of machining is higher and higher cutting speeds
- At present there is a renewed interest in HSM due to potential for faster production rates, shorter lead times, and reduced costs

Dept. of Naval Architecture and Marine Engineering

					YPAL	AC
	High	n Spee	d Mach	ining		
Compariso	on of cor	ventiona	l vs. high	speed m	achining	
		Indexable tools (face mills)				
Work ma	Work material		Conventional speed		High speed	
		m/min	ft/min	m/min	ft/min	
Aluminur	n	600+	2000+	3600+	12,000+	
Cast iron	Cast iron, soft		1200	1200	4000	
Cast iron	Cast iron, ductile		800	900	3000	
Steel, alloy		210	700	360	1200	
Source:	Kenname	tal Inc.				

ECONOMIC AND PRODUCT DESIGN CONSIDERATIONS IN MACHINING

- Machinability
- Tolerances and Surface Finish
- Selection of Cutting Conditions
- Product Design Considerations in Machining

©2002 John Wiley & Sons Inc. M. P. Grooverngineering

Machinability Criteria in Production

- Tool life how long the tool lasts for the given work material
- Forces and power greater forces and power mean lower machinability
- *Surface finish* better finish means better machinability
- Ease of chip disposal easier chip disposal means better machinability

©2002 John Wiley & Sons Inc. M. P. GrooveEngineering

©2002 John Wiley & Sons Inc. M. P. Grooverngineering

Tolerances and Surface Finish in Machining

- Tolerances
 - Machining provides high accuracy relative to most other shape-making processes
 - Closer tolerances usually mean higher costs
- Surface roughness in machining is determined by:
 - Geometric factors of the operation
 - Work material factors
 - Vibration and machine tool factors

©2002 John Wiley & Sons Inc. M. P. GrooveEngineering

How To Avoid Chatter (Vibration)

- · Add stiffness and/or damping to setup
- Operate at speeds that avoid cyclical forces with frequencies close to natural frequency of machine tool system
- Reduce feeds and depths to reduce forces
- Change cutter design to reduce forces
- Use a cutting fluid

©2002 John Wiley & Sons Inc. M. P. GrooveEngineering

Selecting Depth of Cut

- Depth of cut is often predetermined by workpiece geometry and operation sequence
 - In roughing, depth is made as large as possible to maximize material removal rate, subject to limitations of horsepower, machine tool and setup rigidity, and strength of cutting tool
 - In finishing, depth is set to achieve final part dimensions

©2002 John Wiley & Sons Inc. e M. P. Grooverngineering

Optimizing Cutting Speed

- Select speed to achieve a balance between high metal removal rate and suitably long tool life
- Mathematical formulas are available to determine optimal speed
- Two alternative objectives in these formulas:
 - 1. Maximum production rate
 - 2. Minimum unit cost

©2002 John Wiley & Sons Inc. M. P. GrooveEngineering

53

<section-header><list-item><list-item><list-item><list-item>

