
Wyglinski: “fm” — 2018/3/26 — 11:43 — page iii — #3

Software-Defined Radio
for Engineers

Travis F. Collins
Robin Getz

Di Pu
Alexander M. Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page vii — #7

Contents

Preface xiii

CHAPTER 1
Introduction to Software-Defined Radio 1

1.1 Brief History 1
1.2 What is a Software-Defined Radio? 1
1.3 Networking and SDR 7
1.4 RF architectures for SDR 10
1.5 Processing architectures for SDR 13
1.6 Software Environments for SDR 15
1.7 Additional readings 17

References 18

CHAPTER 2
Signals and Systems 19

2.1 Time and Frequency Domains 19
2.1.1 Fourier Transform 20
2.1.2 Periodic Nature of the DFT 21
2.1.3 Fast Fourier Transform 22

2.2 Sampling Theory 23
2.2.1 Uniform Sampling 23
2.2.2 Frequency Domain Representation of Uniform Sampling 25
2.2.3 Nyquist Sampling Theorem 26
2.2.4 Nyquist Zones 29
2.2.5 Sample Rate Conversion 29

2.3 Signal Representation 37
2.3.1 Frequency Conversion 38
2.3.2 Imaginary Signals 40

2.4 Signal Metrics and Visualization 41
2.4.1 SINAD, ENOB, SNR, THD, THD + N, and SFDR 42
2.4.2 Eye Diagram 44

2.5 Receive Techniques for SDR 45
2.5.1 Nyquist Zones 47
2.5.2 Fixed Point Quantization 49

vii

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page viii — #8

viii Contents

2.5.3 Design Trade-offs for Number of Bits, Cost, Power,
and So Forth 55

2.5.4 Sigma-Delta Analog-Digital Converters 58
2.6 Digital Signal Processing Techniques for SDR 61

2.6.1 Discrete Convolution 61
2.6.2 Correlation 65
2.6.3 Z-Transform 66
2.6.4 Digital Filtering 69

2.7 Transmit Techniques for SDR 73
2.7.1 Analog Reconstruction Filters 75
2.7.2 DACs 76
2.7.3 Digital Pulse-Shaping Filters 78
2.7.4 Nyquist Pulse-Shaping Theory 79
2.7.5 Two Nyquist Pulses 81

2.8 Chapter Summary 85
References 85

CHAPTER 3
Probability in Communications 87

3.1 Modeling Discrete Random Events in Communication Systems 87
3.1.1 Expectation 89

3.2 Binary Communication Channels and Conditional Probability 92
3.3 Modeling Continuous Random Events in Communication Systems 95

3.3.1 Cumulative Distribution Functions 99
3.4 Time-Varying Randomness in Communication Systems 101

3.4.1 Stationarity 104
3.5 Gaussian Noise Channels 106

3.5.1 Gaussian Processes 108
3.6 Power Spectral Densities and LTI Systems 109
3.7 Narrowband Noise 110
3.8 Application of Random Variables: Indoor Channel Model 113
3.9 Chapter Summary 114
3.10 Additional Readings 114

References 115

CHAPTER 4
Digital Communications Fundamentals 117

4.1 What Is Digital Transmission? 117
4.1.1 Source Encoding 120
4.1.2 Channel Encoding 122

4.2 Digital Modulation 127
4.2.1 Power Efficiency 128
4.2.2 Pulse Amplitude Modulation 129

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page ix — #9

Contents ix

4.2.3 Quadrature Amplitude Modulation 131
4.2.4 Phase Shift Keying 133
4.2.5 Power Efficiency Summary 139

4.3 Probability of Bit Error 141
4.3.1 Error Bounding 145

4.4 Signal Space Concept 148
4.5 Gram-Schmidt Orthogonalization 150
4.6 Optimal Detection 154

4.6.1 Signal Vector Framework 155
4.6.2 Decision Rules 158
4.6.3 Maximum Likelihood Detection in an AWGN Channel 159

4.7 Basic Receiver Realizations 160
4.7.1 Matched Filter Realization 161
4.7.2 Correlator Realization 164

4.8 Chapter Summary 166
4.9 Additional Readings 168

References 169

CHAPTER 5
Understanding SDR Hardware 171

5.1 Components of a Communication System 171
5.1.1 Components of an SDR 172
5.1.2 AD9363 Details 173
5.1.3 Zynq Details 176
5.1.4 Linux Industrial Input/Output Details 177
5.1.5 MATLAB as an IIO client 178
5.1.6 Not Just for Learning 180

5.2 Strategies For Development in MATLAB 181
5.2.1 Radio I/O Basics 181
5.2.2 Continuous Transmit 183
5.2.3 Latency and Data Delays 184
5.2.4 Receive Spectrum 185
5.2.5 Automatic Gain Control 186
5.2.6 Common Issues 187

5.3 Example: Loopback with Real Data 187
5.4 Noise Figure 189

References 190

CHAPTER 6
Timing Synchronization 191

6.1 Matched Filtering 191
6.2 Timing Error 195
6.3 Symbol Timing Compensation 198

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page x — #10

x Contents

6.3.1 Phase-Locked Loops 200
6.3.2 Feedback Timing Correction 201

6.4 Alternative Error Detectors and System Requirements 208
6.4.1 Gardner 208
6.4.2 Müller and Mueller 208

6.5 Putting the Pieces Together 209
6.6 Chapter Summary 212

References 212

CHAPTER 7
Carrier Synchronization 213

7.1 Carrier Offsets 213
7.2 Frequency Offset Compensation 216

7.2.1 Coarse Frequency Correction 217
7.2.2 Fine Frequency Correction 219
7.2.3 Performance Analysis 224
7.2.4 Error Vector Magnitude Measurements 226

7.3 Phase Ambiguity 228
7.3.1 Code Words 228
7.3.2 Differential Encoding 229
7.3.3 Equalizers 229

7.4 Chapter Summary 229
References 230

CHAPTER 8
Frame Synchronization and Channel Coding 231

8.1 O Frame, Where Art Thou? 231
8.2 Frame Synchronization 232

8.2.1 Signal Detection 235
8.2.2 Alternative Sequences 239

8.3 Putting the Pieces Together 241
8.3.1 Full Recovery with Pluto SDR 242

8.4 Channel Coding 244
8.4.1 Repetition Coding 244
8.4.2 Interleaving 245
8.4.3 Encoding 246
8.4.4 BER Calculator 251

8.5 Chapter Summary 251
References 251

CHAPTER 9
Channel Estimation and Equalization 253

9.1 You Shall Not Multipath! 253

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page xi — #11

Contents xi

9.2 Channel Estimation 254
9.3 Equalizers 258

9.3.1 Nonlinear Equalizers 261
9.4 Receiver Realization 263
9.5 Chapter Summary 265

References 266

CHAPTER 10
Orthogonal Frequency Division Multiplexing 267

10.1 Rationale for MCM: Dispersive Channel Environments 267
10.2 General OFDM Model 269

10.2.1 Cyclic Extensions 269
10.3 Common OFDM Waveform Structure 271
10.4 Packet Detection 273
10.5 CFO Estimation 275
10.6 Symbol Timing Estimation 279
10.7 Equalization 280
10.8 Bit and Power Allocation 284
10.9 Putting It All Together 285
10.10 Chapter Summary 286

References 286

CHAPTER 11
Applications for Software-Defined Radio 289

11.1 Cognitive Radio 289
11.1.1 Bumblebee Behavioral Model 292
11.1.2 Reinforcement Learning 294

11.2 Vehicular Networking 295
11.3 Chapter Summary 299

References 299

APPENDIX A
A Longer History of Communications 303

A.1 History Overview 303
A.2 1750–1850: Industrial Revolution 304
A.3 1850–1945: Technological Revolution 305
A.4 1946–1960: Jet Age and Space Age 309
A.5 1970–1979: Information Age 312
A.6 1980–1989: Digital Revolution 313
A.7 1990–1999: Age of the Public Internet (Web 1.0) 316
A.8 Post-2000: Everything comes together 319

References 319

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page xii — #12

xii Contents

APPENDIX B
Getting Started with MATLAB and Simulink 327

B.1 MATLAB Introduction 327
B.2 Useful MATLAB Tools 327

B.2.1 Code Analysis and M-Lint Messages 328
B.2.2 Debugger 329
B.2.3 Profiler 329

B.3 System Objects 330
References 332

APPENDIX C
Equalizer Derivations 333

C.1 Linear Equalizers 333
C.2 Zero-Forcing Equalizers 335
C.3 Decision Feedback Equalizers 336

APPENDIX D
Trigonometric Identities 337

About the Authors 339

Index 341

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page xiii — #13

Preface

Every sector of today’s society is entirely dependent on connectivity. As a result,
communication systems engineering has evolved into an essential profession where
practitioners are required to master a diverse set of skills and tools into order
to solve the latest technical challenges. This was not the case several decades
ago, where individuals on a design team each possessed complementary yet
different backgrounds needed in order to construct a communication system.
For example, in order to design a communication system it would take several
engineers, each of whom would be individually handling tasks such as algorithmic
development for the transceiver, theoretical performance analysis of the end-to-
end communication system, implementation of the platform in digital hardware,
design and implementation of the radio frequency front-end (RFFE), and so on.
These tasks were intentionally defined to be handled in silos such that each engineer
would not be responsible or extensively knowledgeable about the other concurrent
tasks. Now let us fast forward to today, where effectively all of these silos are
extensively overlapping with each other. An engineer is expected to know how
to provide solutions across several of these silos on the same project, such as
designing a communication system algorithm and masterfully implementing it on
a field programmable gate array (FPGA) or an embedded processing device. This
is mainly due to a new technology that has evolved over the past several decades
and matured into a mainstream communication system solution: software-defined
radio (SDR). The days of working in task silos when designing a communication
system are quickly coming to an end.

The objective of this book is to provide a hands-on learning experience using
SDR for engineering students and industry practitioners who are interested in
mastering the design, implementation, and experimentation of a communication
system. Building on the success of Digital Communication Systems Engineering
Using Software Defined Radio by Pu and Wyglinski (Artech House, 2013),
this book provides a fresh perspective on understanding and creating new
communication systems from scratch. Until now, there have been very few books
and other publications available to the community that provide an opportunity
not only to learn about the theoretical elements of a communication system but
also provide practical real-world experiments that help synthesize these important
lessons that would otherwise be omitted in a traditional communication systems
book or course. There is so much more that goes into the design of a communication
system than just drawing up a block diagram consisting of different functions and
deriving its performance characteristics. Communication system engineers need to
understand the impact of the hardware on the performance of the communication
algorithms being used and how well the overall system operates in terms of

xiii

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page xiv — #14

xiv Preface

successfully recovering the intercepted signal. What makes this hands-on learning
experience is the SDR platform itself. Several years ago, it was a significant financial
and technical investment to utilize SDR in order to prototype and experiment with
actual communication systems. The hardware was at least a couple of thousand
dollars and mastering the software was challenging to say the least. Nevertheless,
the last decade has witnessed significant advances in SDR technology such that these
platforms now cost on the order of a hundred dollars and the software is relatively
straightforward to use and reliable.

This book is ideally suited for individuals who possess a fundamental
understanding of continuous-time and discrete-time signals and systems, as well as
possess a solid understanding of computer engineering. Additionally, individuals
who already possess some basic knowledge about communication systems, for
example, amplitude modulation, frequency modulation, and phase shift keying,
would be beneficial. This book is written for both industry practitioners who are
seeking to enhance their skill set by learning about the design and implementation
of communication systems using SDR technology, as well as both undergraduate
and graduate students who would like to learn about and master communication
systems technology in order to become the next generation of industry practitioners
and academic researchers. The book contains theoretical explanations about the
various elements forming a communication system, practical hands-on examples
and lessons that help synthesize these concepts, and a wealth of important facts
and details to take into consideration when building a real-world communication
system.

The book is organized in such a way that it can be used in either a 7-week
academic term or a 14-week academic semester, as a guide for self-study on this
subject, or as a technical reference about communication systems engineering. The
book is structured in the following manner:

• Establishing a solid foundation
– Chapter 1 – Introduction to Software-Defined Radio: Provides a brief

overview of communication systems engineering and the evolution of SDR
technology.

– Chapter 2 – Signals and Systems: A condensed review of discrete-time
signal and systems, digital signal processing, filter design, and their
application to communication systems.

– Chapter 3 – Probability in Communications: An overview of the must-
know topics in probability theory required in designing and analyzing
communication systems.

– Chapter 4 – Digital Communications Fundamentals: A relatively
brief treatment of various digital communication principles, including
modulation, digital transmission, and receiver structures.

• Fundamental of SDR-based communication systems engineering
– Chapter 5 – Understanding SDR Hardware: A tutorial regarding SDR

technology with emphasis on the student targeted ADALM-PLUTO SDR,
which will be used in the hands-on elements of this book.

– Chapter 6 – Timing Synchronization: A detailed explanation of how to
obtain timing information from an intercepted signal.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page xv — #15

Preface xv

– Chapter 7 – Carrier Synchronization: An extensive description of
methodologies used to obtain the carrier frequency of intercepted signals,
which also includes hands-on examples.

– Chapter 8 – Frame Synchronization and Channel Coding: An extensive
introduction to the theoretical and practical considerations when
performing frame synchronization.

• Advanced topics in communications design and implementation
– Chapter 9 – Channel Estimation and Equalization: Both theoretical

and experimental details on the design and implementation of several
equalization methodologies are provided.

– Chapter 10 – Orthogonal Frequency Division Multiplexing: A
detailed study of orthogonal frequency division multiplexing (OFDM)
communication systems, including their implementation in SDR.

– Chapter 11 – Applications for Software-Defined Radio: A brief
introduction into various application areas involving SDR technology,
including 5G communications and deep space satellite communications.

For a 7-week course, it is expected that the class would cover Chapters 4–8
throughout the term, while for a 14-week course it is expected that the class would
cover Chapters 4–9. As for industry practitioners seeking advanced knowledge in
SDR implementations, they can readily proceed with approaching Chapters 9–11.
Although this book covers a substantial amount of material, it is not designed
to cover topics in information theory, signal estimation and detection, RFFE
design, computer networking theory, or wireless channel modeling. We believe
that there are numerous other books available that handle these topics rigorously
and efficiently.

This book was made possible by the extensive support of numerous individuals
and organizations throughout the duration of this project. In particular, we are
deeply indebted to Walt Kester for extensively reviewing many drafts of this book
and providing us with valuable feedback and comments. Furthermore, we would
like to gratefully acknowledge the support of the folks at Artech House, including
Aileen Storry, through this entire project and helping us make this book a reality.
We would like to sincerely thank our collaborators at MathWorks for their support
and assistance with respect to many of the software elements of this book, especially
Darel Linebarger and Mike McLernon. The generous contributions of Analog
Devices with respect to providing us with the material support needed to create
the hands-on elements of this publication is duly acknowledged. We would like to
sincerely thank the entire class of ECE4305 Software-Defined Radio Systems and
Analysis at Worcester Polytechnic Institute for providing extensive feedback about
this book prior to its publication. Finally, we would like to thank our families for
their love, support, and constant encouragement.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 1 — #1

C H A P T E R 1

Introduction to Software-Defined Radio

Various forms of communication have evolved over the millennia. The spoken
word can be transmitted from one person, and heard or received by another. In
modern times town criers hold an annual contest to discover who can shout a
comprehensible message over the greatest distance [1]. However, while the world
record is for loudest crier is 112.8 decibels, it can only be understood at less than
100 meters. The desire to communicate more effectively than shouting, is old as
speech itself.

With modern advances in computing technologies, digital signal processing
and digital communication algorithms, artificial intelligence, radio frequency (RF)
hardware design, networking topologies, and many other elements have evolved
modern communication systems into complex, intelligent, high-performance
platforms that can adapt to operational environments and deliver large amounts
of information in real-time, error-free. The latest step in communication systems
technology is the software-defined radio, or SDR, which adopts the most recent
advances in all fields to yield the ultimate transmitter and receiver.

1.1 Brief History

Given the exciting history associated with advances that directly impact SDR
technology, Figure 1.1 provides a timeline describing several significant milestones
over the past four centuries. This history is dominated by various people
investigating ideas or concepts, publishing the results, then allowing their peers
and colleagues to build on their work. Many turned their work into commercial
products and became famous and rich; some became neither. For an exhaustive list
of major milestones relevant to SDR technology, the interested reader is referred to
Appendix A.

1.2 What is a Software-Defined Radio?

Every professional organization attempts to define a common framework of
terms and definitions to allow easy communication between professionals who
are working on similar areas of research or product development. Wireless
communications and SDR is no different. The Institute of Electrical and Electronic
Engineers (IEEE) P1900.1 Working Group has created the following definitions to

1

Analog Devices perpetual eBook license – Artech House copyrighted material.

W
yglinski:

“ch01_new
”

—
2018/3/26

—
11:42

—
page

2
—

#2

2
Introduction

to
Softw

are-D
efined

Radio

Figure 1.1 Timeline of several key milestones in communications.

A
nalog D

evices perpetual eB
ook license – A

rtech H
ouse copyrighted m

aterial.

1837: Samuel
1876: 1950: William

1752: Ben 1827: Georg Alexander 1928: Harold Black Shockley publishes
Franklin Ohm defines

Morse patents Graham Bell 1917: patents negative "Electrons and Holes
lightning Ohm's Law,

recording electric implements Super heterodyne feedback in in Semiconductors"
telegraph, defines

experiment V= IR
Morse Code

first telephone receiver patented amplifiers

1750 1960

1792:Claude
Chappe builds

semaphore
network in

France

1833:Carl
Friedrich Gauss
experiments

with telegraphy
using 1200m

wire

1864: James Clerk
Maxwell defines

what will become
Maxwell's
Equations

1901: Gugliemlo 1924: Harry Nyquist
Marconi explores maximum

demonstrates first signal sampling rates
trans-Atlantic wireless

1948: Claude Shannon
publishes "A

Mathematical Theory
of Communication"

transmission

--1
I
I
I
I
I
I
I

'
1967: Andrew

Viterbi publishes Ronald Reagan issued
Viterbi Algorithm directive making GPS

freely available

\

1983: US President

\

1984: Mathworks 1993: Joseph Mitola
founded by Jack Little coined term "Software

and Cleve Moler Defined Radio"

l
I

I
I

I

1998: Bluetooth
Special Interests

Group (SIG)formed

\
1960 /

1965: Gordon
Moore defines
Moore's Law

1973: Martin
Cooper made first

publicized handheld
mobile phone call

1984: Term
"Software Radio"

first coined

1991:
Speak EASYI
SDR project

was kicked off

1997: First version of
802.11 protocol

released

; 2000

2000: Bluetooth
enabled devices
begin to ship out

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 3 — #3

1.2 What is a Software-Defined Radio? 3

ensure that everyone in the field has common terminology [2]:

Radio
1. Technology for wirelessly transmitting or receiving electromagnetic

radiation to facilitate transfer of information.
2. System or device incorporating technology as defined in (1).
3. A general term applied to the use of radio waves.

Radio Node
A radio point of presence incorporating a radio transmitter or receiver.

Software
Modifiable instructions executed by a programmable processing device.

Physical Layer
The layer within the wireless protocol in which processing of RF, IF, or
baseband signals including channel coding occurs. It is the lowest layer of
the ISO 7-layer model as adapted for wireless transmission and reception.

Data Link Layer
The protocol responsible for reliable frame transmission over a wireless
link through the employment of proper error detection and control
procedures and medium access control.

Software Controlled
Software controlled refers to the use of software processing within the
radio system or device to select the parameters of operation.

Software Defined
Software defined refers to the use of software processing within the radio
system or device to implement operating (but not control) functions.

Software Controlled Radio
Radio in which some or all of the physical layer functions are software
controlled.

Software-Defined Radio (SDR)
Radio in which some or all of the physical layer functions are software
defined.

Transmitter
Apparatus producing radio frequency energy for the purpose of radio
communication.

Receiver
A device that accepts a radio signal and delivers information extracted
from it.

Air Interface
The subset of waveform functions designed to establish communication
between two radio terminals. This is the waveform equivalent of the
wireless physical layer and the wireless data link layer.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 4 — #4

4 Introduction to Software-Defined Radio

Waveform
1. The set of transformations applied to information to be transmitted

and the corresponding set of transformations to convert received
signals back to their information content.

2. Representation of a signal in space.
3. The representation of transmitted RF signal plus optional additional

radio functions up to and including all network layers.

The combination of digital processing and analog RF has always made
up communication systems. In today’s modern systems signal processing has
progressed to such an extent that a majority of baseband functionality is being
implemented in software. The flexibility of the RF hardware to be re purposed and
reconfigured has led to one radio front-end handling most RF systems. Normally
the RF front-end is software controlled rather than software defined. This modern
combination of flexible RF front-ends and signal processing in software has lead
the birth of software-defined radio.

This can been seen in devices like Analog Devices’s AD7030, shown in
Figure 1.2. The ADF7030 is a low-power, high-performance, integrated radio
transceiver supporting narrow band operation in the 169.4-MHz to 169.6-MHz
ISM band. It supports transmit and receive operation at 2.4 kbps and 4.8 kbps using
2GFSK modulation and transmit operation at 6.4 kbps using 4GFSK modulation.
It includes an on-chip ARM Cortex-M0 processor that performs radio control and
calibration as well as packet management. That and a sensor is all that is needed
for smart metering or active tag asset tracking applications. This is just a side effect
of Moore’s law—system-level integration.

An SDR system is a complex device that performs several complicated tasks
simultaneously in order to enable the seamless transmission and reception of
data. In general, a digital communications system consists of an interdependent
sequence of operations responsible for taking some type of information, whether
it is human speech, music, or video images, and transmits it over-the-air to a
receiver for processing and decoding into a reconstructed version of the original
information signal. If the original information is analog (like audio), it must first be
digitized using techniques such as quantization in order for us to obtain a binary
representation of this information. Once in a binary format, the transmitter digitally

Figure 1.2 ADF7030 block diagram [3].

Analog Devices perpetual eBook license – Artech House copyrighted material.

ADF7030

TCXO BUFFER
INTERRUPT

ARM
CONTROLLER

CORTEX-MO
DIGITAL
BASEBAND SPI

SLAVE

ROM
8x

TRANSMITTER RAM
CONFIGURABLE
GPIOs

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 5 — #5

1.2 What is a Software-Defined Radio? 5

processes this information and converts it into an electromagnetic sinusoidal
waveform that is uniquely defined by its physical characteristics, such as its signal
amplitude, carrier frequency, and phase. At the other end of the communications
link, the receiver is tasked with correctly identifying the physical characteristics
of the intercepted modulated waveform transmitted across a potentially noisy
and distortion-filled channel, and ultimately returning the intercepted signal back
into the correct binary representation. The basic building blocks of a digital
communication system is shown in Figure 1.3.

Figure 1.3 shows that the input to the transmitter and output of the receiver
originate from or are fed into a digital source and digital sink, respectively.
These two blocks represent the source and destination of the digital information
to be communicated between the transmitter and receiver. Once the binary
information is introduced to the transmitter, the first task performed is to remove
all redundant/repeating binary patterns from the information in order to increase
the efficiency of the transmission. This is accomplished using the source encoder
block, which is designed to strip out all redundancy from the information. Note
that at the receiver, the source decoder re-introduces the redundancy in order to
return the binary information back to its original form. Once the redundancy has
been removed from the binary information at the transmitter, a channel encoder
is employed to introduced a controlled amount of redundancy to the information
stream in order to protect it from potential errors introduced during the transmission
process across a noisy channel. A channel decoder is used to remove this controlled
redundancy and return the binary information back to its original form. The
next step at the transmitter is to convert the binary information into unique
electromagnetic waveform properties such as amplitude, carrier frequency, and
phase. This is accomplished using a mapping process called modulation. Similarly,
at the receiver the demodulation process converts the electromagnetic waveform
back into its respective binary representation. Finally, the discrete samples outputted

Figure 1.3 An illustration describing some of the important components that constitute a modern
digital communications system. Note that for a SDR-based implementation, those components
indicated as programmable can be realized in either programmable logic or software.

Analog Devices perpetual eBook license – Artech House copyrighted material.

! B = Binary data

! S = Sample data

l A = Analog waveforms_!

Data
source

Generates and

Source
encoder

Removes
receives bi~ary redundancy from

representation of t 't d t
real-world ransmi a a

signals, e.g.,
stream and

reintroduces it in
human speech,

receive data
music, video,

images
stream

[]E}-~ Source
k decoder

Channel
encoder

Introduces
controlled

redundancy to
transmit data
stream and

removes it from
receive data

stream

Channel
decoder

Programmable

Discrete/digital : Analog

Symbol S
mod

Maps bits to
symbols at the
transmitter and
maps them back

to bits at the
receiver

Symbol s
demod

'

DIA

Converts
discrete-time

symbol samples
into analog

waveforms and
vice versa

A/D

RF
chain

A

Prepares analog
waveforms for
transmission at
RF frequencies
and converts
received RF

signals to analog
baseband

RF A

chain

~
Tunable

~

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 6 — #6

6 Introduction to Software-Defined Radio

by the modulation block are resampled and converted into a baseband analog
waveform using a digital-to-analog converter (DAC) before being processed by the
radio frequency (RF) front-end of the communication system and upconverted to an
RF carrier frequency. At the receiver, the reverse operation is performed, where the
intercepted analog signal is downconverted by the RFFE to a baseband frequency
before being sampled and processed by an analog-to-digital converter (ADC).

Given the complexity of an SDR platform and its respective components, it
is important to understand the limitations of a specific SDR platform and how
various design decisions may impact the performance of the resulting prototype.
For instance, it is very desirable to have real-time baseband processing for spectrum
sensing and agile transmission operations with high computational throughput
and low latency. However, if the microprocessor being employed by the SDR
platform is not sufficiently powerful enough in order to support the computational
operations of the digital communication system, one needs to reconsider either
the overall transceiver design or the requirements for low latency and high
throughput. Otherwise, the SDR implementation will fail to operate properly,
yielding transmission errors and poor communication performance.

Design considerations to think about when devising digital communication
systems based on an SDR platform include.

• The integration of the physical and network layers via a real-time protocol
implementation on an embedded processor. Note that most communication
systems are divided into logically separated layers in order to more readily
facilitate the design of the communication system (see Section 1.3). However,
it is imperative that each layer is properly designed due to the strong
interdependence between all the layers.

• Ensuring that a sufficiently wide bandwidth radio front-end exists with
agility over multiple subchannels and scalable number of antennas for spatial
processing. Given how many of the advanced communication system designs
involve the use of multiple antennas and wideband transmissions, it is
important to know what the SDR hardware is capable of doing with respect
to these physical attributes.

• Many networks employing digital communication systems possess a
centralize architecture for controlling the operations of the overall network
(e.g., control channel implementation). Knowing the radio network
architecture is important since it will dictate what sort of operations are
essential for one digital transceiver to communicate with another.

• The ability to perform controlled experiments in different environments
(e.g., shadowing and multipath, indoor and outdoor environments) is
important for the sake of demonstrating the reliability of a particular SDR
implementation. In other words, if an experiment involving an SDR prototype
system is conducted twice in a row in the exact same environment and
using the exact same operating parameters, it is expected that the resulting
output and performance should be the same. Consequently, being able to
perform controlled experiments provides the SDR designer with a sanity
check capability.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 7 — #7

1.3 Networking and SDR 7

• Reconfigurability and fast prototyping through a software design flow for
algorithm and protocol description.

Instead of using fixed analog processing and fixed circuits, many of
the communication systems in use every day are being implemented using
microelectronic-based flexible IF, digital signal processors, programmable digital
logic, accelerators, and other types of computing engines. To take advantage of
new advances in processing engines, high-level languages such as MATLAB® and
Simulink are being used rather than C or assembly. This transition of computing
technology had the impact of enabling new communication functionalities and
capabilities, such as advanced satellite communications, mobile communications,
data modems, and digital television broadcasts.

1.3 Networking and SDR

With the evolution of digital communication system into highly complex devices,
it became apparent that a divide-and-conquer strategy was needed in order to
make the design and implementation of such systems feasible and manageable.
Consequently, researchers divided a digital communication system into a collection
of complementary layers, with each layer performing a specific function as part of
the overall process of transmitting and receiving information. As a result of this
divide-and-conquer strategy, communication systems rapidly evolved into highly
capable platforms performing a wide range of operations, such as Web surfing and
email to streaming multimedia content. In fact, this strategy of dividing up the
operations of a communication system into layers was so successful that there are
entire research communities that only focus on one of the layers and none of the
others; they take for granted the information coming from the layers above and
below their layer.

In general, there are two models for dividing up a communication system into
layers: the Open System Interconnection (OSI) 7-layer model and the Transmission
Control Protocol (TCP)/Internet Protocol (IP) 5-layer model, as shown in Figure 1.4.
Both models possess approximately the same functionality, but the TCP/IP model
amalgamates the top several layers into a single one. Focusing on the TCP/IP 5-layer
model, this consists of the following layers, from top to bottom:

• Application Layer: Interfaces user with the data from the communication
system. For instance, the application layer would include data originating
from or intended for software running Web browsers, email clients, and
streaming media interfaces. These applications are usually addressed via
designated socket.

• Transport Layer: Responsible for transporting application layer messages
between the client application and server application. This layer ensures
reliable data transmission.

• Network Layer: Responsible for moving network layer packets from one
host to another host. Defines format of datagrams and how end systems and
routers act on datagram, as well as determine routes that datagrams take
between sources and destinations.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 8 — #8

8 Introduction to Software-Defined Radio

Figure 1.4 Seven-layer OSI model compared to five-layer TCP/IP model.

• Link Layer: Handles problem of exchanging data between two or more
directly connected devices. Reliability: This includes error detection and error
correction as well as addressing of different communication systems.

• Physical Layer: Sends individual bits from one communication system
directly to another communication system. It also covers the physical
interface between data transmission device and transmission medium.

From the perspective of a radio system and its implementation, much of the
system design will focus on the physical layer (as does this text), but it can’t be
forgotten how the link layer may affect the physical layer. Nevertheless, given
that the baseband processing is all conducted in software, it is possible for the
communications system is to implement the higher layers of the stack in software
as well. Many communication standards have adopted this scheme, where the entire
communication system across all the layers are implemented in software, although
depending on data rate requirements, this can require significant computational
capabilities on the part of the system to achieve real-time operation. All software
implementations enable functional updates without hardware replacement. In
practice, this is normally only done on emerging standards or where data rates
are relatively low. However, imagine applying a software upgrade to a Wi-Fi
router and being able to implement the next standard without having to replace
the hardware. This software upgradeable system would be more complex, and
might cost more than a fixed hardware system, but would consumers be willing
to pay more? History indicates no. For those types of high-volume consumer
applications, many times price point is the most critical item to product success.
Most end consumers do not think about long-term maintenance and total cost of
ownership while looking at the variety of products on Amazon. The trade-offs of
which function or layer is done in fixed hardware versus flexible software is an
engineering decision based on volume, cost, power, complexity, and many other
factors.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Units Protocol
OSI 7-Layer TCP/IP 5-Layer

Model Model

Level 7 G Resource sharing, file Application
access, SMTP, HTTP Network process to application

Level 6 G Compression, JPEG, Presentation Application ~
ASCII, TIFF, GIF Data representation and encryption (FTP, SMTP, HTTP, etc) I

G Security, name recognition, Session
....,

Level 5
V,

0 RPC, SQL, NFS lnterhost communication I

Level 4 [Segments]
Segmentation and Transport

TCP] traffic, TCP, SPX, UDP End to End connections and reliability

Level 3 B Routing, fragmentation, Network
Network] IP, IPX, IMCP Path determination and logical addressing (IP) ~

B Sequencing, traffic Data Link] I Level 2 Data Link 11::1
control, Media Access Physical addressing (MAC & LLC) '6

Q)

Level 1 8 Bits and volts Physical] ~ data encoding Media, signal and binary transmission
Physical

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 9 — #9

1.3 Networking and SDR 9

There has been a growing amount of interest with respect to combining
SDR technology with software-defined networks (SDNs), where the latter focuses
on adapting the higher communication layers to the prevailing operational
environment. This enables things like modification of the routing to be tied to
heuristics provided by the physical layers. Self-healing mesh networks are an
implementation of this.

The link layer will also affect the physical (PHY) layer of a wireless
communication system as shown in Figure 1.5. For example, in 802.11 (Wi-Fi),
the PHY layer (layer 1) is actually broken further down into the Physical
Layer Convergence Protocol (PLCP) and the Physical Medium Dependent (PMD)
sublayer. The PMD sublayer provides transmission and reception of physical layer
data units between two stations via the wireless medium, and passes this to the
PLCP, which interfaces to the upper MAC layers, various management layer entities,
and generic management primitives to maximize data rates.

At the PHY layer the unit denoted in Figure 1.4 is bits; however, across the
wireless and wired links this data will be encoded in more analog-friendly forms
designed for transmission called symbols. The preamble, denoted in Layer 1 in
Figure 1.5 will most likely never be demodulated at the receiver from a symbol form.
Such sequences are only used by the PHY layer to compensate for nonidealities
in a link, and have little to no meaning to the above layers. However, for those
implementing with SDRs these simple sections are the main focus, and the remaining
portions of the frame are arbitrary data.

Figure 1.5 Packet structure effects SDR, PLCP = Physical Layer Convergence Protocol.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Layer 5
application

Layer 4
TCP

Layer 3
network

Layer 2
data
link

Layer 1
physical

Link header

MAC LLC
header header

PLCP header

Preamble header
MAC LLC

header header

Network
data

TCP Network
header data

r TCP segment 7
IP TCP

header header
Network

data
Frame

k--- ____j Check
I Network packet I Sequence

,------._______

IP TCP Network
header header data

FCS

Link frame

IP TCP Network
FCS

header header data

PHY frame

PLCP tail

Tail Pad

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 10 — #10

10 Introduction to Software-Defined Radio

1.4 RF architectures for SDR

Next-generation communications systems introduce new challenges that require
solutions beyond what can be achieved through individual device optimization.
Integrating more software control and cognitive abilities to the radio demands
a more frequency- and bandwidth-flexible RF design. To achieve this goal static
filters need to be removed and replaced with tunable filters. Similarly, the concept
of a common platform would allow for shorter development times, reduced
manufacturing costs, and provide greater interoperability between systems. The
common platform demands that the RF system be capable of providing full
performance for applications that traditionally had very different architectures.
Finally, future platforms are pushing size and power demands to a new extreme.

Handheld radios are becoming more capable and complex, but simultaneously
requiring improved battery efficiency. Small UAVs lack the power generation of
large aircraft and every milliwatt that the RF system consumes directly translates to
payload battery weight, and thus, reduced flight time. To overcome these challenges
and create the next generation of aerospace and defense solutions, a new radio
architectures are being developed.

Since its inception, the superheterodyne architecture has been the backbone of
radio design. Whether it is a handheld radio, unmanned aerial vehicle (UAV) data
link, or a signal intelligence receiver, the single or dual mixing stage superheterodyne
architecture is the common choice (see Figure 1.6). The benefits of this design are
clear: proper frequency planning can allow for very low spurious emissions, the
channel bandwidth and selectivity can be set by the intermediate frequency (IF)
filters, and the gain distribution across the stages allows for a trade-off between
optimizing the noise figure and linearity.

For over 100 years of use (see the appendix for more information), there have
been significant gains in performance for the superheterodyne across the entire
signal chain. Microwave and RF devices have improved their performance while
decreasing power consumption. ADCs and DACs have increased the sample rate,
linearity, and effective number of bits (ENOB). Processing capability in FPGAs
and DSPs has followed Moore’s law and increased with time, allowing for more
efficient algorithms, digital correction, and further integration. Package technology
has shrunk device pin density while simultaneously improving thermal handling.

However, these device-specific improvements are beginning to reach the point
of diminishing returns. While the RF components have followed a reduced size,
weight, and power (SWaP) trend, high-performance filters remain physically large
and are often custom designs, adding to overall system cost. Additionally, the IF
filters set the analog channel bandwidth of the platform, making it difficult to create
a common platform design that can be reused across a wide range of systems. For
package technology, most manufacturing lines will not go below a 0.65-mm or
0.8-mm ball pitch, meaning there is a limit on how physically small a complex
device with many I/O requirements can become.

An alternative to the superheterodyne architecture, which has reemerged as a
potential solution in recent years, is the zero-IF (ZIF) architecture. A ZIF receiver
(see Figure 1.7) utilizes a single frequency mixing stage with the local oscillator (LO)
set directly to the frequency band of interest, translating the received signal down

Analog Devices perpetual eBook license – Artech House copyrighted material.

W
yglinski:

“ch01_new
”

—
2018/3/26

—
11:42

—
page

11
—

#11

1.4
RF

architectures
for

SD
R

11

Figure 1.6 Multistage superheterodyne receive and transmit signal chains [4].

A
nalog D

evices perpetual eB
ook license – A

rtech H
ouse copyrighted m

aterial.

PA Driver LPF Mixer LPF IF Amp LPF Mixer LPF IF Amp LPF DAC Digital filter

Power
manaqement

Sensors

Audio/video

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 12 — #12

12 Introduction to Software-Defined Radio

Figure 1.7 Zero IF architecture [4].

to baseband in phase (I) and quadrature (Q) signals. This architecture alleviates the
stringent filtering requirements of the superheterodyne since all analog filtering takes
place at baseband, where filters are much easier to design and less expensive than
custom RF/IF filters. The ADC and DAC are now operating on I/Q data at baseband,
so the sample rate relative to the converted bandwidth can be reduced, saving
significant power. For many design aspects, ZIF transceivers provide significant
SWaP reduction as a result of reduced analog front-end complexity and component
count.

This direct frequency conversion to baseband can introduce the possibility of
carrier leakage and an image frequency component. Due to real-world factors, such
as process variation and temperature deltas in the signal chain, it is impossible
to maintain a perfect 90◦ phase offset between the I and Q signals, resulting
in degraded image rejection. Additionally, imperfect LO isolation in the mixing
stage introduces carrier leakage components. When left uncorrected, the image and
carrier leakage can degrade a receivers sensitivity and create undesirable transmit
spectral emissions.

Historically, the I/Q imbalance has limited the range of applications that were
appropriate for the ZIF architecture. This was due to two reasons: first, a discrete
implementation of the ZIF architecture will suffer from mismatches both in the
monolithic devices and also in the printed circuit board (PCB). In addition to this,
the monolithic devices could pull from different fabrication lots, making exact
matching very difficult due to native process variation. A discrete implementation
will also have the processor physically separated from the RF components, making
a quadrature correction algorithm very difficult to implement across frequency,
temperature, and bandwidth.

Moore’s law, or integration of the ZIF architecture into a monolithic transceiver
device provides the path forward for next-generation systems. By having the analog
and RF signal chain on a single piece of silicon, process variation will be kept to
a minimum. Digital signal processing (DSP) blocks can be incorporated into the
transceiver, removing the boundary between the quadrature calibration algorithm
and the signal chain. This approach provides both unparalleled improvements
in SWaP and can also match the superheterodyne architecture for performance
specifications.

Analog Devices perpetual eBook license – Artech House copyrighted material.

LNA

Mixer LPF

0°/90° Phase.__ _ ___,
splitter

Mixer LPF

ADC

Q

ADC

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 13 — #13

1.5 Processing architectures for SDR 13

Devices like the Pluto SDR shown in Figure 1.8 integrate the full RF, analog,
and digital signal chain onto a single CMOS device, and include digital processing
to run quadrature and carrier leakage correction in real time across all process,
frequency, and temperature variations. Devices like the AD9361 focuses on
medium-performance specifications and very low power, such as UAV data links,
handheld communication systems, and small form factor SDR applications. The
AD9371 is optimized for high-performance specifications and medium power.
Additionally, this device has refined calibration control, as well as an observation
receiver for power amplifier (PA) linearization and a sniffer receiver for white space
detection. This opens up new design potential for a different suite of applications.
Communication platforms using wideband waveforms or occupying noncontiguous
spectrum can now be implemented in a much smaller form factor.

1.5 Processing architectures for SDR

The microelectronic industry has rapidly evolved over the past six decades, resulting
in numerous advances in microprocessor systems that have enabled many of the
applications we take for granted every day. The rate at which this evolution
has progressed over time has been characterized by the well-known Moore’s
Law, which defines the long-term trend of the number of transistors that can be
accommodated on an integrated circuit. In particular, Moore’s law dictates that the
number of transistors per integrated circuit approximately doubles every 2 years,
which subsequently affects the performance of microprocessor systems such as

Figure 1.8 Integrated ZIF architecture used in the Pluto SDR.

Analog Devices perpetual eBook license – Artech House copyrighted material.

RADIO
SWITCHING

RX2A_P,
RX2A_N

RX1A_P,
RX1A_N
RX2B_P,
RX2B_N
RX1B_P,
RXlB_N
RX2C__P,
RX2C_N
RXlC_P,
RXlc__N

TXMON2

TXM0N1

XTALP

XTALN

AUXDACl
AUXDAC2

TX2A_P,
TX2A_N
TXlA_P,
TX1A__N

TX2B_P,
TX2B_N
TX1B_P,
TX1B_N

AUXADC

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 14 — #14

14 Introduction to Software-Defined Radio

processing speed and memory. One area that the microelectronics industry has
significantly influenced over the past half century is the digital communication
systems sector, where microprocessor systems have been increasingly employed
in the implementation of digital transceiver, yielding more versatile, powerful, and
portable communication system platforms capable of performing a growing number
of advance operations and functions. With the latest advances in microelectronics
and microprocessor systems, this has given rise to software-defined radio (SDR)
technology, where baseband radio functionality can be entirely implemented in
digital logic and software, as illustrated in Figure 1.3. There are several different
types of microprocessor systems for SDR implementations, including.

• General-purpose microprocessors are often used in SDR implementations
and prototypes due to their high level of flexibility with respect to
reconfigurability, as well as due to their ease of implementation regarding
new designs. On the other hand, general-purpose microprocessors are not
specialized for mathematical computations and they can be potentially power
inefficient.

• Digital signal processors (DSPs) are specialized for performing mathematical
computations, implementation of new digital communication modules can
be performed with relative ease, and the processor is relatively power efficient
(e.g., DSPs are used in cellular telephones). On the other hand, DSPs are not
well suited for computationally intensive processes and can be rather slow.

• Field programmable gate arrays (FPGAs) are efficient for custom digital signal
processing applications because they can implement custom, fully parallel
algorithms. DSP applications use many binary multipliers and accumulators
that can be implemented in dedicated DSP slices, as shown in Figure 1.9.
This includes 25 × 18 twos-complement multiplier, a 48-bit accumulator, a
power-saving preadder, single-instruction, multiple data (SIMD) arithmetic
unit, which includes a dual 24-bit or quad 12-bit add/subtract/accumulate.
Tools like MathWorks HDL Coder are making creating new modules and
targeting FPGAs easier, as it can generate portable, synthesizable Verilog
and VHDL code from MATLAB functions, Simulink models, and Stateflow

Figure 1.9 Basic DSP48E1 slice functionality [5].

Analog Devices perpetual eBook license – Artech House copyrighted material.

48-Bit Accumulator/Logic Unit

B

A I-----<>-+---- p

D

Pattern detector
C

UG479 _cl _21_032111

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 15 — #15

1.6 Software Environments for SDR 15

charts, and is well suited for taking signal processing algorithms from concept
to production.

• Graphics processing units (GPUs) are extremely powerful computationally.
These processors have been driven to very high levels of performance and
low price points by the need for real-time computer graphics in mass market
gaming. Over the past 10 years, they have evolved into a general-purpose
programmable architecture and supporting ecosystem that makes it possible
to use them for a wide range of nongraphics applications [6]. GPU-accelerated
libraries provided by manufactures like Nvidea, provide highly optimized
functions that perform 2x to 10x faster than CPU-only alternatives. GPU-
accelerated libraries for linear algebra, signal processing, and image and video
processing lay the foundation for future software-defined radio applications
to run on these types of architectures [7].

• Advanced RISC Machines (ARMs) have received significant attention in
recent years fo their low cost, small size, low power consumption, and
computational capabilities. Such processors combined with a capable RFFE
make them suitable platforms for mobile communications and computing.
Additions of new SIMD instructions for the Arm Cortex-A series and Cortex-
R52 processors, known an NEON [8] are accelerate signal processing
algorithms and functions to speed up software-defined radio applications.

It is an exciting time for algorithm developers; there are many new and advanced
methods of implementing signal processing applications on hardware. The difficulty
is to ensure that no matter which hardware is chosen to run algorithms on, the
hardware and development methodology will be supported in 5 years.

1.6 Software Environments for SDR

As described in Section 1.2, at their most fundamental level, most commercially
available SDR platforms convert live RF signals to samples at digital baseband, and
use a software-defined mechanism for modulation and demodulation techniques to
transfer real-world data. Referring back to Figure 1.3, the boundary between the
analog and digital worlds for a communication system is located at the analog-to-
digital converter (ADC) and the digital-to-analog converter (DAC), where signal
information is translated between a continuous signal and a discrete set of signal
sample values. Typically, the radio can be configured to select center frequency,
sampling rate, bandwidth, and other parameters to transmit and receive signals
of interest. This leaves the modulation and demodulation techniques, which are
developed using a two-step development process.

1. Develop, tune, and optimize the modulation and demodulation algorithms
for a specific sample rate, bandwidth, and environment. This is normally
done on a host PC, where debugging and visualization is much easier. At
this phase of development, the modulation and demodulation of the RFFEs
are performed on a host, providing great flexibility to experiment and test
algorithm ideas.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 16 — #16

16 Introduction to Software-Defined Radio

2. Take the above algorithm, which may be implemented in a high-level
language in floating point, and code it in a production worthy environment,
making production trade-offs of a product’s size, weight, power and cost
(SWaP-C) in mind. These platforms become truly software-defined when
the onboard hardware and embedded processor are programmed to perform
application-specific digital communications and signal processing functions.

While this text focuses exclusively on the first algorithmic step of the SDR
development process, the second production step cannot be excluded when looking
at a development flow. Unless your goal is to publish a paper and never actually
have a path for a working prototype, a complete development process must be kept
in mind.

The first step requires a convenient mechanism to capture data for signal
analysis and development of algorithms that process those signals. This makes
it vitally important to have efficient and reliable PC-based software to develop
and test the data transmission and digital signal processing functions in a wireless
communications system.

One software environment that meets this requirement is MATLAB from
MathWorks. MATLAB is a technical computing environment and programming
language, allowing ease of use development and excellent visualization mechanisms.
An additional product, Communications Systems Toolbox, adds physical layer
algorithms, channel models, reference models, and connectivity to SDR hardware
to transmit and receive live signals. MATLAB is cross platform (Windows, Linux,
MAC) offering support for many of the popular commercial radio front-ends. Using
MATLAB enables an incremental and iterative development workflow for SDR
consisting of:

• Algorithm development and design validation with link-level simulations;
• Algorithm validation with live signals using connection to commercially

available SDR hardware.

MathWorks also offers Simulink, which is an environment for real-world
system simulation and automatic code generation for hardware and software
implementation. It allows the radio developer to continue to the second stage
of production development. These capabilities of Simulink provide a path to
production:

• Development and validation of a hardware-accurate model;
• Implementation of a prototype on SDR hardware using automatic HDL and

C code generation;
• Verification of the prototype versus the validated model;
• Deployment of the implementation to production SDR hardware.

Although Simulink will largely be ignored in this text, being able to have a single
environment from concept to production is very powerful and should not be
overlooked for those who are trying to make a real production radio.

Another SDR software architecture is the popular open-source GNU Radio
software [9], which is a free software (as in freedom) development toolkit that
provides signal processing blocks to implement software-defined radios and signal

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 17 — #17

1.7 Additional readings 17

processing systems. It can be used with external RF hardware to create software-
defined radios, or without hardware in a simulation-like environment. It is widely
used in hobbyist, academic, and commercial environments to support both wireless
communications research and real-world radio systems.

In GNU Radio, a variety of C++ libraries modeling different digital
communications and digital signal processing algorithms are integrated together
using Python and SWIG (a software development tool that connects programs
written in C and C++ with a variety of high-level programming languages including
Python). These libraries are produced by the open-source community and freely
shared with everyone.

The authors have used a variety of tools including MATLAB, Simulink, and
GNU Radio in research, product development, and teaching undergraduate and
graduate classes. Each tool has its advantages and disadvantages and can be used at
different places of the research or development cycle. It was believed by the authors
that all the various software environments can be used correctly or incorrectly
to teach wireless physical layer fundamentals, although the prerequisites for each
tool is different. For those who choose the GNU Radio path, the requirements to
have a working knowledge of Linux, Python, C++, and SWIG is very high. While
this is very common for a computer science student, it is not for most students
in communications, and asking someone to learn the tool at the same time as
the communications theory can prove difficult. One can use preexisting blocks
in GNU Radio and bypass the requirements of understanding Python and C++,
but then some opportunities to demonstrate and experiment with fundamental
communications theory are lost, as the student just uses a block that someone
else wrote, with little understanding of what it is doing. The same can be said for
Simulink; it is also a very powerful tool, with many preexisting blocks for timing
recovery and carrier synchronization. However, using these blocks does not allow
many students to understand what is happening inside the blocks, and therefore the
students have difficulty in understanding how to tune the blocks for their situation.

This is why MATLAB was chosen for this book. It is a cross-platform
environment, allowing students to use what they are familiar with, and all the
blocks presented are MATLAB scripts, with nothing to hide. If a student wants to
better understand something, the entire algorithm is defined in the MATLAB code,
with nothing to obfuscate the communications theory.

1.7 Additional readings

Although this chapter gave a brief introduction to the expanding area of SDR
technology, there are several books available in the open literature that can
provide a more detailed viewpoint of this topic. For instance, the book by Reed
extensively covers many of the issues associated with the software architecture of
an SDR platform [10], while many of the design considerations and approaches
used to construct SDR hardware prototype and their RFFE are covered in the
book by Kensington [11]. Another excellent reference regarding the hardware
implementation of SDR systems is by Grayver [12]. Furthermore, understanding
the importance of the analog-digital divide and how SDR systems bridge that

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 18 — #18

18 Introduction to Software-Defined Radio

divide is the subject of the paper by Machado and Wyglinski [13]. Finally, an
excellent series of papers covering the latest advances in SDR technology and
providing some perspective on its evolution from 20 years ago are presented in
IEEE Communications Magazine [14, 15].

References

[1] American Guild Of Town Criers Website, 1997 http://www.americantowncriers.com/.
[2] IEEE Project 1900.1 - Standard Definitions and Concepts for Dynamic Spectrum Access:

Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum
Management https://standards.ieee.org/develop/project/1900.1.html.

[3] Analog Devices ADF7030 http://www.analog.com/ADF7030
[4] Hall, B., and W. Taylor, X- and Ku-Band Small Form Factor Radio Design http://www.

analog.com/en/technical-articles/x-and-ku-band-small-form-factor-radio-design.html.
[5] Xilinx Inc. www.xilinx.com 7 Series DSP48E1 User Guide, UG479 (v1.9) September

27, 2016 https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_
DSP48E1.pdf

[6] McCool, M., “Signal Processing and General-Purpose Computing on GPUs,” IEEE Signal
Processing Magazine, Vol. 24, No. 3, May 2007, http://ieeexplore.ieee.org/document/
4205095/.

[7] Nivdea GPU-accelerated Libraries for Computing https://developer.nvidia.com/
gpu-accelerated-libraries.

[8] ARM NEON https://developer.arm.com/technologies/neon.
[9] GNU Radio. Welcome to GNU Radio!. http://gnuradio.org/.

[10] Reed, J. H., Software Radio: A Modern Approach to Radio Engineering, Upper Saddle
River, NJ: Prentice Hall PTR, 2002.

[11] Kensington, P., RF and Baseband Techniques for Software Defined Radio, Norwood, MA:
Artech House, 2005.

[12] Grayver, E., Implementing Software Defined Radio, New York: Springer-Verlag, 2012.
[13] Machado, R. G. and A. M. Wyglinski, “Software-Defined Radio: Bridging the Analog to

Digital Divide,” Proceedings of the IEEE, Vol. 103, No. 3, March 2015, pp. 409–423.
[14] Mitola, J., P. Marshall, K. C. Chen, M. Mueck, and Z. Zvonar, “Software Defined

Radio - 20 Years Later: Part 1 [guest editorial], IEEE Communications Magazine,
Vol. 53, No. 9, September 2015, pp. 22–23, http://ieeexplore.ieee.org/document/
7263341/?section=abstract.

[15] Mitola, J., P. Marshall, K. C. Chen, M. Mueck, and Z. Zvonar, “Software Defined Radio -
20 Years Later: Part 2 [guest editorial], IEEE Communications Magazine, Vol. 54, No. 1,
January 2016, p. 58, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7378426.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 19 — #1

C H A P T E R 2

Signals and Systems

SDR is an application-specific area of signal processing, and everyone involved in
SDR development needs to not only have a solid background in signals and systems,
but also RF and analog baseband processing. This chapter covers the many aspects
of linear time-invariant (LTI) signals and systems, analog processing, and RF that
forms the fundamental basis for the latter chapters. It is not expected that the reader
will go through each topic in detail, but if any of the short topics are new, the reader
should refer to the more comprehensive books on these subjects.

2.1 Time and Frequency Domains

The time and frequency domains are alternative ways of representing the
same signals. The Fourier transform, named after its initial instigator, French
mathematician and physicist Jean-Baptiste Joseph Fourier, is the mathematical
relationship between these two representations. If a signal is modified in one domain,
it will also be changed in the other domain, although usually not in the same way.
For example, convolution in the time domain is equivalent to multiplication in the
frequency domain. Other mathematical operations, such as addition, scaling, and
shifting, also have a matching operation in the opposite domain. These relationships
are called properties of the Fourier transform, which describe how a mathematical
change in one domain results in a mathematical change in the other domain.

The Fourier transform is just a different way to describe a signal. For example,
investigating the Gibbs phenomenon, which states if you add sine waves at specific
frequency/phase/amplitude combinations you can approximate a square wave, can
be expressed mathematically as (2.1), and shown in Figure 2.1.

x(t) = sin(t) + sin(3t)
3

+ sin(5t)
5

+ ... =
n=∞∑
n=1

sin(n × t)
n

; n = odd (2.1)

When we look at the signal across the time axis that is perpendicular to the
frequency axis, we observe the time domain. We cannot see the frequency of
the sine waves easily since we are perpendicular to the frequency axis. When we
transform domains and observe phenomenon across the frequency axis, which is
perpendicular to the time axis, we observe the frequency or Fourier domain. We
can easily make out the signal magnitude and frequency, but have lost that time
aspect. Both views represents the same signal such that, they are just being observed
things from different domains via transforms.

19

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 20 — #2

20 Signals and Systems

Figure 2.1 Gibbs phenomenon, looking left, the time domain, looking right, the Fourier domain.

Q
Investigate the Gibbs phenomenon in MATLAB by using Code 2.1
to better understand how adding sine waves with variations in
frequency/phase/amplitude affect the time domain, and frequency
domains

Code 2.1 Gibbs phenomenon: gibbs.m

2 max = 9;
3 fs = 1000;

11 for i = 1:2:max
12 % dsp.SineWave(amp,freq,phase,Name,Value);
13 wave = dsp.SineWave(1/i, i*2*pi, 0, ...
14 ’SamplesPerFrame’, 5000, ’SampleRate’, fs);
15 y = wave();
16 if i == 1
17 wavesum = y;
18 else
19 wavesum = wavesum + y;
20 end
28 scope(wavesum());
29 pause(.5);
30 % waitforbuttonpress;
31 end

2.1.1 Fourier Transform
The Fourier transform includes four members in its family: the Fourier transform,
Fourier series, discrete Fourier transform (DFT), and discrete-time Fourier
transform (DTFT). The commonly referred to FFT (fast Fourier transform) and
its inverse, the inverse FFT (IFFT), is a specific implementation of the DFT.

The Fourier transform of x(t) is defined as [1]:

X(ω) =
∫ ∞

−∞
x(t)e−jωtdt, (2.2)

where t is the time variable in seconds across the time domain, and ω is the frequency
variable in radian per seconds across frequency domain.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Frequency

.______I□ __ ___JI

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 21 — #3

2.1 Time and Frequency Domains 21

Applying the similar transform to X(ω) yields the inverse Fourier transform [1]:

x(t) =
∫ ∞

−∞
X(ω)ej2πωtdω, (2.3)

where we write x(t) as a weighted sum of complex exponentials.
The Fourier transform pair above can be denoted as [2]:

x(t)
F↔ X(ω), (2.4)

where the left-hand side of the symbol
F↔ is before Fourier transform, while the

right-hand side of the symbol
F↔ is after Fourier transform. There are several

commonly used properties of Fourier transform that are useful when studying SDR
Fourier domain, which have been summarized in Table 2.1 for your reference.

2.1.2 Periodic Nature of the DFT
Unlike the other three Fourier transforms, the DFT views both the time domain
and the frequency domain signals as periodic (they repeat forever). This can be
confusing and inconvenient since most of the signals used in many signal processing
applications are not periodic. Nevertheless, if you want to use the DFT (and its fast
implementation, the FFT), you must conform with the DFT’s view of the world.

Figure 2.2 shows two different interpretations of the time domain signal. First,
observing the upper signal, the time domain viewed as N points. This represents how
signals are typically acquired by SDRs, by a buffer of N points. For instance, these
128 samples might have been acquired by sampling some analog signal at regular
intervals of time. Sample 0 is distinct and separate from sample 127 because they
were acquired at different times. From the way this signal was formed, there is no
reason to think that the samples on the left of the signal are even related to the
samples on the right.

Unfortunately, the DFT does not see things this way. As shown in the lower part
of Figure 2.2, the DFT views these 128 points to be a single period of an infinitely
long periodic signal. This means that the left side of the acquired signal is connected
to the right side of a duplicate signal. Likewise, the right side of the acquired signal

Table 2.1 Fourier Transform Properties∗

Property Time Signal Fourier Transform Signal
Definition x(t)

∫∞
−∞ x(t)e−jωtdt

Inversion formula
∫∞
−∞ X(ω)ej2πωtdω X(ω)

Linearity
∑N

n=1 anxn(t)
∑N

n=1 anXn(ω)

Symmetry x(−t) X(−ω)

Time shift x(t − t0) X(ω)e−jωt0

Frequency shift x(t)ejω0t X(ω − ω0)

Scaling x(αt) 1
|α| X(ω

α
)

Derivative dn

dtn x(t) (jω)nX(ω)

Integration
∫∞
−∞ x(τ)dτ

X(ω)
jω + πX(0)δ(ω)

Time convolution x(t) ∗ h(t) X(ω)H(ω)

Frequency convolution x(t)h(t) 1
2π

X(ω) ∗ H(ω)
∗ based on [2]. Suppose the time signal is x(t), and its Fourier transform signal is X(ω)

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 22 — #4

22 Signals and Systems

Figure 2.2 Periodicity of the DFT’s time domain signal. The time domain can be viewed as N
samples in length, shown in the upper figure, or as an infinitely long periodic signal, shown in the
lower figures [4].

is connected to the left side of an identical period. This can also be thought of as
the right side of the acquired signal wrapping around and connecting to its left side.
In this view, sample 127 occurs next to sample 0, just as sample 43 occurs next
to sample 44. This is referred to as being circular, and is identical to viewing the
signal as being periodic. This is the reason that window [3] functions need to be
preapplied to signal captures before applying an FFT function, which is multiplied
by the signal and removes the discontinuities by forcing them to zero [4].

2.1.3 Fast Fourier Transform
There are several ways to calculate the DFT, such as solving simultaneous linear
equations or correlation method. The FFT is another method for calculating the
DFT. While it produces the same result as the other approaches, it is incredibly more
efficient, often reducing the computation time by multiple orders of magnitude.
While the FFT only requires a few dozen lines of code, it is one of the more
complicated algorithms in signal processing, and its internal workings details are
left to those that specialize in such things. You can easily use existing and proven
FFT routines [4, 5] without fully understanding the internal workings as long as
you understand how it is operating.

An FFT analysis using a generalized test setup shown in Figure 2.3. The spectral
output of the FFT is a series of M

2 points in the frequency domain (M is the size of
the FFT, the number of samples stored in the buffer memory). The spacing between

Analog Devices perpetual eBook license – Artech House copyrighted material.

2 ~-- --- - - ,--~
I
I
I

I I I
I I I ------~------~------~ ---
' I Cl/ I

"0 I
::,

=K 0

The time domain
viewed as N points ~

~- l ------~---- I I __ \J-
I I I
I I I
I I I
I I I

-2 -+----+'--~'--7'--~
The time domain 0 32 64 96
viewed as periodic 5 I b

\ ampe num er

/1//\~
127

t. ······· ~1ik4~~ [~nL A A [!MAJ 1,
~-1 ________ J1_~+---------V.-~---------Y-v~---------J:~!:iU_v-~-------~ -U

-2 -+---------j-1
--------,-

1---------t1-----r1 -------t-1---------1

-384 -256 -128 0 128 256 384
Sample number

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 23 — #5

2.2 Sampling Theory 23

Figure 2.3 Generalized test set up for FFT analysis of ADC output [6].

the points is fs
M , and the total frequency range covered is DC to fs

2 , where fs is the
sampling rate. The width of each frequency bin (sometimes called the resolution of
the FFT) is fs

M .
Figure 2.4 shows an FFT output for an ideal 12-bit ADC using the Analog

Devices’ ADIsimADC®program. Note that the theoretical noise floor of the FFT
is equal to the theoretical signal-to-noise ratio (SNR) plus the FFT process gain
of 10log10(M

2). It is important to remember the value for noise used in the SNR

calculation is the noise that extends over the entire Nyquist bandwidth (DC to fs
2),

but the FFT acts as a narrowband spectrum analyzer with a bandwidth of fs
M that

sweeps over the spectrum. This has the effect of pushing the noise down by an
amount equal to the process gain—the same effect as narrowing the bandwidth of
an analog spectrum analyzer.

The FFT output can be used like an analog spectrum analyzer to measure the
amplitude of the various harmonics and noise components of a digitized signal. The
harmonics of the input signal can be distinguished from other distortion products
by their location in the frequency spectrum.

2.2 Sampling Theory

A continuous-time analog signal can be converted to a discrete-time digital signal
using sampling and quantization, as shown in Figure 2.5, where a continuous analog
input signal xa(t) is converted to a discrete digital output signal x[n]. Sampling
is the conversion of a continuous-time signal into a discrete-time signal obtained
by taking the samples of the continuous-time signal at discrete-time instants [1].
The quantization process converts the sample amplitude into a digital format.
Section 2.2.1 will introduce a frequently used sampling method; namely, uniform
sampling.

Similarly, a discrete-time signal can also be converted to a continuous-time
signal using reconstruction. However, reconstruction is not always successful.
Sometimes, the reconstructed signal is not the same as the original signal. Since for
a given sampled signal, it can represent an infinite number of different continuous-
time signals that can fit into the same quantized sample points. However, if the
sampling satisfies certain criterion, the signal can be reconstructed without losing
information. This criterion, called Nyquist sampling theorem, will be introduced in
Sections 2.2.3 and 2.5.1.

2.2.1 Uniform Sampling
There are many ways to perform sampling of an analog signal into a digital
representation. However, if we specify the sampling interval as a constant number

Analog Devices perpetual eBook license – Artech House copyrighted material.

Analog I ~point
Input N-Bit M-point Spectral

fa N-Bit Sample Buffer vector M-Point Output

ADC
Memory FFT
M-Words Processor

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 24 — #6

24 Signals and Systems

Figure 2.4 FFT output for an ideal 12-bit ADC, fa = 2.111 MHz, fs = 82 MSPS, average of 5 FFTs,
M = 8192. Data generated from ADIsimADC® [6].

Figure 2.5 Basic parts of an analog-to-digital converter (ADC) [1]. Sampling takes place in the
sampler block. xa(t) = analog continuous time signal; fs is the digital sample rate; xa[n] is the discrete
time continuous analog signal; xq[n] is the discrete time, discrete digital signal, which may come
out as grey code; and x[n] is the output of the coder in 2s complement form [7].

Ts, we get the most widely used sampling, called uniform sampling or periodic
sampling. Using this method, we are taking samples of the continuous-time signal
every Ts seconds, which can be defined as

x[n] = x(nTs), −∞ < n < ∞, (2.5)

where x(t) is the input continuous-time signal, x[n] is the output discrete-time signal,
Ts is the sampling period, and fs = 1/Ts is the sampling frequency.

An equivalent model for the uniform sampling operation is shown in
Figure 2.6(a), where the continuous-time signal x(t) is multiplied by an impulse
train p(t) to form the sampled signal xs(t), which can be defined as

xs(t) = x(t)p(t), (2.6)

where the signal p(t) is referred to as the sampling function.
The sampling function is assumed to be a series of narrow pulses, which is

either zero or one. Thus, xs(t) = x(t) when p(t) = 1, and xs(t) = 0 when p(t) = 0.
Since p(t) = 1 only at time instants Ts, the resulting xs(t) = x(nTs) = x[n], which
proves that this is indeed an equivalent model for the uniform sampling operation.
This model will help us to obtain the frequency domain representation of uniform
sampling in Section 2.2.2.

Analog Devices perpetual eBook license – Artech House copyrighted material.

0 ~----------A_D_C_FU_L~LS~CA_ L_E __________ ~ ~-----<

-25

SNR = 6.02N + 1.76dB = 74dB
-50

-75

---- - ~~~ -~~~~~1~~~1~~- ~~1~~-:~~~: -- -- 1-- -------------------------- -- -- :~~~~~ 1 0dB -- -

- - - - - - - - - - - - - - - - - - -------------- --------- -- ---------------------------------- - -------------

-100

M
10 log 2 = 36dB

- --- -- - .Z -- _j __ -4 -- --5 ---_6_ ------------- -- ------------ --- - -- -- ----- ----- --- - - - - --- --------

-125

-150
N = 12, M = 8192

-175 - --------------- - -- --------------- -------------- --- --- -- -- ----------- -- --- - - ----------- -- -- - - - -

-200 O 5

Analog
Signal
Xa(t)

Data generated using ADlsimADC®

10 15

f, Discrete
I Time

Signal

Sampler
Xa[n]

20

Frequency (MHz)

25

Quanitized
Signal

Quantizer
Xq[n]

30

Coder

35 40

Digital
Signal
x[n]

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 25 — #7

2.2 Sampling Theory 25

Figure 2.6 An equivalent model for the uniform sampling operation. (a) A continuous-time
signal x(t) is multiplied by a periodic pulse p(t) to form the sampled signal xs(t), and (b) a periodic
pulse p(t).

2.2.2 Frequency Domain Representation of Uniform Sampling
Since it is easier to derive the Nyquist sampling theorem in frequency domain, in this
section we will try to represent the uniform sampling process in frequency domain.

According to Figure 2.6(b), we can define the sampling function p(t) as

p(t) =
∞∑

k=−∞
δ(t − kTs), k = 0, 1, 2, ..., (2.7)

where at time instants kTs, we have p(t) = 1. According to [8], p(t) is a Dirac comb
constructed from Dirac delta functions.

Substitution of (2.7) into (2.6) gives

xs(t) = x(t)p(t) = x(t)
∞∑

k=−∞
δ(t − kTs). (2.8)

In order to understand the sampling process in frequency domain, we need to
take the Fourier transform of xs(t). According to frequency-domain convolution

Analog Devices perpetual eBook license – Artech House copyrighted material.

Impulse train
generator

Xa(t)

"" I
I

I
I

I
I

Analog
signal

Multiplier

x[n]

~
x.[n]

"" "" I I
I I

I
Quantizer

I
I I

I I
I I

Discrete-time Quantized
signal signal

n

(a)

• • •

t

(b)

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 26 — #8

26 Signals and Systems

property in Table 2.1, multiplication in time domain will lead to convolution
in frequency domain. Therefore, multiplication of x(t) and p(t) will yield the
convolution of X(ω) and P(ω):

Xs(ω) = 1
2π

X(ω) ∗ P(ω), (2.9)

where X(ω) is the Fourier transform of x(t), and P(ω) is the Fourier transform
of p(t).

The Fourier transform of a Dirac comb is also a Dirac comb [8], namely

P(ω) =
√

2π

Ts

∞∑
k=−∞

δ(ω − k
2π

Ts
) =

√
2π

Ts

∞∑
k=−∞

δ(ω − kωs), (2.10)

where ωs = 2π fs is the sampling frequency.
Performing convolution with a collection of delta function pulses at the pulse

location, we get

Xs(ω) = 1√
2πTs

∞∑
k=−∞

X(ω − kωs). (2.11)

Equation (2.11) tells us that the uniform sampling creates images of the Fourier
transform of the input signal, and images are periodic with sampling frequency fs.

2.2.3 Nyquist Sampling Theorem
Based on (2.11), we draw the spectrum of original signal x(t) and the sampled signal
xs(t) on frequency domain, as shown in Figure 2.7. We assume the bandwidth of
the original signal is [−fh, fh], as shown in Figure 2.7(a). For now, we do not pay
attention to the signal amplitude, so we use A and As to represent them. Assuming
the sampling frequency is fs, then the sampled signal will have replicas at location
kfs. In order to reconstruct the original signal from the sampled signal, we will apply
a lowpass filter on the sampled signal, trying to extract the n = 0 term from Xs(f),
as shown in Figure 2.7(b). Therefore, accomplishing reconstruction without error
requires that the portion of the spectrum of Xs(f) at f = ±fs does not overlap with
the portion of the spectrum at f = 0. In other words, this requires that fs − fh > fh
or fs > 2fh, which leads to the Nyquist sampling theorem.

Nyquist sampling theorem applies for the bandlimited signal, which is a signal
x(t) that has no spectral components beyond a frequency B Hz [9]. That is,

X(ω) = 0, |ω| > 2πB. (2.12)

The Nyquist sampling theorem states that a real signal, x(t), which is
bandlimited to B Hz can be reconstructed without error from samples taken
uniformly at a rate R > 2B samples per second. This minimum sampling frequency,
Fs = 2B Hz, is called the Nyquist rate or the Nyquist frequency. The corresponding
sampling interval, T = 1

2B , is called the Nyquist interval [1]. A signal bandlimited
to B Hz, which is sampled at less than the Nyquist frequency of 2B (i.e., which was
sampled at an interval T > 1

2B), is said to be undersampled.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 27 — #9

2.2 Sampling Theory 27

Figure 2.7 The spectrum of original signal x(t) and the sampled signal xs(t) in the frequency
domain. (a) The spectrum of original continuous-time signal x(t), with bandwidth −fh to fh, and
amplitude A. (b) The spectrum of the digitally sampled signal xs(t), fs > fh which satisfies Nyquist
sampling theorem. (c) The spectrum of the digitally sampled signal xs(t), fs < fh which does not
satisfies Nyquist sampling theorem and has aliasing.

When a signal is undersampled, its spectrum has overlapping spectral tails,
or images, where Xs(f) no longer has complete information about the spectrum
and it is no longer possible to recover x(t) from the sampled signal. In this case,
the tailing spectrum does not go to zero, but is folded back onto the apparent
spectrum. This inversion of the tail is called spectral folding or aliasing, as shown
in Figure 2.7(c) [10].

Hands-On MATLAB Example: Let us now explain via computer simulation how
the Nyquist criteria requires that the sampling frequency be at least twice the highest
frequency contained in the signal or information about the signal will be lost.
Furthermore, in Section 2.5.1, the phenomena known as aliasing will occur and
the frequency will be folded back into the first Nyquist band. In order to describe
the implications of aliasing, we can investigate things in the time domain.

Consider the case of a time domain representation of a single tone sinewave
sampled as shown in Figure 2.8(a). In this example, the sampling frequency (fs) is

Analog Devices perpetual eBook license – Artech House copyrighted material.

• • •

-f,

• • •

Lowpass
filter

X(f)

A

0

(a)

~-1---A_,_s~ :

0

(b)

Xs(f)

- f, - fh Q · f h

\Aliasing/
(c)

I
I
I
I
I
I

f

• • •

f, f

• ••

f, f

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 28 — #10

28 Signals and Systems

Figure 2.8 Aliasing in the time domain. Digital samples are the same in both figures. (a) Analog
input (FA) solid line; digital sample data (circles) at (fs), and (b) digital reconstruction dashed line;
digital sample data (circles) at (fs).

not at least two times the analog input frequeny (FA), but actually slightly more
than fs. Therefore, the Nyquist criteria is violated by definition. Notice that the
pattern of the actual samples produces an aliased sinewave at a lower frequency, as
shown in Figure 2.8(b).

Code 2.2 can create similar figures as shown in Figure 2.8(a) and Figure 2.8(b),
and may be helpful to better understand how aliasing works by manipulating
Fs and Fa. Figures 2.7 and 2.25 demonstrate the same effect in the frequency
domain.

Code 2.2 Time domain aliasing: nyquist.m

2 Fs = 1000; % Sample rate (Hz)
3 Fa = 1105; % Input Frequency (Hz)
4 % Determine Nyquist zones
5 zone = 1 + floor(Fa / (Fs/2));
6 alias = mod(Fa, Fs);
7 if ˜mod(zone,2) % 2nd, 4th, 6th, ... Nyquist Zone
8 % Its not really a negative amplitude, but it is 180 degrees out
9 % of phase, which makes it harder to see on the time domain side,

10 % so we cheat to make the graphs look better.
11 alias = -(Fs - alias)/Fs;
12 else % 3rd, 5th, 7th, ... Nyquist Zone
13 alias = (alias)/Fs;
14 end
15
16 % Create the analog/time domain and digital sampling vectors
17 N = 2*1/abs(alias) + 1; % Number of Digital samples
18 points = 256; % Analog points between digital samples
19 analogIndexes = 0:1/points:N-1;
20 samplingIndexes = 1:points:length(analogIndexes);
21 wave = sin(2*pi*Fa/Fs*analogIndexes);

Analog Devices perpetual eBook license – Artech House copyrighted material.

..,

0.8

0.6

0.4

-g 0.2
:!:: c.. o,m+,.....4+'1f-++++-+-H-+.++.f-+,4-++44--1-4-l--'l-+++-+.+...++.++.!-f,l

E
<(-0.2

-0.4

-0.6

-0.8

-1

0 5 10
Digital samples

(a)

15

..,

0.8

0.6

0.4

-o 0.2
.-2 c.. 0
E

<C -0.2

-0.4

-0.6

-0.8

-1

' I
I I

I I
I

I
I
I I
I I
I I

I

!
I
I
I
I
I
(

0 5

I

/ ~
I

(I

" I
I
I
I

.,1

¥/

I
I
I

I
(!

\ /

10
Digital samples

(b)

I
I
I
I

t
I ' I I
I I
I I

I
(

I I
I (

I
I I
(I

'- '

15

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 29 — #11

2.2 Sampling Theory 29

2.2.4 Nyquist Zones
The Nyquist bandwidth itself is defined to be the frequency spectrum from DC to
fs
2 . However, the frequency spectrum is divided into an infinite number of Nyquist
zones, each having a width equal to 0.5 fs as shown in Figure 2.9. The frequency
spectrum does not just end because you are not interested in those frequencies.

This implies that some filtering ahead of the sampler (or ADC) is required to
remove frequency components that are outside the Nyquist bandwidth, but whose
aliased components fall inside it. The filter performance will depend on how close the
out-of-band signal is to fs

2 and the amount of attenuation required. It is important
to note that with no input filtering at the input of the ideal sampler (or ADC),
any frequency component (either signal or noise) that falls outside the Nyquist
bandwidth in any Nyquist zone will be aliased back into the first Nyquist zone.
For this reason, an analog antialiasing filter is used in almost all sampling ADC
applications to remove these unwanted signals.

Q

How do you think the relationship changes between the measured
frequency and the absolute frequency, as it goes up into the third
or fourth or higher Nyquist zones as shown in Figure 2.9? See if
you can confirm your hypothesis by modifying Code 2.2 to plot
absolute frequency on the x-axis, and measured frequency on the
y-axis.

2.2.5 Sample Rate Conversion
In real-world applications, we often would like to lower the sampling rate because
it reduces storage and computation requirements. In many cases we prefer a higher
sampling rate because it preserves fidelity. Sampling rate conversion is a general
term for the process of changing the time interval between the adjacent elements in
a sequence consisting of samples of a continuous-time function [10].

Decimation: The process of lowering the sampling rate is called decimation, which
is achieved by ignoring all but every Dth sample. In time domain, it can be defined as

y[n] = x[nD], D = 1, 2, 3, ..., (2.13)

where x[n] is the original signal, y[n] is the decimated signal, and D is the decimation
rate. According to (2.13), the sampling rates of the original signal and the decimated

Figure 2.9 Analog signal fa sampled at fs has images (aliases) at ±kFs ± Fa, k = 1, 2, 3,

Analog Devices perpetual eBook license – Artech House copyrighted material.

□

I fa I I
T ' T • T I

I I
I I

I I ((

fs 1.5f5 2f5
.)

0.5f5

I_ 1st NYQUIST J 2nd NYQUIST J 3rd NYQUIST J 4th NYQUIST I I zone -r zone -r zone I+-- zone 1 - - -

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 30 — #12

30 Signals and Systems

signal can be expressed as

Fy = Fx

D
, (2.14)

where Fx is the sampling rates of the original signal, and Fy is the sampling rates of
the decimated signal.

Since the frequency variables in radians, ωx and ωy, can be related to sampling
rate, Fx and Fy, by

ωx = 2πFTx = 2πF
Fx

, (2.15)

and

ωy = 2πFTy = 2πF
Fy

, (2.16)

it follows from the distributive property that ωx and ωy are related by

ωy = Dωx, (2.17)

which means that the frequency range of ωx is stretched into the corresponding
frequency range of ωy by a factor of D.

In order to avoid aliasing of the decimated sequence y[n], it is required that
0 ≤ |ωy| ≤ π . Based on (2.17), it implies that the spectrum of the original sequence
should satisfy 0 ≤ |ωx| ≤ π

D . Therefore, in reality, decimation is usually a two-step
process, consisting of a lowpass antialiasing filter and a downsampler, as shown in
Figure 2.10. The lowpass antialiasing filter is used to constrain the bandwidth of
the input signal to the downsampler x[n] to be 0 ≤ |ωx| ≤ π

D .
In frequency domain, the spectrum of the decimated signal, y[n], can be

expressed as [1]

Y(ωy) = 1
D

D−1∑
k=0

HD

(
ωy − 2πk

D

)
S
(

ωy − 2πk

D

)
, (2.18)

where S(ω) is the spectrum of the input signal s[n], and HD(ω) is the frequency
response of the lowpass filter hD[n]. With a properly designed filter HD(ω), the
aliasing is eliminated, and consequently, all but the first k = 0 term in (2.18)
vanish [1]. Hence, (2.18) becomes

Y(ωy) = 1
D

HD

(ωy

D

)
S
(ωy

D

)
= 1

D
S
(ωy

D

)
, (2.19)

for 0 ≤ |ωy| ≤ π . The spectra for the sequence x[n] and y[n] are illustrated in
Figure 2.11, where the frequency range of the intermediate signal is 0 ≤ |ωx| ≤ π

D ,
and the frequency range of the decimated signal is 0 ≤ |ωy| ≤ π .

Figure 2.10 The structure of decimation, consisting of a lowpass antialiasing filter and a
downsampler.

Analog Devices perpetual eBook license – Artech House copyrighted material.

s[n]
Lowpass filter

h0 [n]

x[n] Downsampler
-!,D

y[n]

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 31 — #13

2.2 Sampling Theory 31

Figure 2.11 The spectra for the sequence x[n] and y[n], where the frequency range of ωx is stretched
into the corresponding frequency range of ωy by a factor of D. (a) Spectrum of the intermediate
sequence, and (b) spectrum of the decimated sequence.

Interpolation: The process of increasing the sampling rate is called interpolation,
which can be accomplished by interpolating (stuffing zeros) I − 1 new samples
between successive values of signal. In time domain, it can be defined as

y[n] =
{

x[n/I] n = 0, ±I, ±2I, ...
0 otherwise

, I = 1, 2, 3, ..., (2.20)

where x[n] is the original signal, y[n] is the interpolated signal, and I is the
interpolation rate.

According to (2.20), the sampling rates of the original signal and the
interpolated signal can be expressed as

Fy = IFx, (2.21)

where Fx is the sampling rates of the original signal, and Fy is the sampling rates
of the interpolated signal. Since (2.15) and (2.16) also hold here, it follows that ωx
and ωy are related by

ωy = ωx

I
, (2.22)

which means that the frequency range of ωx is compressed into the corresponding
frequency range of ωy by a factor of I. Therefore, after the interpolation, there will
be I replicas of the spectrum of x[n], where each replica occupies a bandwidth of π

I .

Analog Devices perpetual eBook license – Artech House copyrighted material.

-,ff

.7T

D
0~

D

(a)

(b)

m =Dm y X

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 32 — #14

32 Signals and Systems

Since only the frequency components of y[n] in the range 0 ≤ |ωy| ≤ π
I are unique

(i.e., all the other replicas are the same as this one), the images of Y(ω) above
ωy = π

I should be rejected by passing it through a lowpass filter with the following
frequency response:

HI(ωy) =
{

C 0 ≤ |ωy| ≤ π
I

0 otherwise
, (2.23)

where C is a scale factor.
Therefore, in reality, interpolation is also a two-step process, consisting of an

upsampler and a lowpass filter, as shown in Figure 2.12. The spectrum of the output
signal z[n] is

Z(ωz) =
{

CX(ωzI) 0 ≤ |ωz| ≤ π
I

0 otherwise
, (2.24)

where X(ω) is the spectrum of the output signal x[n].
The spectra for the sequence x[n], y[n] and z[n] are illustrated in Figure 2.13,

where the frequency range of the original signal is 0 ≤ |ωx| ≤ π , and the frequency
range of the decimated signal is 0 ≤ |ωz| ≤ π

I .

Hands-On MATLAB Example: Now let us experiment with decimation and
interpolation using MATLAB. The following example will manipulate two types
of signals: a continuous wave (CW) signal (a sine wave) and a random signal.
Furthermore, we will visualize the effects of upsampling and downsampling in
the the time and frequency domains. We begin by generating these signals using
MATLAB Code 2.3, and then pass the data through a lowpass filter in Code 2.4
to band-limit them. Using these band-limited versions we will observe the effects of
correct and incorrect up and downsampling in the time and frequency domains.

When left unfiltered in Figure 2.14(a) and Figure 2.14(e), the sine wave
signal mirrors a discrete version of a sine wave function. On the other hand in
Figure 2.14(b) and Figure 2.14(f), the random binary signal consist of a string of
random ones and negative ones.

Using the least-squares linear-phase FIR filter design or MATLAB’s firls
function, we are able to quickly generate FIR filter coefficients where the cut-off
frequency is approximately at 0.21π .

After passing the data through Code 2.4, the resulting filtered discrete time
signals (sine and random binary) represented in both the time and frequency
domains are presented in Figure 2.14(c) and Figure 2.14(g). The differences between
the original sine wave shown in Figure 2.14(e) and the band-limited sine wave in
Figure 2.14(g) are negligible since the frequency of the sine wave is less than the low
pass/band-limiting filter in Code 2.4. The differences of the random data shown in
shown in Figure 2.14(b) and the band-limited in Figure 2.14(d) can been seen easily,
and the reduction of bandwidth in the frequency domain show in Figure 2.14(h) is
very noticeable compared to the orginal in Figure 2.14(f). In the time domain, we

Figure 2.12 The structure of interpolation, consisting of an upsampler and a lowpass filter.

Analog Devices perpetual eBook license – Artech House copyrighted material.

x[n]
Upsampler

t,
y[n] Lowpass filter

h,[n]
z[n]

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 33 — #15

2.2 Sampling Theory 33

0π−

)(xX ω

xω
π

0

)(yY ω

I
x

y

ω
ω =

I

π

I

π3

I

π5

0

)(zZ ω

I
x

z

ω
ω =

I

π

I

π
−

(c)

(b)

(a)

Figure 2.13 The spectra for the sequence x[n], y[n] and z[n], where the frequency range of ωx
is compressed into the corresponding frequency range of ωy by a factor of I. (a) Spectrum of the
original sequence, (b) spectrum of the intermediate sequence, and (c) spectrum of the interpolated
sequence.

Code 2.3 Create data sets: up-down-sample.m

19 % Create deterministic and stochastic digital data streams
20 n = 0:1/Fs1:100-(1/Fs1); % Time index vector
21 sin_wave = sin(5*n*2*pi); % Generation of sinusoidal

% signal
22 random = 2*round(rand(1,length(n)))-1; % Random string of +1 and

% -1 values

Analog Devices perpetual eBook license – Artech House copyrighted material.

I I

I I

I I

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 34 — #16

34 Signals and Systems

Code 2.4 Create and apply lowpass filter to band-limit signal: up-down-sample.m

44 % Create lowpass filter and apply it to both data streams
45 % b = firls(n,f,a),
46 % n is the FIR filter order
47 % f is a vector of pairs of frequency points,
48 % a is a vector containing the desired amplitude at the points in f
49 coeffs1 = firls(taps,[0 0.2 0.22 1],[1 1 0 0]); % FIR filter

% coefficients
50 sin_bwlimited = filter(coeffs1,1,sin_wave);
51 random_bwlimited = filter(coeffs1,1,random);

Figure 2.14 Sine and random data, created by Code 2.3, then bandlimited by Code 2.4. (a)
Original sine wave: time domain, (b) original random data: time domain, (c) band-limited sine
wave: time domain, (d) band-limited random data: time domain, (e) original sine wave: Fourier
domain, (f) original random data: Fourier domain, (g) band-limited sine wave: Fourier domain, and
(h) band-limited random data: Fourier domain.

Analog Devices perpetual eBook license – Artech House copyrighted material.

1.5

.,
"O

.e 0.5
C.
E
"'
~-0.5
vi

-1

-1.5
200 220 240

Discrete time (n)

(a)

1.5

., 0~
"O 0.5 !fo 0

:f'o .e 0
0 0 0

B C. 0 RJ0
0 0 0

E 0 0 0 0 qr;
"' 0'1§

0
0 0

] -0.5 0 c,5)
01
vi -1

-1.5
200

i-50
.,

"O

.-E---100
C.
E
"' ,i;--150
C:
01
vi

0
0

Dc9

220 240
Discrete time (n)

(d)

-200 '--~<-----"----'
-0.5 -0.25 0 0.25 0.5

Frequency f,,

(g)

1.5

.,
"O 0.5
:2
C.
E 0

"'
]-0.5
01
vi -1

-1.5
200

0

cc'
2, -50 .,
"O
:,

:'.[-100
E
"'
~ -150
01
vi

-200
-0.5

i-50
.,

"O

.-E-100
C.
E
"' 'io--150
C:
01
vi

!iO ~ !iO

220 240
Discrete time (n)

(b)

of,_
2

-0.25 0 0.25 0.5
Frequency f,,

(e)

-200 '---------~

1.5

.,
"O 0.5 .e
C.
E 0
"'
]-0.5
01
vi -1

-1.5
200

0

~ -50 .,
"O

~-100
C.
E
"'
~-150
01
vi

-200
-0.5

-0.5 -0.25 0 0.25 0.5
Frequency f,,

(h)

220 240
Discrete time (n)

(c)

-0.25 0 0.25 0.5
Frequency f,,

(f)

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 35 — #17

2.2 Sampling Theory 35

examine the signal starting at a sample large enough to ignore the initial artifacts
of the lowpass filter, which is why we do not look at things when t = 0. In the
frequency domain, the lowpass filtering effectively limits the bandwidth of these
signals, which will make them more clearly visible in the subsequent exercises in
this section.

With the filtered sine wave and filtered random binary signals, we now want to
explore the impact of upsampling these signals by observing the resulting outcomes
in the frequency domain. Using Code 2.5, we can use the functionupsample to take
the filtered signals and upsample them by a factor of N (in this case, N=5). It should
be noted that all upsample simply inserts N-1 zeros between each original input
sample. This function is quite different than the interp interpolation function,
which combines upsampling and filtering operations.

The impact of upsampling can be clearly observed from the before-and-after
frequency responses of the signals. Specifically, we expect that the frequency
responses should be compressed by the upsampling factor of N, and also contain
N periodic replicas across the original frequency band. Referring to Figures 2.15(a)
and 2.15(b), we can observe this phenomena after upsampling our filtered sine
wave and random binary signals, which are upsampled by a factor of N=5 from
Code 2.5.

Notice the difference between Figure 2.14(g) and Figure 2.15(e) for the filtered
sine wave signal, or between Figure 2.14(h) and Figure 2.15(f) for the filtered
random data signal. In both cases, we can readily see that the spectra of these
signals have been compressed by the upsampling factor, and that we now have
periodic replicas across frequency. It is also obvious that the amplitude as changed,
as the average signal amplitude has been effected by this insertion of zeros. Although
the literature may discuss this effect as compression, it is interesting to note that
the actual signal has not changed in frequency. However, it appears in a different
location with respect to the − fs

2 to fs
2 scale. Therefore, it is important to remember

that fs in both figures are not the same (differs by a factor of 5), which is a slight
abuse of notation.

Now that we see how upsampling can compress the frequency responses of
signals and make periodic replicas across the spectrum, let us now explore how
downsampling these signals can either result in frequency expansion without any
aliasing or with substantial amounts of aliasing. Recall that the downsampling
process involves the periodic removal of M − 1 samples, which results in a
frequency response that expands by a factor of M. This frequency expansion can be
problematic when the frequency spectra begins to overlap with its periodic replicas

Code 2.5 Upsample the signals: up-down-sample.m

73 % y = upsample(x,n)
74 % increases the sampling rate of x by inserting (n 1) zeros
75 % between samples.
76 N = 5;
77 sin_up = upsample(sin_bwlimited,N);
78 random_up = upsample(random_bwlimited,N);

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 36 — #18

36 Signals and Systems

Figure 2.15 Upsampled data: Code 2.5, then processed by a downsampler: Code 2.6.
(a) Upsampled, band-limited, sine wave: time domain, (b) band-limited random data: Fourier
domain, (c) incorrect, upsampled, then downsampled, band-limited, sine wave: Fourier domain,
(d) incorrect, upsampled, then downsampled, band-limited, random data: Fourier domain, (e)
upsampled, band-limited, sine wave: Fourier domain, (f) band-limited random data: Fourier domain,
(g) incorrect, upsampled, then downsampled, band-limited, sine wave: Fourier domain, and
(h) incorrect, upsampled, and then downsampled, band-limited random data: Fourier domain.

centered at every multiple of 2π (sampled signals have spectra that repeat every 2π).
This overlapping results in the aliasing of the signal, thus distorting it and making it
very difficult to recover at the receiver. Code 2.6 will downsample the band-limited
signals and Code 2.5 will upsample the created signals by a factor of M=3. Note
that the MATLAB function downsample is different than the MATLAB function
decimate, where the latter combines the downsampling and filtering operations
to perform signal decimation.

In Code 2.6, which produces Figure 2.15(h) and Figure 2.15(g), we observed
the incorrect case in which downsampling without filtering out one of the periodic
replicas caused aliasing. Next, in Code 2.7 we will perform the necessary filtering
to remove the periodic replicas before downsampling. In this code we apply an
amplitude correct of the upsampling rate to compensate for these operations.

Analog Devices perpetual eBook license – Artech House copyrighted material.

1.5 1.5 1.5

Qi £ C!D o'6 0 0

" 00 OQ) " 00
0

"O
00

" "O

-~ 0.5 0 0 0 0 "O 0.5 o(§)O 0

J;o
.-2 0.5 0

0 :e 0

a. 0 0 0 0 0 a. 0
n n a. 0 0 0 ,C E n

E 0 10 E 0
0 u 0 "' 0

"' 0 0 0 0 ~ 0 "' 091/ 0 ~ ~ 0 0 0 0
~-0.5 0 0 0

_§,-0.5 r:i 0 §, -0.5 p q5J
00

0 0
vi oc9 cg 0 "' -1 D Qi C vi -1

-1.5 -1.5
1000 1100 1200 1000

Discrete time (n)

(a)

1.5 0

;;;;-
-50

" 00 3 "O 0.5 0

.-2 0 " 0
"O
:::, C a.

E 0
0

~-100
V 0 a.

"' 0 E
0 0 "' ~-0.5

"'
0

~-150
vi -1 0 "' vi

-1.5 -200

0

ao" -50
3

340 360 380 400

Discrete time (n)
(d)

-21.4 dB@ 0.04'3-t
>

" " "O "O

-0.5

0

:2-100 .-e-100
c.. a.
E E
"' "' ~-150 ~-150
C: C:

"' "' vi v,1 v \iv\/v vi
-200 V 0.5 -~8?5 -0.5 -0.25 0 0.25

Frequency f,,

(g)

0
00 0 V,

°c9 -1 0 0 C

-1.5
1100 1200 340 360 380 400

Discrete time (n) Discrete time (n)

(b) (c)

61,_ 0
-20.1 dB@ 0.01 2

-200~-~--~--~-~
-0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5

Frequency f,, Frequency f,,

(e) (f)

-0.25 0 0.25 0.5

Frequency f,,

(h)

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 37 — #19

2.3 Signal Representation 37

Code 2.6 Downsample the signals: up-down-sample.m

101 % Attempt to downsampling by M without filtering
102 % This is incorrect, but is instructive to show what artifacts occur
103 M = 3;
104 sin_up_down = downsample(sin_up,M);
105 random_up_down = downsample(random_up,M);

Code 2.7 Lowpass filter, then downsample the data: up-down-sample.m

126 % Lowpass filtering of baseband periodic replica followed by
% downsampling

127 % (correct approach)
128 coeffs2 = firls(taps,[0 0.15 0.25 1],[N N 0 0]); % FIR filter

% coefficients
129 sin_up_filtered = filter(coeffs2,1,sin_up);
130 sin_up_filtered_down = downsample(sin_up_filtered,M);
131 random_up_filtered = filter(coeffs2,1,random_up);
132 random_up_filtered_down = downsample(random_up_filtered,M);

When the signal is upsampled, the periodic replicas generated by this process
span across the entire −π to π radians (or − fs

2 to fs
2) of spectra. Without adequate

filtering of these replicas before downsampling, these periodic replicas will begin
to expand into other periodic replicas and result in aliasing. This phenomena
is illustrated in Figure 2.15(d) and Figure 2.15(h), where we downsample the
upsampled filtered sine wave and random binary signals previously described. For
the downsampling of the upsampled filtered sine wave signal, we observe aliasing
in Figure 2.15(g) with the spectra from other integers of Nyquist bands. When
performed properly, we should only have one replica that is expanded by the
downsampling factor, as observed in Figure 2.16(g) and Figure 2.17(b)

Since it is difficult to observe the spectra expansion of the sine wave signal
because it is narrow, let us also observe the frequency responses of the random
binary signal shown in Figures 2.15(h) and 2.17(b). In these figures, it is clearly
evident that aliasing is occurring since the replicas from the upsampling process
were not filtered out. On the other hand, when the upsampling replicas are filtered,
we observe a clean, unaliased, frequency response of the downsampled signal shown
in Figure 2.17(b).

We can do a final comparison of the signals in the time domain and see that
the shape of the time domain signal is nearly exactly the same in amplitude and
absolute time (seconds). It just has been sample rate converted from fs to 5

3 fs adding
more samples to the same signal.

2.3 Signal Representation

Understanding how a signal is represented can greatly enhance one’s ability to
analyze and design digital communication systems. We need multiple convenient
numeric mathematical frameworks to represent actual RF, baseband, and noise

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 38 — #20

38 Signals and Systems

Figure 2.16 Upsampled by N = 5, then filtered band-limited waveforms produced by Code 2.7.
You can still see the replicas of the signals, but the filter has suppressed it to very low levels. The
filtering has corrected the amplitude loss from the upsampling. (a) Upsampled, then filtered band-
limited, sine wave: Fourier domain, (b) upsampled, filtered, then downsampled, band-limited sine
wave: Fourier domain, (c) upsampled, then filtered band-limited, sine wave: Fourier domain, (d)
upsampled, filtered, then downsampled, band-limited sine wave: Fourier domain, (e) upsampled,
then filtered band-limited, random data: Fourier domain, (f) upsampled, then filtered band-limited,
random data: Fourier domain, (g) upsampled, then filtered band-limited, random Data: Fourier
domain, and (h) upsampled, filtered, then band-limited random data: Fourier domain.

signals. We usually have two: envelope/phase and in-phase/quadrature, and both
can be expressed in the time and Fourier domains.

2.3.1 Frequency Conversion
To understand how we can move signals from baseband to RF and from RF to
baseband, let us look more closely at modulators and demodulators. For example,
in Figure 2.18 we see a very classical quadrature modulator. The ADL5375 accepts
two differential baseband inputs and a single-ended LO, which generates a single-
ended output. The LO interface generates two internal LO signals in quadrature
(90◦ out of phase) and these signals are used to drive the mixers, which simply
multiply the LO signals with the input.

Analog Devices perpetual eBook license – Artech House copyrighted material.

1.5

(IJ

] 0.5

C.
E
"'

0

]-0.5
Cl

vi -1

-1.5

1.5

0.5

1100 1200
Discrete time (n)

(a)

~ f6
oOoo ffeo
0 0 0 0

0~o 't,Q o o o
0 1©/ O i

-0.5 ~ g
oo

-1 w'
-1.5

1.5

QJ
-0

.-2 0.5
C.
E 0
"' .;
§,-0.5
vi

-1

-1.5
1300 1100

s
:3,

(IJ

"O

:E-100
C.
E
"' .;-150
C:
Cl
vi

-200

1200
Discrete time Q,)

(b)

1.5

(IJ 8i 8i I'!', E8
-0 00 oO 00 oo
.-2 0.5 0 0 O 0 0 0 0 O
C.

0 0 0 0 0 0 0 0 E
0 0 "' 0 0 0 0 0 0 0

.;
0 0 0 0 0 0 0

6,-0.5
0 0 Do 00 0 vi

-1

-1.5
1300 360

~ Do 00
@ @

380 400 420
Discrete time (n)

(c)

0

"'

b-6.8 dB@ 0.016i 0

s
~ -50
(IJ

-0
:,

,:e: -100
C.
E
"'
] -150
Cl
vi

(IJ
-0

.-2
C.
E
"' .;
C:
Cl
vi

360 380 400 420 -0.5 -0.25 0 0.25
-200

0.5 -0.5 -0.25 0 0.25 0.5
Discrete time (n)

(d)
Frequency f,,

(e)

s
~-50-
(IJ

"O
.a
'5_-100
E

0 -----1~6cc'r~d=B~®~0~.0~4='i::

1, I ~
"'
]-150-
Cl
vi

-200
-0.5

Ill; ~::~~~
-0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5

Frequency f,,
(g)

Frequency f,,
(h)

Frequency f~
(f)

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 39 — #21

2.3 Signal Representation 39

Figure 2.17 Upsampled by N = 5, then filtered, and then downsampled by M = 3, band-limited
random data. A phase shift (time shift) occurs from the filtering. (a) Original band-limited random
data time domain at fs. (b) Upsampled, filtered, and the band-limited random data: time domain
at 5

3 fs.

Figure 2.18 ADL5375 broadband quadrature modular with range from 400 MHz to 6 GHz.

Mathematically, this mixing process will take the two inputs IBB and QBB,
which we will denote by I(t) and Q(t), multiply them by our LO at frequency
ωc, and add the resulting signal to form our transmitted signal r(t). The LO used
to multiply Q(t) is phase shifted by 90◦ degree to make it orthogonal with the
multiplication of the I(t) signal. Consequently, this yields in the following equation:

r(t) = I(t)cos(ωct) − Q(t)sin(ωct). (2.25)

The LO frequency is denote as ωc since it will be typically called the carrier
frequency, which exploits the phase relationship between the in-phase (I(t)cos(ωct))
and quadrature (Q(t)sin(ωct)) components. Therefore, the transmitted signal will
contain both components but will appear as a single sinusoid.

At the receiver, we will translate or down mix r(t) back into our in-phase and
quadrature baseband signals through a similar process but in reverse. By applying
the same LO with a second phase-shifted component to r(t) with a lowpass filter,

Analog Devices perpetual eBook license – Artech House copyrighted material.

1.5

Q) o<:b "O
/fo :::J 0.5 0

c§)o :!:: 0
0.. 0 0 0 0

E 0 0 0 0

o:s 0 0 c8 0 0 0 0

] -0.5
0 0

0 0 0 w c@
01
vi

0
0

-1 99
-1.5 '-----~---~----'

200 220 240
Discrete time (n)

(a)

IBBP

IBBN

LOIP

LOIN

QBBN

QBBP

Q)

-g 0.5
:!::
0..
E O
o:s

] -0.5
01
vi

-1

0

0 0
0 0
oo
?JJ

-1.5 '--'---~-~--~----'
360

ADL5375

380 400 420
Discrete time (n)

(b)

RFOUT

DSOP

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 40 — #22

40 Signals and Systems

we arrive at

Ir(t) = LPF{r(t)cos(ωct)} = LPF{(I(t)cos(ωct) − Q(t)sin(ωct))cos(ωct)} = I(t)
2

,

(2.26)

Qr(t) = LPF{r(t)sin(ωct)} = LPF{(−I(t)cos(ωct) + Q(t)sin(ωct))sin(ωct)} = Q(t)
2

.

(2.27)

In practice, there will be some phase difference between the transmitter LO and
receiver LO, which can cause rotation to r(t). However, the phase relation between
I(t) and Q(t) will alway be maintained.

2.3.2 Imaginary Signals
Discussing signals as quadrature or complex signal is taking advantage of the
mathematical constructs that Euler and others have created to make analysis easier.
We try to refer to signals as in-phase (I) and quadrature (Q) since that is actually
pedantically correct. As described in Section 2.3.1, the in-phase (I) refers to the
signal that is in the same phase as the local oscillator, and the quadrature (Q) refers
to the part of the signal that is in phase with the LO shifted by 90◦.

It is convenient to describe this as I being real and Q being imaginary since it
enables many mathematical techniques but at the end of the day is just a construct.
A prime example of this convience is frequency translation, which is performed by
the mixer. We start from the Euler relation of

ejx = cos(x) + j sin(x), (2.28)

where we can define x as target frequency plus time. Taking the conventions from
Section 2.3.1 but redefining I(t) and Q(t) as real and imaginary, we arrive at

y(t) = I(t) + jQ(t). (2.29)

Now, if we assume y(t) is a CW tone at frequency ωa for illustration purposes,
y(t) becomes

y(t) = cos(ωat) + jsin(ωat). (2.30)

Now applying (2.28) we can frequency shift y(t) by the desired frequency ωc:

y(t)ejωct = (
I(t)cos(ωct) − Q(t)sin(ωct)

)+ j
(
Q(t)cos(ωct) + I(t)sin(ωct)

)
= cos((ωc + ωa)t) + jsin((ωc + ωa)t).

(2.31)

Now our resulting signal will exist at frequency ωa + ωc through a simple
application of Euler’s identity.

Let us motivate the usefulness of a complex number representation further from
the perspective of hardware. If we consider the mixer itself as in Figure 2.18, the
IQ mixer will transmit signals with arbitrary phase and amplitude (within power
constraints). This is an example of how we encode information into the data we
transmit through differences in phase and amplitude. This is actually accomplished
through the relation of our in-phase and quadrature signal, which can be used to
create a single sinusoid with arbitrary phase and amplitude. Mathematically, we can

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 41 — #23

2.4 Signal Metrics and Visualization 41

produce a sinusoid with a specific envelope and phase (A,φ) with two orthogonal
components sine and cosine. This relationship is written as

A sin(ωt + φ) = (Acosφ) sin(ωt) + (Asinφ) cos(ωt). (2.32)

Therefore, by just modifying the amplitude of our sine and cosine components
over time, we can create the desired waveform from a fixed frequency and
phase LO. Alternatively, we can consider others coordinate systems to visualize
complex values. Expanding these complex numbers (rectangular coordinates) can
be translated in order to be represent a magnitude and angle (polar) or even plotted
as a vector.

The in-phase and quadrature sine waves plotted in Figure 2.19 show how things
look via a phasor plot as time increases, with the vector indicating magnitude
rotating around the axis. One can clearly see the phase shift between I and Q. In
the time domain, you can also see the differences between in-phase and magnitude,
although phase differences can be a little more subtle to notice. In a Cartesian plane,
the signal appears as a rotating circle over time. The phasor plot will always rotate
counterclockwise with time, and the Cartesian plot can rotate in either direction
depending on if the phase difference between I and Q is positive or negative. While
the time domain plot shows things moving as time changes, the phasor plot and
Cartesian plane are snapshots in time (at t = 0 on the time domain plot). Finally, the
frequency domain plot provides the spectrum of the phasor but only communicates
magnitude and loses phase information. This happens because we are only plotting
the real component of the spectrum. However, comparing the two waveforms in
Figures 2.19 and 2.20, changes in the I and Q components (amplitude and phase
relationship), will effect the other domains as well.

2.4 Signal Metrics and Visualization

Before an engineer can decide whether a project is done, he or she needs to conduct
some form of verification. However, communications systems are complex to
evaluate given their integrated nature and depth of transmit and receive chains.
As referenced in Section 1.4, communication systems may have a variety of metrics
beyond size, weight, power, and cost (SWaP-C). Performance metrics such as bit
error rate (BER), data throughput, and distance are also only top-level system

I

Q

fs fs
2

0
2

I t()

t = 0

(a) (b) (c) (d)

Q t()

φ = 90˚

t

t

Figure 2.19 Same continuous wave signal, plotted in multiple domains. (a) Phasor rad(t), (b) time
x(t) →, (c) Cartesian (I, Q)(t), and (d) frequency X(ω).

Analog Devices perpetual eBook license – Artech House copyrighted material.

'1 "~
, i,, - - - - - Ill & IOI

'!

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 42 — #24

42 Signals and Systems

I

Q

f s
2

0 f s
2

I t()

t = 0

Q t()

φ = −30˚

t

(a) (b) (c) (d)

t

Figure 2.20 Continuous wave signal differences in magnitude and phase cause shifts in various
domains. (a) Phasor rad(t), (b) time x(t) →, (c) Cartesian (I, Q)(t), and (d) frequency X(ω).

specifications. Just as we have system-level specifications for the entire system,
we have specifications and measurement techniques for other subsystems and
SDR building blocks. In this way, we know we are not over- or underdesigning
specific components. However, trade-offs should always be considered at the
system level since upstream modifications can effect downstreaming components
or implementations.

System-level specifications are met by ensuring each block in the system
will allow those specifications to be met. Making a world-class communications
system requires world-class hardware and world-class algorithmic design and
implementation. That is the issue with many aspects of engineering—quantitatively
determining when something is complete or functional and that it can be connected
to the rest of the system. It is never more true than in communications systems
that a system is only as good as the weakest link. If you have bolted everything
together, and a system-level specification like bit error rate is not meeting your
top-level specifications, unless you understand how to measure each part of the
communications system, from the RF to the SDR to the algorithmic design, you
will be lost and unable to determine what to do next.

Depending on what you are looking at, there are numerous techniques and tools
to measure almost everything. Studying communications is not for those who do
not want to be rigorous.

2.4.1 SINAD, ENOB, SNR, THD, THD + N, and SFDR
Six popular specifications for quantifying analog dynamic performance are found
in Table 2.2 [6]; namely, list out by using and understanding these measurements
will help you analyze your designs and make sure you are designing something to
be the most robust. Although most device and system manufacturers have adopted
the same definitions for these specifications, some exceptions still exist. Due to their
importance in comparing devices and systems, it is important not only to understand
exactly what is being specified, but the relationships between the specifications.

• Spurious free dynamic range (SFDR) is the ratio of the root mean squared
(RMS) value of the signal to the rms value of the worst spurious signal
regardless of where it falls in the frequency spectrum. The worst spur may or
may not be a harmonic of the original signal. This is normally measured over
the bandwidth of interest, which is assumed to be the Nyquist bandwidth

Analog Devices perpetual eBook license – Artech House copyrighted material.

IQI

l

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 43 — #25

2.4 Signal Metrics and Visualization 43

Table 2.2 Six Popular Specifications

Property Definition MATLAB Function
SFDR Spurious free dynamic range sfdr
SINAD Signal-to-noise-and-distortion ratio sinad
ENOB Effective number of bits
SNR Signal-to-noise ratio snr
THD Total harmonic distortion thd
THD + N Total harmonic distortion plus noise

unless otherwise stated; DC to fs/2 (for baseband), and -fs/2 to fs/2 for
complex (RF) converters, which are found on devices like the Pluto SDR.
SFDR is an important specification in communications systems because it
represents the smallest value of signal that can be distinguished from a
large interfering signal (blocker). SFDR is generally plotted as a function of
signal amplitude and may be expressed relative to the signal amplitude (dBc)
or the ADC full-scale (dBFS) as shown in Figure 2.21. MATLAB’s sfdr
function provides results in terms of dBc. For a signal near full-scale, the
peak spectral spur is generally determined by one of the first few harmonics
of the fundamental. However, as the signal falls several dB below full-scale,
other spurs generally occur that are not direct harmonics of the input signal.
This is due to the differential nonlinearity of the systems transfer functions
normally dominates at smaller signals. Therefore, SFDR considers all sources
of distortion regardless of their origin, and is a useful tool in evaluating
various communication systems.

• Total harmonic distortion (THD) is the ratio of the rms value of the
fundamental signal to the mean value of the root-sum-square of its harmonics
(generally, only the first five harmonics are significant). THD of an ADC is
also generally specified with the input signal close to full-scale, although it
can be specified at any level.

• Total harmonic distortion plus noise (THD + N) is the ratio of the rms value
of the fundamental signal to the mean value of the root-sum-square of its
harmonics plus all noise components (excluding DC). The bandwidth over
which the noise is measured must be specified. In the case of an FFT, the
bandwidth is DC to fs

2 . (If the bandwidth of the measurement is DC to fs
2 (the

Nyquist bandwidth), THD + N is equal to SINAD).
• Signal-to-noise-and-distortion (SINAD, or S/(N + D) is the ratio of the rms

signal amplitude to the mean value of the root-sum-square (rss) of all other
spectral components, including harmonics, but excluding DC. SINAD is a
good indication of the overall dynamic performance of an analog system
because it includes all components that make up noise and distortion. SINAD
is often characterized for various input amplitudes and frequencies. For a
given input frequency and amplitude, SINAD is equal to THD + N, provided
the bandwidth for the noise measurement is the same for both (the Nyquist
bandwidth)

• Signal-to-noise ratio (SNR, or sometimes called SNR-without-harmonics) is
calculated from the FFT data the same as SINAD, except that the signal
harmonics are excluded from the calculation, leaving only the noise terms.
In practice, it is only necessary to exclude the first five harmonics, since they

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 44 — #26

44 Signals and Systems

Figure 2.21 Spurious free dynamic range (SFDR) for BW DC to fs/2.

dominate. The SNR plot will degrade at high input frequencies, but generally
not as rapidly as SINAD because of the exclusion of the harmonic terms.

2.4.2 Eye Diagram
Although its obvious to state, time domain plots are used to observe changes of an
electrical signal over time. Any number of phenomena such as amplitude, frequency,
rise time, time interval, distortion, noise floor, and others can be empirically
determined, and how these characteristics change over time. In telecommunication,
an eye diagram, also known as an eye pattern, is an time domain display in which a
digital data signal from a receiver is repetitively sampled and applied to the vertical
input, while the data rate is used to trigger the horizontal sweep [9]. It is called an
eye diagram because the pattern looks like a series of eyes between a pair of rails.

Several system performance measures can be derived by analyzing the display,
especially the extent of the intersymbol-interference (ISI). As the eye closes, the ISI
increases; as the eye opens, the ISI decreases. Furthermore, if the signals are too
long, too short, poorly synchronized with the system clock, too high, too low, too
noisy, or too slow to change, or have too much undershoot or overshoot, this can
be observed from the eye diagram. For example, Figure 2.22 shows a typical eye
pattern for the noisy quadrature phase-shift keying (QPSK) signal.

Since the eye diagram conveys and measures many different types of critical
data, this can help quantify how well an algorithm or system is working. The two
key measurements are the vertical opening, which is the distance between BER
threshold points, and the eye height, which is the minimum distance between eye
levels. Larger vertical and horizontal openings in the eye are always better.

Hands-On MATLAB Example: To provide some hands-on experience with
eye diagrams, let us use the MATLAB function eyediagram, which is a very
handy way of visually analyzing a transmission regarding the amount of noise and
intersymbol interference present in the signal. Using the pulse shaped signals, we
should be able to observe any distortion present within the transmission.

Analog Devices perpetual eBook license – Artech House copyrighted material.

dB

Full scale (FS)

Input signal level (carrier) l ------r--·
SFDR (dBFS)

SFDR (dBc) l
-- _j_ - - - -- - - ''"' ,~,, - -

Frequency f,
2

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 45 — #27

2.5 Receive Techniques for SDR 45

Figure 2.22 A typical eye pattern for the BPSK signal. The width of the opening indicates the time
over which sampling for detection might be performed. The optimum sampling time corresponds
to the maxmum eye opening, yielding the greatest protection against noise.

From Figure 2.23, we can see that the pulse shaped transmissions do not have
any distortion present (we know this in advance since we have intentionally omitted
any sort of noise and distortion from the transmission in the first place). When we
have eye diagrams such as those shown in Figures 2.23(a) and 2.23(b), we refer to
these situations as the eye being open. The prime indicator of having some sort of
distortion present within the transmission is when the aperture at time instant 0 is
not at its maximum.

Let us explore the scenarios when distortion is present within the transmission
and how this translates into an eye diagram. Suppose with take the y_impulse1
and y_impulse2 output signals from Code 2.8 and introduce some noise to it. In
Code 2.9, we introduced some Gaussian noise using the function randn.

We can clearly see in Figure 2.24 the impact of the additional noise on the
transmitted signals via the eye diagram. In both Figures 2.24(a) and 2.24(b), it is
observed that the eye walls of the diagram are no longer smooth when compared
with Figured 2.23(a) and 2.23(b). Although the eye is still open in both cases, we
only introduced as small amount of noise into the transmission; the impact of a
large amount of noise introduced into the transmission could potential close the
eye, meaning the desired sampling instant at time 0 could potentially be corrupted
and translate into bit errors. Later on in this book, we will explore how other forms
of distortion will affect the aperture of the eye diagram.

2.5 Receive Techniques for SDR

The study of modern communications maintains a great duality when considering
both the analog and digital domains. Both domains are manipulated efficiently
and with great speed. However, analog signals maintain a perspective of infinite
precision but will always contain some degree of randomness due to their very
nature. Digital signals, on the other hand, are exact and precisely defined, but
are limited by the boundaries of computational complexity and their fundamental
foundations. Digital communications must effectively manage both of these world

Analog Devices perpetual eBook license – Artech House copyrighted material.

Q)

"O
:::,

·"'= a.
E
<(

Time

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 46 — #28

46 Signals and Systems

Figure 2.23 Eye diagrams of signals filtered by a system possessing a rectangular frequency response
and a triangular frequency response. (a) Rectangular frequency response pulse filtering, and (b)
triangular frequency response pulse filtering.

to design robust links between points. Therefore, both domains are highly
dependent on one another.

Even in today’s world of abundant and cost-effective digital signal processing
(DSP) devices, an analog signal is processed, amplified, filtered, and only then
converted into binary form by an ADC. The output of the ADC is just a binary
representation of the analog signal and is processed on a number of computational
units from FPGAs to general purpose CPUs. After processing, the information
obtained from the digitized signal, it may be converted back into analog form using
a digital-to-analog converter (DAC). Signals physically recovered by a SDR start
out as a time-varying electric field, which induces a current in the receiving antenna
and resulting in a detectable voltage at the receiver. Transmission by the SDR, on
the other hand, are time-varying voltages being applied to an antenna, which causes
movement of electrons as an outwardly radiating electric field.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Eye diagram

0.2

0.1
(I)

"O
:::l

·"'= 0 c..
E
<(

-0.1

-0.2

-5 -4 -3 -2 -1 0 2 3 4 5

Time

(a)

Eye diagram
0.3

0.2

(I)
0.1

"O
:::l

;t= 0 c..
E
< -0.1

-0.2

-0.3
-5 -4 -3 -2 -1 0 2 3 4 5

Time
(b)

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 47 — #29

2.5 Receive Techniques for SDR 47

Code 2.8 Eye diagram example: eye_example.m

2 % Create impulse train of period L and length len with random +/- one
3 % values
4 L = 10;
5 impulse_num = 100; % Total number of impulses in impulse train
6 len = L*impulse_num;
7 temp1 = [2*round(rand(impulse_num,1))-1 zeros(impulse_num,L-1)];
8 x_impulse = reshape(temp1.’,[1,L*impulse_num]);
9 % Create two transmit filter pulse shapes of order L

10 % Approximate rectangular frequency response --> approximate
11 % sinc(x) impulse response
12 txfilt1 = firls(L,[0 0.24 0.25 1],[4 4 0 0]);
13 % Approximate triangular frequency response --> approximate
14 % sinc(x)ˆ2 impulse response
15 txfilt2 = firls(L,[0 0.5 0.52 1],[4 0 0 0]);
16 % Pulse shape impulse train
17 y_impulse1 = filter(txfilt1,1,x_impulse);
18 y_impulse2 = filter(txfilt2,1,x_impulse);
24 % eyediagram(x,n,period,offset)
25 % creates an eye diagram for the signal x, plotting n samples in each
26 % trace horizontal axis range between -period/2 and period/2.
27 eyediagram(y_impulse1,L,L,floor(L/2));
28 eyediagram(y_impulse2,L,L,floor(L/2));

Code 2.9 Eye diagram example: eye_example.m

30 eyediagram((y_impulse1+0.1*randn(1,length(y_impulse1))),L,L,floor(L/2));
31 eyediagram((y_impulse2+0.1*randn(1,length(y_impulse2))),L,L,floor(L/2));

2.5.1 Nyquist Zones
In Section 2.2.3, we considered the case of baseband sampling (i.e., all the signals
of interest lie within the first Nyquist zone). Figure 2.25 shows such a case, where
the band of sampled signals is limited to the first Nyquist zone and images of the
original band of frequencies appear in each of the other Nyquist zones. Consider
the case shown in Figure 2.25 B, where the sampled signal band lies entirely within
the second Nyquist zone. The process of sampling a signal outside the first Nyquist
zone is often referred to as undersampling, or harmonic sampling. Note that the
image, which falls in the first Nyquist zone, contains all the information in the
original signal with the exception of its original location.

Figure 2.25 shows the sampled signal restricted to the third Nyquist zone. Note
that the image that falls into the first Nyquist zone has no frequency reversal. In
fact, the sampled signal frequencies may lie in any unique Nyquist zone, and the
image falling into the first Nyquist zone is still an accurate representation. At this
point we can clearly restate the Nyquist criteria:

A signal must be sampled at a rate equal to or greater than twice its bandwidth in
order to preserve all the signal information.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 48 — #30

48 Signals and Systems

Figure 2.24 Eye diagrams of signals filtered by a system possessing a rectangular frequency response
and a triangular frequency response with additive white Gaussian noise present. (a) Rectangular
frequency response pulse filtering, and (b) triangular frequency response pulse filtering.

Figure 2.25 Nyquist region folding.

Analog Devices perpetual eBook license – Artech House copyrighted material.

0.3

0.2

(I)
0.1

""C
:::J
:!: 0 c..
E
<(-0.1

-0.2

-0.3
-5 -4 -3 -2 -1 0 2 3 4 5

Time

(a)

0.3

0.2

(I) 0.1 ""C
:::J

:!:
c.. 0 E
<(

-0.1

-0.2

-0.3
-5 -4 -3 -2 -1 0 1 2 3 4 5

Time

(b)

A !Zone 1 I
J<L.~<...<....<....£~L__I --""''----I __,,__I ____:olL____I _y___1 _ ___c>JL5\L___1 _____i~ss-

1 :i:sfs
I

fs 1.5f5 2f5 2.5fs 3fs 3.5f5

B • Zone2

~~~~ 
0.5fs fs l .5fs 2fs 2.5fs 3f5 3.5fs)'S-

C l + I Zon! 3 I I 
0.5f5 f5 l .5fs 2f5 2.5f5 3f5 3.sf/>S--



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 49 — #31

2.5 Receive Techniques for SDR 49

Notice that there is no mention of the absolute location of the band of sampled
signals within the frequency spectrum relative to the sampling frequency. The only
constraint is that the band of sampled signals be restricted to a single Nyquist zone
(i.e., the signals must not overlap any multiple of fs

2 ). In fact, this is the primary
function of the antialiasing filter. Sampling signals above the first Nyquist zone
has become popular in communications because the process is equivalent to analog
demodulation. It is becoming common practice to sample IF signals directly and
then use digital techniques to process the signal, thereby eliminating the need for
an IF demodulator and filters. However, as the IF frequencies become higher, the
dynamic performance requirements (bandwidth, linearity, distortion, etc.) on the
ADC become more critical as performance must be adequate at the second or third
Nyquist zone, rather than only baseband. This presents a problem for many ADCs
designed to process signals in the first Nyquist zone. Therefore, an ADC suitable for
undersampling applications must maintain dynamic performance into the higher-
order Nyquist zones. This is specifically important in devices like the Pluto SDR,
which includes DC correction to remove local oscillator leakage. This DC correction
can be through of a highpass filter, which is set close to DC (25 kHz). For those
modulation schemes, which do not strictly transmit information at DC, such as
QPSK and quadrature amplitude modulation (QAM), this does not matter. For
those modulation schemes that pass information at DC, this can be very difficult
to work around without using an undersampling technique as described above.
Capturing the data above DC, and then digitally moving it down can improve
performance.

2.5.2 Fixed Point Quantization
The only errors (DC or AC) associated with an ideal N-bit data converter are those
related to the sampling and quantization processes. The maximum error an ideal
converter makes when digitizing a signal is ±1

2 LSB, directly in between two digital
values. This is obvious from the transfer function of an ideal N-bit ADC, which is

Figure 2.26 Ideal N-bit ADC quantization noise.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Error 
(input-output) 

Digital 
output 

~nalog 
input 

/1 I q = 1 LSB 

7 v/1 /1 /J /J /J / __ t ___ _ 
vvvvv . r--



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 50 — #32

50 Signals and Systems

shown in Figure 2.26. The quantization error for any AC signal, which spans more
than a few LSBs, can be approximated by an uncorrelated sawtooth waveform
having a peak-to-peak amplitude of q, the weight of an LSB. Although this analysis
is not precise it is accurate enough for most applications.

The quantization error as a function of time is shown in Figure 2.27. Again, a
simple sawtooth waveform provides a sufficiently accurate model for analysis. The
equation of the sawtooth error is given by

e(t) = st,
−q
2s

< t <
q
2s

, (2.33)

where s is the slope of the quantized noise. The mean-square value of e(t) can be
written:

e2(t) = q
s

∫ −q
2s

q
2s

(st)2dt = q2

12
. (2.34)

The square root of (2.34), the root mean squared (RMS) noise quantization
error, is approximately Gaussian and spread more or less uniformly over the
Nyquist bandwidth of DC to fs

2 .
The theoretical SNR can now be calculated assuming a full-scale input sine

wave v(t)

v(t) = q2N

2
sin(ωt), (2.35)

by first calculating the RMS value of the input signal defined as√
v(t)2 = q2N

2
√

2
. (2.36)

Therefore, the RMS signal-to-noise ratio for an ideal N-bit converter is

SNR = 20 log10

(
RMS of full scale input

RMS of quatization noise

)
= 20 log10

( q2N

2
√

2
q√
12

)
. (2.37)

After some simplification of (2.37) we arrive at our SNR in dB:

SNR = 20 log10

(√
3
2

2N
)

= 6.02N + 1.76. (2.38)

Figure 2.27 Ideal N-bit ADC quantization noise as a function of time.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

-=9_ 
2s 

.±!L 
2 

-=9_ 
2 

.±!L 
2s 

Slope= s 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 51 — #33

2.5 Receive Techniques for SDR 51

Again, this is for over DC to fs
2 bandwidth. In many applications the actual signal

of interest occupies a smaller bandwidth (BW). For example, if digital filtering is
used to filter out noise components outside BW, then a correction factor (called
process gain) must be included in the equation to account for the resulting increase
in SNR. The process of sampling a signal at a rate, which is greater than twice its
bandwidth, is often referred to as oversampling. In fact oversampling in conjunction
with quantization noise shaping and digital filtering is a key concept in sigma-delta
converters, which will be discussed in Section 2.5.4.

Hands-On MATLAB Example: In Section 2.5.2 we made the following
assumptions [11]:

• The sequence of error samples e(t) is a sample sequence of a stationary
random process;

• The error sequence is uncorrelated with the sequence of exact samples, v(t);
• The random variables of the error process are uncorrelated; that is, the error

is a white-noise process;
• The probability of the errpr process is uniform over the range of quantization

error.

The underlying assumption here is that the quantization noise is uncorrelated to
the input signal. We will see in certain common trivial examples that is not true.
Under certain conditions where the sampling clock and the signal are harmonically
related, the quantization noise becomes correlated and the energy is concentrated
at the harmonics of the signal. In a practical ADC application, the quantization
error generally appears as random noise because of the random nature of the
wideband input signal and the additional fact that there is a usually a small amount
of system noise that acts as a dither signal to further randomize the quantization
error spectrum. It is important to understand the above point because single-
tone sinewave FFT testing of ADCs is one of the universally accepted methods
of performance evaluation. In order to accurately measure the harmonic distortion
of an ADC, steps must be taken to ensure that the test setup truly measures the
ADC distortion, not the artifacts due to quantization noise correlation.

We will use variations on the MATLAB code from Code 2.10 to explore the
SFDR. We will expand on this concept with regards to the precision allowed
for the computations. We begin with a double-precision floating point number

Code 2.10 SFDR test: sfdr_test.m

10 deltat = 1e-8;
11 fs = 1/deltat;
12 t = 0:deltat:1e-5-deltat;
13 fundamental = 3959297;
14 x = 10e-3*sin(2*pi*fundamental*t);
15 r = sfdr(x,fs)
17 sfdr(x,fs);

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 52 — #34

52 Signals and Systems

representation (MATLAB default). To keep the signal uncorrelated, we choose a
tone at 3,959,297 Hz (a prime number).

This provides the results in Figure 3.28, where a SFDR measurement of 288.96
dBc is obtained, which is a very impressive measurement. However, a real radio
such as Pluto SDR can not accept double-precision floating-point numbers, and
thus fixed-point (12-bit) representation must be used.

The fixed-point format Pluto SDR and many other devices use is a signed format.
The MSB bit is for sign and 11 remaining bits are for the magnitude. In our MATLAB
script, we use 211 as the magnitude to maximize the dynamic range of our signal
before transmission. Therefore, we multiply to our integer value, round, and then
scale down to ±1 to normalize the amplitude.

This provides an underwhemling 45.97 dBc for the SFDR, as shown in
Figure 2.29, which is not even 8-bits of performance. This is because in the example
we scaled our signal to 10−3, and the dynamic range of a fixed-point number, does
not scale equally with a double-precision floating-point number.

To resolve the dynamic range issue, we will remove the 10−3 scaling and use
12-bit full scale. This results in Figure 2.30(a) with a respectable 86.82 dBc.

To improve this result even more, we can take advantage of a concept known
as the FFT processing gain. We simply increase the number of samples to 10, 000
by using the following code in code 2.15, which simply changes the length of t.
This provides the results in Figure 2.30(b), with an SFDR of 93.98 dBc. This is
accomplished by simply increasing the number of samples, which increases the
number of FFT bins, which in turn decreases the energy accumulated in each bin.

The example code in Code 2.10, Code 2.11, Code 2.12 and Code 2.15 utilized
an uncorrelated FA of 3, 959, 297 Hz. What happens when it is correlated? If we
simply round FA to 4 MHz in the example (see Codes 2.13 and 2.14), we can see
the results in Figure 2.31(a), which yields an SFDR of 82.58 dBc, a loss of 11.4 dB
from our previous result in Figure 2.30(b).

To regain this loss in Figure 2.31(b), we can use a technique known as dithering.
This moves the energy accumulated in the harmonics and pushes it out into the
rest of the noise floor. The noise floor is higher but the worse case spur is lower,
which is the figure of merit when calculating SFDR. This results in an SFDR of
91.68 dBc, only a 2.3-dB difference from our uncorrelated results in Figure 2.30(b).

Code 2.11 SFDR test: sfdr_test.m

41 bits=2ˆ11;
42 x = round(10e-3*bits*sin(2*pi*fundamental*t))/bits;
45 sfdr(x,fs)

Code 2.12 SFDR test: sfdr_test.m

bits=2ˆ11;
x = round(bits*sin(2*pi*fundamental*t))/bits;
sfdr(x,fs)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 53 — #35

2.5 Receive Techniques for SDR 53

Figure 2.28 SFDR for a double-precision floating-point format. (a) Time domain floating-point
representation, and (b) SFDR of double-precision floating-point, 1k points, FA of 3,959,297 Hz.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.8 

0.6 

0.4 
Q) 

"C 
0.2 :::i 

·"'= c.. 
E 0 
<( 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

0 20 40 60 80 100 
Time (us) 

(a) 

SFDR: 288.96 dB 

0 
SFDR 

F --Fundamental 

-50 --Spurs 
--DC (excluded) 

-100 

........ 
r:o 
~-150 ... 
Q) 

~ 
0 -200 Cl. 

-250 

-300 

-350 

-400 
0 10 20 30 40 50 

Frequency (MHz) 

(b) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 54 — #36

54 Signals and Systems

Figure 2.29 SFDR for 12-bit, scaled number. (a) Time domain floating-point representation, and
(b) SFDR of scaled 12-bit fixed-point, 1k points, FA of 3,959,297 Hz.

Rather than rounding up or down in a repeating pattern, we randomly round
up or down by applying a ±0.5 offset to the vector before we round. This is
a very simple dither algorithm, but more complex implementations will exist in
hardware.

The effects of finite bit length and data correlation should be understood before
sending data to the hardware. The hardware will only make effects worse, not
better.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

QJ 

0.8 

0.6 

0.4 

-g 0.2 
:!:: 
a. 0 ~~~~~~~~~~~~~~~~~~~ 
E 
<(-0.2 

-0.4 

-0.6 

-0.8 

-1 

0 

-50 

-100 

,,...._ 
CC -150 
"C 
'-' ,._ 
QJ 

~ -200 

c.. 

-250 

-300 

-350 

0 20 40 60 

Time (us) 
(a) 

SFDR: 45.97 dB 

80 

SFDR 
-- Fundamental 
--Spurs 
--DC (excluded) 

-400~--~---~---~---~--~ 
0 1 0 20 30 40 50 

Frequency (MHz) 

(b) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 55 — #37

2.5 Receive Techniques for SDR 55

Figure 2.30 SFDR for 12-bit, scaled number. (a) SFDR of fullscale 12-bit fixed point, 1k points, FA
of 3,959,297 Hz, and (b) SFDR of full scale 12-bit fixed point, 10k points, FA of 3,959,297 Hz.

2.5.3 Design Trade-offs for Number of Bits, Cost, Power, and So Forth
The most important aspect to remember about both receive chains (I/Q) is the effect
of quantization from the ADC itself. That is, an N-bit word represents one of 2N

possible states, and therefore an N-bit ADC (with a fixed reference) an have only
2N possible digital outputs. The resolution of data converters may be expressed in
several different ways: the weight of the least significant bit (LSB), parts per million
of full-scale (ppm FS), and millivolts (mV). Different devices, even from the same

Analog Devices perpetual eBook license – Artech House copyrighted material. 

SFDR: 86.82 dB 
0 

SFDR 
-- Fundamental 

-50 

-100 

,....... 
co -150 
"C -...., 
,_ 
Q) 

S: -200 
0 c.. 

-250 

-300 

-350 

-400 
0 10 20 30 40 50 

Frequency (MHz) 
(a) 

SFDR: 93.98 dB 
0 

SFDR 

-50 
-- Fundamental 
--Spurs 
--DC (excluded) 

-100 

~-150 
"C -...., 
,_ 
Q) -200 s: 
0 
c.. 

-250 

-300 

-350 

-400 
0 10 20 30 40 50 

Frequency (MHz) 

(b) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 56 — #38

56 Signals and Systems

Figure 2.31 SFDR for 12-bit, scaled number. (a) SFDR of full scale 12-bit fixed point, 10k points,
without dithering FA of 4,000,000 Hz, and (b) SFDR of full scale 12-bit fixed point, 10k points, with
dithering FA of 4,000,000 Hz.

manufacturer, will be specified differently. Therefore, converter users must learn to
translate between the different types of specifications if they are to compare devices
successfully.

The size of the least significant bit for various resolutions for a 10 watt (20 V
peak-to-peak) input is shown in Table 2.3.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0 

-50 

-100 

,,..., 
CC -150 
~ 
L.. 
QJ 

S: -200 
0 
c.. 

-250 

-300 

-350 

SFDR: 82.58 dB 

SFDR 
-- Fundamental 
--Spurs 
--DC (excluded) 

s 

-400~----'------'------'------'----~ 

0 

-50 

-100 

,,..., 
cc -150 
~ 

~ -200 
0 
c.. 

-250 

-300 

-350 

0 1 0 20 30 40 50 

Frequency (MHz) 
(a) 

SFDR: 91 .68 dB 

SFDR 
-- Fundamental 

-400 ~----'------'------'------'-------' 
0 1 0 20 30 40 50 

Frequency (MHz) 

(b) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 57 — #39

2.5 Receive Techniques for SDR 57

Code 2.13 SFDR test: sfdr_test.m

98 t = 0:deltat:1e-4-deltat;
99 x = round(bits*sin(2*pi*fundamental*t))/bits;

100 r = sfdr(x,fs)
102 sfdr(x,fs);

Code 2.14 SFDR test: sfdr_test.m

126 fundamental=4000000;
127 x = round(bits*sin(2*pi*fundamental*t))/bits;
128 r = sfdr(x,fs)
130 sfdr(x,fs);

Code 2.15 SFDR test: sfdr_test.m

154 ran = rand(1,length(t)) - 0.5;
155 x = round(bits*sin(2*pi*fundamental*t) + ran)/bits;
158 sfdr(x,fs);

Table 2.3 Quantization: The Size of a Least Significant Bit

Resolution (N) 2N Voltage (20 Vpp)1 PPM FS %FS dBFS
2-bit 4 5.00 V 250,000 25 −12
4-bit 16 1.25 V 62,500 6.25 −24
6-bit 64 313 mV 15,625 1.56 −36
8-bit 256 78.1 mV 3,906 .391 −48

10-bit 1,024 19.5 mV 977 .097 −60
12-bit 4,096 4.88 mV 244 .024 −72
14-bit 16,384 1.22 mV 61.0 .0061 −84
16-bit 65,536 305 µV 15.2 .0015 −96
18-bit 262,144 76.2 µV 3.81 .00038 −108
20-bit 1,048,576 19.0 µV .953 .000095 −120
22-bit 4,194,304 4.77 µV .238 .000024 −132
24-bit 16,777,216 1.19 µV .0596 .0000060 −144
26-bit 67,108,864 298 nV 1 .0149 .0000015 −156

1 600 nV is the Johnson (thermal) noise in a 10-kHz BW of a 2.2 k� resistor at 25◦C.

While a 24-bit converter with −144 dB of performance may sound like a good
idea, it is not practical from a power or speed perspective. Althrough many 24-
bit ADCs exist, they are not wideband such as the AD7177, which is a state-
of-the-art 32-bit converter that is limited to 5 SPS to 10 kSPS output data rate
and is not suitable for SDR but is a great solution for things like temperature and
pressure measurement, chromatography, or weigh scales [12]. On the other hand,
higher-speed ADCs do exist, such as the AD9208, which is a dual-channel 14-Bit
3GSPS ADC, providing an SFDR of 70 dBFS with 9-GHz analog input full-power
bandwidth (the sixth Nyquist band). However, the AD9208 power draw is over 3W,
which exceeds the entire power consumption of the Pluto SDR while streaming data
over USB [13]. Nonetheless, a system based on the AD9208 could provide up to 12
Gbytes/second, which is more data than could be processed by software and would
require custom signal processing hardware inside a FPGA. Devices like the AD9208

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 58 — #40

58 Signals and Systems

are used in 60-GHz bands RF bands, where single channels have bandwidths of over
2 GHz. These high-speed and wideband links use the same concepts and techniques
described in the remaining text, but possess higher data rates, are more power-
hungry, and are much more expensive. Nevertheless, learning the basic techniques
of digital communications can be performed in with cost-effective devices such as the
Pluto SDR in 20 MHz, or in many cases with much less of bandwidth. With regard
to the ADC, in order to enable 12-bit devices to be used for a radio applications
such as Pluto SDR, the signal chain for the AD9361 includes programmable analog
gain as shown in Figure 2.32. This allows the input to the ADC to be driven to full
scale as much as possible, which as we learned in Section 2.4.1 provides the best
possible performance.

In a brief recap from operational amplifier theory, two types of gain are
associated with amplifiers: signal gain and noise gain. We want to increase the signal
but at the same time keep the noise as as low as possible. This is accomplished by
increasing the signal in the analog domain before digitizing it with the ADC, as
shown in Figure 2.32.

2.5.4 Sigma-Delta Analog-Digital Converters
Sigma-delta (�-	) analog-digital converters (ADCs) have been known for over
50 years, but only recently has the technology (high-density digital VLSI) existed
to manufacture them as inexpensive monolithic integrated circuits. They are now
used in many applications where a low-cost, medium-bandwidth, low-power,
high-resolution ADC is required. There have been innumerable descriptions of the
architecture and theory of �-	 ADCs, but most commence with a deep description
of the math, starting at the integrals and go on from there. Since this is not an ADC
textbook, we will try to refrain from the mathematical development and explore
things based on the previous topics covered in this chapter.

There is nothing particularly difficult to understand about �-	 ADCs. The �-
	 ADC contains very simple analog electronics (a comparator, voltage reference,
a switch, and one or more integrators and analog summing circuits), and digital
computational circuitry. This circuitry consists of a filter, which is generally, but
not invariably, a lowpass filter. It is not necessary to know precisely how the filter
works to appreciate what it does. To understand how a �-	 ADC works, familiarity
with the concepts of oversampling, quantization noise shaping, digital filtering, and
decimation is required, all topics covered earlier in this chapter.

Let us consider the technique of oversampling with an analysis in the frequency
domain. Where a DC conversion has a quantization error of up to 1

2 LSB, a sampled
data system has quantization noise. A perfect classical N-bit sampling ADC has an
RMS quantization noise of q√

12
uniformly distributed within the Nyquist band of

DC to fs
2 , where q is the value of an LSB, as shown in Figure 2.33(a). Therefore,

its SNR with a full-scale sine wave input will be (6.02N + 1.76) dB. If the ADC is
less than perfect and its noise is greater than its theoretical minimum quantization
noise, then its effective resolution will be less than N-bits. Its actual resolution,
often known as its effective number of bits (ENOB), will be defined by

ENOB = SNR − 1.76dB
6.02dB

(2.39)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



W
yglinski:

“ch02_new
”

—
2018/3/26

—
11:42

—
page

59
—

#41

2.5
Receive

Techniq
ues

for
SD

R
59

Figure 2.32 Simplified AD9361 receive block diagram.

A
nalog D

evices perpetual eB
ook license – A

rtech H
ouse copyrighted m

aterial. 

XTALP 

XTALN 

Rx Channel 1 

Automatic 
Gain 
Control 

Baseband 
715 MHz-1430 MHz 

□ Manual 
□ Slow 
□ Fast 

AD9361 

l"IIIIIIANALOG 
... DEVICES 

PO_[D11:D0]/ 
TX_[D5:DO] 

Pl_[D11:DO]/ 
RX_[D5:D0] 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 60 — #42

60 Signals and Systems

2

2

2

2

2

Digital filter

Removed filter

Removed noise

Quantization
Noise = / 12q
q = 1 LSBADC

ADC
Digital
filter

MOD
Digital
filter

fs

Kfs

Kfs

KfsKfs

Kfs

Kfs

DEC

fs

Nyquist
Operation

Oversampling
+ Digital Filter
+ Decimation

Oversampling
+ Noise Shaping
+ Digital Filter
+ Decimation

(a)

(b)

(c)

DEC

fs

fs

fs

fs
fs

Σ∆

Figure 2.33 Oversampling, digital filtering, noise shaping, and decimation in a �-	ADC.

Practically, ENOB is calculated from measuring signal-to-noise-and-distortion
(SINAD, or S/(N + D)), which is the ratio of the RMS signal amplitude to the mean
value of the root-sum-square (RSS) of all other spectral components, including
harmonics but excluding DC, and correcting for a nonfull-scale input signal [6].
We can modify (2.39) to take into account the full-scale amplitude AFS and the true
input amplitude AIN as

ENOB = SINAD − 1.76dB + 20log10
AFS
AIN

6.02dB
. (2.40)

If we choose a much higher sampling rate, Kfs (see Figure 2.33[b]), the RMS
quantization noise remains q√

12
but the noise is now distributed over a wider

bandwidth DC to Kfs
2 . If we then apply a digital lowpass filter (LPF) to the output,

we can remove much of the quantization noise but do not affect the wanted signal,
resulting in an improved ENOB. Therefore, we can accomplished a high-resolution
A/D conversion with a low-resolution ADC. The factor K is generally referred to
as the oversampling ratio. It should be noted at this point that oversampling has an
added benefit in that it relaxes the requirements on the analog antialiasing filter.

Since the bandwidth is reduced by the digital output filter, the output data rate
may be lower than the original sampling rate (Kfs) and still satisfy the Nyquist
criterion. This may be achieved by passing every Mth result to the output and
discarding the remainder. The process is known as decimation by a factor of
M. Decimation does not cause any loss of information (see Figure 2.33[b]) as
long as the decimation does not violate the Nyquist criterion. For a given input
frequency, higher-order analog filters offer more attenuation. The same is true of
�-	 modulators, provided certain precautions are taken. By using more than one
integration and summing stage in the �-	 modulator, we can achieve higher orders

Analog Devices perpetual eBook license – Artech House copyrighted material. 

~~ 
~I 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 61 — #43

2.6 Digital Signal Processing Techniques for SDR 61

of quantization noise shaping and even better ENOB for a given oversampling ratio
as is shown in Figure 2.34.

The actual �-	 ADC found in the AD9363 used in the Pluto SDR is a fourth
order, as shown in Figure 2.35 and described in the Analog Devices Transceiver
Support Simulink model. As can be seen, reality is always a little more complicated
than theory or first-order approximations.

2.6 Digital Signal Processing Techniques for SDR

DSP is a field always on the edge of mathematical complexity, computational
performance, and growing mobility, influencing communications, medical
imagining, radar, entertainment, and even scientific exploration. However, all
these fields rely on the concept of translating analog information into digital
representations and by some mechanisms processing that data. To do so, engineers
and scientists rely on common tools and languages including C and Verilog, all
of which enable manipulation of digital information in an efficient and procedural
way. Regardless of the language, many important DSP software issues are specific
to hardware, such as truncation error, bit patterns, and computational speed and
efficiency of processors [14]. For now, we will mostly ignore those issues and
focus on the algorithmic issues of signal processing and discuss the commonly used
algorithms.

2.6.1 Discrete Convolution
Convolution is a mathematical tool of combining two signals to form a third signal,
and forms the foundation for all DSP. Using the strategy of impulse decomposition,
systems are described by a signal called the impulse response. Convolution is
important because it relates the three signals of interest: the input signal, the output
signal, and the impulse response.

Figure 2.36 presents the notation of convolution as applied to linear systems.
A discrete sampled input signal, x[n], enters a linear system with an impulse

Figure 2.34 �-	 modulators shape quantization noise.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

lND order 

2 



W
yglinski:

“ch02_new
”

—
2018/3/26

—
11:42

—
page

62
—

#44

62
Signals

and
System

s

Figure 2.35 AD9361 �-	ADC Simulink model.

A
nalog D

evices perpetual eB
ook license – A

rtech H
ouse copyrighted m

aterial. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 63 — #45

2.6 Digital Signal Processing Techniques for SDR 63

Figure 2.36 How convolution is used in DSP. The output signal from a linear system is equal to the
input signal convolved with the system’s impulse response.

response, h[n] resulting in an output signal, y[n]. Expressed in words, the input
signal convolved with the impulse response is equal to the output signal. As denoted
in (2.41), convolution is represented by the ∗ operator. It is unfortunate that most
programming languages, such as MATLAB, use the star to indicate multiplication
and use special functions like MATLAB’s conv function to indicate convolution.
A star in a computer program means multiplication, while a star here notes
convolution.

Fundamentally, the mathematics of convolution consists of several
multiplications and additions. If x[n] is an N point signal running from data sample
0 to N − 1, and h[n] is an M point signal running from 0 to M − 1, the convolution
of the two y[n] = x[n] ∗ h[n], is an N + M − 1 point signal running from 0 to
N + M − 2, given by

y[i] =
M−1∑
j=0

h[j] × x[i − j] = h[i] ∗ x[i], (2.41)

This equation is called the convolution sum. It allows each point in the output
signal to be calculated independently of all other points in the output signal. The
index, i, determines which sample in the output signal is being calculated. The use
should not be confused by the n in y[n] = x[n] ∗h[n], which is merely a placeholder
to indicate that some variable is the index into the array. An implementation of the
convolution sum of two vectors in MATLAB is shown in Code 2.16.

As used in signal processing, convolution can be understood in two separate
ways. The first looks at convolution from the viewpoint of the input signal. This
involves analyzing how each sample in the input signal contributes to many points
in the output signal. The second way looks at convolution from the viewpoint of
the output signal. This examines how each sample in the output signal has received
information from many points in the input signal. Keep in mind that these two
perspectives are different ways of thinking about the same mathematical operation.
The first viewpoint is important because it provides a conceptual understanding
of how convolution pertains to signal processing. The second viewpoint describes
the mathematics of convolution. This typifies one of the most difficult tasks
you will encounter in the signal processing field, making your conceptual
understanding fit with the jumble of mathematics used to communicate the
ideas.

Figure 2.37 shows convolution being used for lowpass and highpass filtering,
which we will cover in more detail in Section 2.6.4. The example input signal is the
sum of two components: three cycles of a sine wave (representing a high frequency),

Analog Devices perpetual eBook license – Artech House copyrighted material. 

x[n] Linear 
System 

h[n] 

x[n] * h[n] = y[n] 

y[n] 
,. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 64 — #46

64 Signals and Systems

Code 2.16 Convolution: my_convolution.m

4 % Receive two vectors and return a vector resultant of
5 % convolution operation
6 function conv = simple_conv(f, g)
7 % Transform the vectors f and g in new vectors with the same length
8 F = [f,zeros(1,length(g))];
9 G = [g,zeros(1,length(f))];

10
11 % FOR Loop to put the result of convolution between F and G vectors
12 % in a new vector C. According to the convolution operation
13 % characteristics, the length of a resultant vector of convolution
14 % operation between two vector is the sum of vectors length minus 1
15 for i=1:length(g)+length(f)-1
16 % Create a new vector C
17 C(i) = 0;
18 % FOR Loop to walk through the vector F ang G
19 for j=1:length(f)
20 if(i-j+1>0)
21 C(i) = C(i) + F(j) * G(i-j+1);
22 end
23 end
24 end
25 out = C;
26 end

Samplenumber
0 10 20 30 40 50 60 70 80 90 100 110

-2

-1

S
0 10 20 30

-0.25

0.00

a. Low-passFilter

b. High-passFilter

Samplenumber
0 10 20 30 40 50 60 70 80

-2

-1

Samplenumber
0 10 20 30 40 50 60 70 80

-2

-1

Samplenumber

Input signal Output signalImpulse response

(a) Low-pass filter

(b) High-pass filter

Figure 2.37 Examples of (a) lowpass and (b) highpass filtering using convolution. In this example,
the input signal is a few cycles of a sine wave plus a slowly rising ramp. These two components are
separated by using properly selected impulse responses.

plus a slowly rising ramp (composed of low frequencies). In (a), the impulse response
for the lowpass filter is a smooth arch, resulting in only the slowly changing ramp
waveform being passed to the output. Similarly, the highpass filter, (b), allows only
the more rapidly changing sinusoid to pass.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

_, _,_---,-___, _ _,_---,-----,--,--,----1 
0 10 20 30 40 so 60 70 80 

Sarrple nunter 

__ ; ___ ; ___ r .. ; __ 
--: -- ;-- -:- --1\-f- -•j -­
··:-·:~p~i-...... -·~-:---•-· 

•-- , ---:v -:-
--:~■-~---:---:---:---:---:---

* 

* 

0 10 20 30 

Sa-rpl e nunter 

1.25ml a., 1.00 - - ~ -. - ~ - • 

"'§l 0.75 · • .- • · .- · • - .. J:: ::'.::'.:: 
... "" ~ - - ~ 

. ' ' . ' ' ' ' ' ' 
3 - - ~ - - • :. - - ~ - - ~ - - - :. - - ~ - - ~ - - - :. - - ; - - .: - - -

' ' ' . ' ' ' ' ' ' 
~ 2 --~---:---~--~-- - :--- ~ - , ·- ' -- ~ ---: ---
~ ' ' ' ' ' ' ' ' ' 

1: ••: H•: •H ;•• 
-2 ~ 

0 10 20 30 40 so 60 70 80 90 100 ] JO 

Sarrpl e nunter 

' ' ' ' ' ' ' ' • • r • • ·, • • ·,· • • r • • -. • • ·,· • • r • • -. • • • 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 65 — #47

2.6 Digital Signal Processing Techniques for SDR 65

2.6.2 Correlation
Cross-correlation and autocorrelation are two important concepts in SDR. Cross-
correlation is a measure of similarity of two series as a function of the displacement
of one relative to the other.

The concept of correlation can best be presented with an example. Figure 2.38
shows the key elements of a radar system. A specially designed antenna transmits
a short burst of radio wave energy in a selected direction. If the propagating wave
strikes an object, such as the helicopter in this illustration, a small fraction of the
energy is reflected back toward a radio receiver located near the transmitter. The
transmitted pulse is a specific shape that we have selected, such as the triangle shown
in this example. The received signal will consist of two parts: (1) a shifted and scaled
version of the transmitted pulse, and (2) random noise, resulting from interfering
radio waves, thermal noise in the electronics, and so forth. Since radio signals travel
at a known rate, the speed of light, the shift between the transmitted and received

Figure 2.38 Key elements of a radar system. Like other echo location systems, radar transmits a
short pulse of energy that is reflected by objects being examined. This makes the received waveform
a shifted version of the transmitted waveform, plus random noise. Detection of a known waveform in
a noisy signal is the fundamental problem in echo location. The answer to this problem is correlation.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

~ 200 ~-------------:-~ 
~ ' 
~ : 
c.. i 
E 100 -- :----: ---: --- :--- :----: --- : ---
m : : : : : : : 

I I I I I I I 

"'O : : : : : : : 

:§ O : : : : : : : .E 
Vl 
C 
~ 
I- -100+--+-+----+---+-+---+-----l-+-­

<JJ 0.2 
"O 
~ -~ c.. E 0.1 
~ 

"O 

~ 
"cii 
u 
(J) 

°' 

0 

-10 0 10 20 30 40 50 (,() 70 00 

Sample number (or time) 

' ' ' ' ' ' ' I I I I I I 

' ' ' ' ' ' ' ' ' ---+----1----t----+----1----t-- -+----]----
l I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I 

' ' ' ' ' ' ' ' ' ' ' ' ' 

-0.1 ---t-------t----t-------t----t-------i~---t-~>-----t-----, 

-10 0 10 20 30 40 50 (,() 70 00 

Sample number (or time) 

Transmit Receive 

<· .......................... . 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 66 — #48

66 Signals and Systems

pulse is a direct measure of the distance to the object being detected given a signal
of some known shape. The challenge is determine the best way which signal occurs
in another signal. Correlation is the solution to this problem.

Correlation is a mathematical operation that is very similar to convolution.
Just as with convolution, correlation uses two signals to produce a third signal.
This third signal is called the cross-correlation of the two input signals. If a signal
is correlated with itself, the resulting signal is instead called the autocorrelation.
The amplitude of each sample in the cross-correlation signal is a measure of how
much the received signal resembles the target signal at that location. This means
that a peak will occur in the cross-correlation signal for every target signal that is
present in the received signal. In other words, the value of the cross-correlation is
maximized when the target signal is aligned with the same features in the received
signal.

One of the optimal techniques for detecting a known waveform in random
noise is correlation. That is, the peak is higher above the noise using correlation
than can be produced by any other linear system. (To be perfectly correct, it is only
optimal for random white noise.) Using correlation to detect a known waveform is
frequently called matched filtering. More on this in Section 4.7.1.

For discrete functions f and g, the cross-correlation is defined as

(f 
 g)[n] =
∞∑

j=−∞
f ∗[m] × g[m + n], (2.42)

where h∗ denotes the complex conjugate of h. The cross-correlation of functions
f(t) and g(t) is equivalent to the convolution of f*(âˆ’t) and g(t). That is

(f 
 g)[n] = f ∗(−t) ∗ g(t) (2.43)

Do not let the mathematical similarity between convolution and correlation fool
you; they represent very different signal processing concepts. Convolution is the
relationship between a system’s input signal, output signal, and impulse response.
Correlation is a way to detect a known waveform in a noisy background. The similar
mathematics is a convenient coincidence that allows for algorithmic optimizations.

2.6.3 Z-Transform
In Section 2.1.1, we have introduced the Fourier transform, which deals with
continuous-time signals on frequency domain. Since we are focusing on digital filter
design in this section, where discrete-time signals are involved, we need to introduce
a new type of transform; namely, the z-transform.

The z-transform of a discrete-time signal x[n] is defined as the power series:

X(z) =
∞∑

n=−∞
x[n]z−n, (2.44)

where z is a complex variable [1].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 67 — #49

2.6 Digital Signal Processing Techniques for SDR 67

The z-transform is used to analyze discrete-time systems. Its continuous-time
counterpart is the Laplace transform, defined as following:

X(s) =
∫ ∞

−∞
x(t)e−stdt, (2.45)

where t is the time variable in seconds across the time domain and s = σ + jω is
a complex variable. When evaluated along the jω axis (i.e., σ = 0), the Laplace
transform reduces to the Fourier transform defined in (2.2). Thus, the Laplace
transform generalizes the Fourier transform from the real line (the frequency axis
jω) to the entire complex plane.

According to Section 2.2.2, we know that if a continuous-time signal x(t) is
uniformly sampled, its sampling signal xs(t) can be expressed as

xs(t) =
∞∑

n=−∞
x(nT)δ(t − nT), (2.46)

where T is the sampling interval. If we take the Laplace transform of both sides,
we will get

Xs(s) =
∫ ∞

−∞
xs(t)e−stdt =

∫ ∞

−∞

[ ∞∑
n=−∞

x(nT)δ(t − nT)

]
e−stdt. (2.47)

Since integration and summation are both linear operators, we can exchange
their order. Then, based on the sampling property of the delta function, we can
further get

Xs(s) =
∞∑

n=−∞
x(nT)

[∫ ∞

−∞
δ(t − nT)e−stdt

]
=

∞∑
n=−∞

x(nT)e−snT . (2.48)

Let z = esT , or s = 1
T ln z, then (2.48) becomes

X(z) =
∞∑

n=−∞
x(nT)z−n. (2.49)

Since T is the sampling interval, x(nT) = x[n]. The equation above can be
further written as

X(z) =
∞∑

n=−∞
x[n]z−n, (2.50)

which is exactly the definition of z-transform in (2.44). Therefore, the z-transform
and the Laplace transform can be connected by

z = esT , (2.51)

or

s = 1
T

ln(z). (2.52)

According to (2.44), we know that z-transform is the series of z−1. Actually, the
z-transform has no meaning unless the series converge. Given a limitary-amplitude
sequence x[n], the set of all the z values that makes its z-transform converge is

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 68 — #50

68 Signals and Systems

called region of convergence (ROC). Based on the theory of series, these z-values
must satisfy

∞∑
n=−∞

∣∣x[n]z−n∣∣ < ∞. (2.53)

The frequently used z-transform pairs and their region of convergence are listed
in Table 2.4.

When discussing a linear time-invariant system, the z-transform of its system
impulse response can be expressed as the ratio of two polynomials:

H(z) = bmzm + bm−1zm−1 + · · · + b1z + b0

anzn + an−1zn−1 + · · · + a1z + a0
= B(z)

A(z)
, (2.54)

where the roots of A(z) = 0 are called the poles of the system and the roots of
B(z) = 0 are called the zeros of the system. It is possible that the system can have
multiple poles and zeros.

If we factorize the numerator B(z) and denominator A(z), (2.54) can be
written as:

H(z) = C
(z − z1)(z − z2) · · · (z − zm)

(z − p1)(z − p2) · · · (z − pn)
, (2.55)

where C is a constant, {pk} are all the poles, and {zk} are all the zeros. It will help
us draw the pole-zero plot of H(z).

Suppose we have a linear time-invariant system whose system impulse response
is defined as

h[n] = n2anu[n]. (2.56)

According to Table 2.4, its z-transform is as follows:

H(z) = a
z(z + a)

(z − a)3 . (2.57)

Comparing (2.57) with (2.55), we can easily get that this system has two zeros,
z1 = 0 and z2 = −a, and three poles, p1 = p2 = p3 = a. Therefore, its pole-zero
plot is shown in Figure 2.39.

Table 2.4 Z-Transform Table: Selected Pairs1

x[n] X(z) Region of Convergence
δ[n] 1 all z

anu[n] z
z−a |z| > |a|

nanu[n] az
(z−a)2 |z| > |a| > 0

n2anu[n] az(z+a)

(z−a)3 |z| > a > 0(
1
an + 1

bn

)
u[n] az

az−1 + bz
bz−1 |z| > max( 1

|a| ,
1
|b| )

anu[n] sin(ω0n) az sin ω0
z2−2az cos ω0+a2 |z| > a > 0

anu[n] cos(ω0n) z(z−a cos ω0)

z2−2az cos ω0+a2 |z| > a > 0
eanu[n] z

z−ea |z| > e−a

e−anu[n] sin(ω0n) zea sin ω0
z2e2a−2zea cos ω0+1

|z| > e−a

e−anu[n] cos(ω0n) zea(zea−cos ω0)

z2e2a−2zea cos ω0+1
|z| > e−a

1 From [15]

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 69 — #51

2.6 Digital Signal Processing Techniques for SDR 69

Figure 2.39 Pole-zero plot of the system defined in (2.57). Poles are denoted using crossings, and
zeros are denoted using circles. The region of convergence of this system is the region outside the
circle z = |a|.

There are several properties of the z-transform that are useful when studying
signals and systems in the z-transform domain. Since these properties are very
similar to those of the Fourier transform introduced in Section 2.1.1, we list them
in Table 2.5 without further discussion.

2.6.4 Digital Filtering
When doing signal processing, we usually need to get rid of the noise and extract
the useful signal. This process is called filtering, and the device employed is called
filter, which discriminates, according to some attribute of the objects applied at its
input, what passes through. A typical filter is a frequency-selective circuit. If noise
and useful signal possess different frequency distributions and are present together
at input of the filter, then by applying this circuit, the noise will be attenuated or
even eliminated while useful signal is retained.

Filters can be classified from different aspects. For example, according to its
frequency response, filter can be classified as lowpass, highpass, bandpass and
bandstop. According to the signal it deals with, a filter can be classified as a analog
filter or a digital filter [1]. Specifically, an analog filter deals with continuous-time
signals, while a digital filter deals with discrete-time signals. This section will focus
on digital filters. The ideal magnitude response characteristics of these types of
filters are shown in Figure 2.40. According to Figure 2.40, the magnitude response
characteristics of an ideal filter can be generalized as follows: In pass-band, the
magnitude is a constant, while in stop-band, the magnitude falls to zero. However,
in reality, this type of ideal filter cannot be achieved, so a practical filter is actually
the optimum approximation of an ideal filter.

In order to perform digital filtering, input and output of a digital system must
both be discrete-time series. If the input series is x[n], the impulse response of the
filter is h[n], then the output series y[n] will be

y[n] = x[n] ∗ h[n]. (2.58)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I 
I 

-a 
I 
I 

/ 
/ 

I 
I 

\ 
\ 

' ' 

---,,..-
/ 

/ 

" 

lm(z) 

-----,,,~ lzl = a 

0 

,,.." ___ ,,,,,. 

\ 
\ 

/ 
/ 

/ 

I 

\ 
I 
\ 

I 
I 

I 
I 

a 
Re(z) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 70 — #52

70 Signals and Systems

Table 2.5 Z-Transform Properties1

Property Time Signal Z-Transform Signal
Linearity

∑N
m=1 amxm(t)

∑N
m=1 amXm(z)

Symmetry x[−n] X(z−1)

Shifting x[n − m] z−mX(z)
Scaling anx[n] X

( z
a

)
Derivative nx[n] −z dX(z)

dz
Integration

∑n
m=−∞ x[m] z

z−1 X(z)
Time convolution x[n] ∗ h[n] X(z)H(z)
Frequency convolution x[n]h[n] 1

2π j

∫
X(v)H

( z
v

) dv
v

1 Based on [15]. Suppose the time signal is x[n], and its z-transform signal is X(z).

Figure 2.40 Ideal magnitude response characteristics of four types of filters on the frequency range
[0, 2π ]. (a) Lowpass filter, (b) highpass filter, (c) bandpass filter, where (ωc1 , ωc2 ) is passband, and
(d) bandstop filter, where (ωc1 , ωc2 ) is stopband.

According to the time convolution property in Table 2.5, on the frequency
domain, (2.58) is equivalent to

Y(z) = X(z)H(z), (2.59)

where X(z) and Y(z) are the z-transforms of the input and output series, x[n] and
y[n], and H(z) is the z-transform of h[n].

Since ideal brick wall filters are not achievable in practice, we limit our attention
to the class of linear time-invariant systems specified by the difference equation [1]:

y[n] = −
N∑

k=1

aky[n − k] +
M∑

k=0

bkx[n − k], (2.60)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0 {/j 0 

(a) (b) 

-

2Jr {/j 2Jr {/j 

(c) (d) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 71 — #53

2.6 Digital Signal Processing Techniques for SDR 71

where y[n] is the current filter output, the y[n − k] are previous filter outputs, and
the x[n − k] are current or previous filter inputs. This system has the following
frequency response:

H(z) =

M∑
k=0

bke−z

1 +
N∑

k=1
ake−z

, (2.61)

where the {ak} are the filter’s feedback coefficients corresponding to the poles of
the filter, and the {bk} are the filter’s feed-forward coefficients corresponding to the
zeros of the filter, and N is the filter’s order.

The basic digital filter design problem is to approximate any of the
ideal frequency response characteristics with a system that has the frequency
response (2.61), by properly selecting the coefficients {ak} and {bk} [1].

There are two basic types of digital filters, finite impulse response (FIR)
and infinite impulse response (IIR) filters. When excited by an unit sample δ[n],
the impulse response h[n] of a system may last a finite duration, as shown
in Figure 2.41(a), or forever even before the input is applied, as shown in
Figure 2.41(b). In the former case, the system is finite impulse response, and in
the latter case, the system is infinite impulse response.

An FIR filter of length M with input x[n] and output y[n] can be described by
the difference equation [1]:

y[n] = b0x[n] + b1x[n − 1] + · · · + bM−1x[n − M + 1] =
M−1∑
k=0

bkx[n − k], (2.62)

where the filter has no feedback coefficients {ak}, so H(z) has only zeros.
IIR filter has been defined in (2.60), which has one or more nonzero feedback

coefficients {ak}. Therefore, once the filter has been excited with an impulse, there
is always an output.

2.6.4.1 Case Study: Cascaded Integrator-Comb Filters
Cascaded integrator-comb filters (CIC filters) play an important role in the SDR
hardware. They were invented by Eugene B. Hogenauer and are a class of FIR filters
used in multirate signal processing. The CIC filter finds applications in interpolation
and decimation. However, unlike most FIR filters, it has a decimator or interpolator
built into the architecture [16].

Figure 2.41 The impulse responses of an FIR filter and an IIR filter. (a) The impulse response of an
FIR filter, and (b) the impulse response of an IIR filter.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

h[n] 

3 
2 

-3-2-1 0 1 2 3 4 5 

(a) 

n 

• • • 

h[n] 

3 
2 2 

1 1 

-3-2-1 0 1 2 3 4 5 

(b) 

• • • 
n 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 72 — #54

72 Signals and Systems

A CIC filter consists of one or more integrator and comb filter pairs. In the
case of a decimating CIC, the input signal is fed through one or more cascaded
integrators, and then a downsampler, followed by one or more comb sections,
whose number equals to the number of integrators. An interpolating CIC is simply
the reverse of this architecture, with the downsampler replaced with a upsampler,
as shown in Figure 2.42.

To illustrate a simple form of a comb filter, consider a moving average FIR filter
described by the difference equation:

y[n] = 1
M + 1

M∑
k=0

x[n − k]. (2.63)

The system function of this FIR filter is

H(z) = 1
M + 1

M∑
k=0

z−k = 1
M + 1

[1 − z−(M+1)]
(1 − z−1)

. (2.64)

Suppose we replace z by zL, where L is a positive integer; then the resulting
comb filter has the system function:

HL(z) = 1
M + 1

[1 − z−L(M+1)]
(1 − z−L)

, (2.65)

where L is decimation or interpolation ratio, M is number of samples per stage,
usually 1 or 2.

This filter has zeros on the unit circle at

zk = ej2πk/L(M+1), (2.66)

for all integer value of k except k = 0, L, 2L, ..., ML, as shown in Figure 2.43.
The common form of the CIC filter usually consists of several stages, then the

system function for the composite CIC filter is

H(z) = HL(z)N =
(

1
M + 1

1 − z−L(M+1)

1 − z−L

)N

, (2.67)

where N is number of stages in the composite filter.

Figure 2.42 The structure of an interpolating cascaded integrator-comb filter [17], with input signal
x[n] and output signal y[n]. This filter consists of a comb and integrator filter pair, and an upsampler
with interpolation ratio L.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Comb Upsampler Integrator 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 73 — #55

2.7 Transmit Techniques for SDR 73

Figure 2.43 The zeros of a CIC filter defined in (2.65), where all the zeros are on the unit circle.

Characteristics of CIC filters include linear phase response and utilizing only
delay and addition and subtraction. In other words, it requires no multiplication
operations, thus making it suitable for hardware implementation.

2.6.4.2 Case Study: FIR Halfband Filter
FIR halfband filters are also widely used in multirate signal processing applications
when interpolating/decimating. Halfband filters are implemented efficiently in
polyphase form because approximately half of its coefficients are equal to zero.
Halfband filters have two important characteristics, the passband and stopband
ripples must be the same, and the passband-edge and stopband-edge frequencies
are equidistant from the halfband frequency fs

4 .
For example the Pluto SDR has multiple programmable halfband filters in the

receive and transmit chains. The RX HB3/DEC3 provides the choice between two
different fixed-coefficient decimating filters, decimating by a factor of 2, 3, or 1
(bypassed). The input to the filter (the output of the ADC) is 24, or 16 values.

When the RX HB3 filter is used, the decimation factor is set to 2, and the
following coefficients are used : [1, 4, 6, 4, 1]. Note that the full- scale range for the
RX HB3 filter is 16 (24). When the RX DEC3 filter is used, the decimation factor
is set to 3. and the following coefficients: [55, 83, 0, -393, -580, 0, 1914, 4041,
5120, 4041, 1914, 0, -580, -393, 0, 83, 55]. The full-scale range for the RX DEC3
filter is 16384 (214).

2.7 Transmit Techniques for SDR

In Section 2.2, it was described how an analog signal is converted to a digital
signal using an ADC, as illustrated in Figure 2.5. Although these digital signals,
which consist of 0 and 1, can be processed with various digital signal processing

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I 
I 
I 

1 I 
\ 

I 
I 

\ 
\ 

\ 

---/ 
/ 

/ 

0 
I 

Q 

lm(z) 

0 

---
/ 

/ 

\ 
\ 

\ 

0 
I 

I 

\ 
I 
I 

I 

/ 1 
I 

Re(z) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 74 — #56

74 Signals and Systems

techniques, these digital signals cannot be directly used for transmission. These
signals must be first conditioned then converted back into an analog signal DAC.

It can be seen from this that the extra decimation will allow bit growth and
extra fidelity to gain in the system.

In Figure 2.44(a) a continuous analog sine wave is shown, which has been
sampled at sample rate fs. These samples goes through a quantizer, described in
Section 2.2, which provides the output as shown in Figure 2.44(b). In this example,

Figure 2.44 Time domain. (a) Continuous analog sine wave: time domain, and (b) quanitized
analog sine wave: time domain.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

QJ 

-a 
-~ a. 
E 
"' -;;; 
C: 
Cl 

0.5 

0 

vi-0.5 

QJ 

-a 
-~ a. 
E 
"' -;;; 
C: 
Cl 

-1 

0.5 

0 

vi -0.5 

-1 

2 4 

2 4 

6 8 10 12 14 16 18 20 
Discrete time (n) 

(a) 

6 8 10 12 14 16 18 20 
Discrete time (n) 

(b) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 75 — #57

2.7 Transmit Techniques for SDR 75

a 4-bit converter is used, which only provides 16 states (to make things easier to
visualize). It is natural that many people want to connect the samples with smooth
lines. However, the true waveform does have multiple discrete steps between the
samples, as shown in Figure 2.44(b). Those values between samples are ignored and
are not passed out of the ADC.

What comes out the ADC and is processed by the digital signal processing
algorithms and eventually the digital to analog converter have no need for
waveforms to be smooth. Therefore, they experience what is shown in
Figure 2.45(a). Signals are not continuous and are not smooth. This is adequate
as long as the topics described in Section 2.2.3 are understood and do not violate
the Nyquist sampling theorem. The only time this is a problem is when we want
to actually convert the sampled data back into the continuous analog domain. The
bandwidth of the continuous analog domain is infinite and does not stop at fs

2 , as
shown in Figure 2.45(b). When the time domain data is consider beyond the digital
limits, aliases of signals are still visible.

This is why we traditionally have two filters in the transmit portion of a SDR,
a digital transmit or pulse-shaping filter, which changes each symbol in the digital
message into a digital pulse stream for the DAC. This is followed by an analog
reconstruction filter, which removes aliasing caused by the DAC [9]. This process
is shown in Figure 2.46.

2.7.1 Analog Reconstruction Filters
In Section 2.5.4, it was discussed how oversampling can ease the requirements on
the antialiasing filter and how a sigma-delta ADC has this inherent advantage. In
a DAC-based system, the concept of interpolation can be used in a similar manner
with the analog reconstruction filter. This is common in digital audio CD players,
where the basic update rate of the data from the CD is about 44.1 kSPS. As described
in Section 2.2.5, zeros are inserted into the data, which is passed through a digital
filter thereby increasing the effective sample update rate to four times, eight times,
or sixteen times the original rate. The high oversampling rate moves the image
frequencies higher, allowing a less complex filter with a wider transition band.

The same concept can be applied to a high-speed DAC. Suppose that a
traditional DAC is driven at an input word rate of 30 MSPS, as shown in
Figure 2.47 A; the DAC output frequency fs is 10 MHz. The image frequency
component at 20 MHz must be attenuated by the analog reconstruction filter, and
the transition band of the filter is 10 to 20 MHz. The image frequency must be
attenuated by 60 dB. Therefore, the filter must cover a passband of 10 MHz with
60-dB stopband attenuation over the transition band lying between 10 and 20 MHz
(one octave). An analog Butterworth filter design gives 6 dB attenuation per octave
for each pole. Therefore, a minimum of 10 poles are required to provide the desired
attenuation. The necessary filter becomes even more complex as the transition band
becomes narrower.

Next, let us assume that we increase the DAC update rate to 60 MSPS and
interpolate the original data samples by 2, resulting in a data stream at 60 MSPS.
The response of the DAC relative to the two-times oversampling frequency is shown
in Figure 2.47 B. The analog reconstruction filter transition zone is now 10 to

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 76 — #58

76 Signals and Systems

Figure 2.45 (a) Upsampled, band-limited, sine wave: time domain, and (b) band-limited random
data: fourier domain.

50 MHz (the first image occurs at 2fc − fo = 60 − 10 = 50 MHz). This transition
zone is now larger than two octaves, implying that a five- or six-pole Butterworth
filter is sufficient, which is much easier to design and build.

2.7.2 DACs
In theory, the simplest method for digital-to-analog conversion is to pull the samples
from memory and convert them into an impulse train. Similar to the sampling

Analog Devices perpetual eBook license – Artech House copyrighted material. 

QJ 
""Cl 

.-e 
c.. 
E 
"' -.; 
C 
Cl 

0.5 

0 

vi-0.5 

-1 

2 4 6 8 10 12 14 16 18 20 
Discrete time (n) 

(a) 

0 ~~~~~~~~~~~--~6-.3~d~B-@~Q-_~Q-8~Q~!,_~~~~ 
2 

-20 

-40 

-60 

;:;;;-
:3, -80 
QJ 

""Cl 

-~ -100 c.. 
E 
~ -120 
"' C 
Cl 
vi -140 

-160 

-180 

-200 ~~~~~~~~~~~~~~~~~~~~~ 
-5-4.5 -4-3.5 -3-2.5 -2-1.5 -1-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Frequency f, 

(b) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 77 — #59

2.7 Transmit Techniques for SDR 77

Figure 2.46 On the transmitter side, the DAC converts the digital symbols into an analog signal
for transmission.

Figure 2.47 Analog reconstruction filter requirements for fo = 10 MHz, with fs = 30 MSPS, and
fs = 60 MSPS [18].

function in Section 2.2.2, the impulse modulator can be defined as

p(t) =
∞∑

k=−∞
δ(t − kT), (2.68)

where p(t) = 1 for t = kT, and p(t) = 0 for all the other time instants. Therefore,
the analog pulse train after the impulse modulator is

sa(t) = s[n]p(t) =
∞∑

k=−∞
s(kT)δ(t − kT) =

{
s(kT) t = kT
0 t �= kT

, (2.69)

where each digital symbol s[n] initiates an analog pulse that is scaled by the value of
the symbol. The original analog signal can be reconstructed by passing this impulse
train through a lowpass filter, with the cutoff frequency equal to one-half of the
sampling rate.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

!,_ 
n Band 

Digital j l limited 
samples N-Bit Analog transmitted 

s[n] Pulse sampl~ N-Bit stairstei: Analog signal - shaping reconstruction ~ , , 
DAC 

, 
~ 

filter filter 

fcLOCK = 30MSPS 

dB 

10 20 30 40 50 60 70 80 

Frequency (MHz) 

(a) 

----,- ----
---- ----

fcLOCK = 60MSPS 

dB 

AnalogLPF --------,,,,1 fa -----
,,...., ......... ,,---

~mag:',,, ,,,,,, Image 
/ 

10 20 30 40 50 60 70 80 

(b) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 78 — #60

78 Signals and Systems

Although this method is mathematically pure, it is difficult to generate the
required infinitively narrow impulse pulses even in modern in electronics. To get
around this, nearly all DACs operate by holding the last value until another sample
is received. This is called a zeroth-order hold, which is the DAC equivalent of the
sample-and-hold used during ADC. The zeroth-order hold produces the staircase
appearance in the time domain, as shown in Figure 2.44(b).

In the frequency domain, the zeroth-order hold results in the spectrum of the
impulse train being multiplied by sinc function, given by the equation

H(f ) =
∣∣∣∣sin(π f /fs)

π f /fs

∣∣∣∣ . (2.70)

If you already have a background in this material, the zeroth-order hold can
be understood as the convolution of the impulse train with a rectangular pulse,
having a width equal to the sampling period. This results in the frequency domain
being multiplied by the Fourier transform of the rectangular pulse, that is, the sinc
function. The dashed line in Figure 2.47 shows the sinc function of the 30 MHz and
60 MHz DACs. It can be seen from Figure 2.47 that the sinc function attenuates
signals in the passband. However, something in the system needs to compensate
for this effect by the reciprocal of the zeroth-order hold’s effect, 1

sinc(x)
, or simply

accept this nonideality. Many ignore this problem, but it is very trivial to do with
the Pluto SDR. Allowing a user to easily transmit with a very flat passband.

2.7.3 Digital Pulse-Shaping Filters
To understand why we need to include digital pulse-shaping filters in all radio
designs, a short example will be shown. Phase-shift keying (PSK) is a simple but
common digital modulation scheme that transmits data by changing the phase of
a reference signal. This is shown in Figures 2.48(a) and 2.48(d), where the time
and frequency domain for the carrier is shown. The frequency is very narrow and
should be easy to transmit.

The alternating bitstream of ones and zeros shown in Figures 2.48(b) and 2.48(e)
causes the problem. Examining this, we observe that the square wave has infinite
frequency information, which is something very difficult to transmit in a practical
consideration.

When we multiply the carrier in Figure 2.48(a) with the bitstream in
Figure 2.48(b) to attempt to transmit this data out the antenna, it results in
Figures 2.48(c) and 2.48(f), which is a signal with infinite bandwidth in the
continuous time analog domain. Not only will we have difficulty transmitting things,
our nearest neighbors in adjacent RF channels will not like either.

Going back to our mathematical model of impulses, (2.70) indicates that
without a digital pulse-shaping filter, these pulses sa(t) will be transmitted through
the channel right away. In theory, given infinite bandwidth on the receiver side,
we should be able to get the same pulse train although with some delay. However,
in reality we actually cannot recover such a signal due to finite bandwidth and
interference between adjacent symbols.

There are two situations when adjacent symbols may interfere with each other:
when the pulse shape is wider than a single symbol interval T, and when there is a

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 79 — #61

2.7 Transmit Techniques for SDR 79

Figure 2.48 Phase-shift keyed modulated signal, carrier, data, and resulting modulated waveform,
time and fourier domain. (a) Carrier: time domain, (b) PSK data: time domain, (c) PSK modulation:
time domain, (d) carrier: Fourier domain, (e) PSK data: Fourier domain, and (f) PSK modulation:
Fourier domain.

nonunity channel that smears nearby pulses, causing them to overlap. Both of these
situations are called intersymbol interference (ISI) [9].

In order to solve these problems, pulse-shaping filters are introduced to
bandlimit the transmit waveform.

2.7.4 Nyquist Pulse-Shaping Theory
In a communication system, there are normally two pulse-shaping filters, one on the
transmitter side, and the other on the receiver side, as shown in Figure 2.49, where

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.5 

-1.5 ~--~---~---~--~ 
1000 1500 2000 2500 3000 

Discrete time (n) 

(a) 

0.5 

-0.5 

-1.5 ~--~---~---~--~ 
1000 1500 2000 2500 3000 

Discretetime(n) 

(c) 

-4.9dBCo.001;'-

-10 

-20 

-30 

~ -40 

.-e l -50 

~ -60 

~ 
-70 

-80 

-90 

-100 
Frequency f, 

(e) 

0.5 

-0.5 

-1.5 ~--~---~---~--~ 
1 000 1500 2000 2500 3000 

-10 

-20 

-30 

.;-
~ -40 

~ 

E -so 
;;_ 

~ -60 
] 
~ -70 

-80 

-90 

Discrete time (n) 

(b) 

-6.SdB @ o.oost 

-100 ~------~ ------~ 
Frequency f, 

(d) 

-4.9dBOo.001;'-

-10 

-20 

Frequency f, 

(I) 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 80 — #62

80 Signals and Systems

Figure 2.49 The equivalent channel of a communication system, which consists of the transmit
filter, the channel, and the receive filter.

we use hT(t) and hR(t) to denote the impulse response of the transmit filter and
receive filter. For simplicity, when considering the Nyquist pulse-shaping theory, we
usually use the concept of equivalent channel, which not only includes the channel
itself, but also the two pulse-shaping filters. Therefore, the impulse response of the
equivalent channel is

h(t) = hT(t) ∗ hC(t) ∗ hR(t). (2.71)

Now, let us consider under which condition we can assure that there is no
intersymbol interference between symbols. The input to the equivalent channel,
sa(t), has been defined in (2.70). As mentioned before, each analog pulse is scaled
by the value of the symbol, so we can express sa(t) in another way:

sa(t) =
∑

akδ(t − kT), (2.72)

where ak is the value of the kth symbol. It yields the output to the equivalent channel,
y(t), which is

y(t) = sa(t) ∗ h(t) =
∑

ak[δ(t − kT) ∗ h(t)] =
∑

akh(t − kT). (2.73)

Therefore, given a specific time instant, for example, t = mT, where m is a
constant, the input sa(t) is

sa(mT) =
∑

akδ(mT − kT) = am. (2.74)

Consequently, the output y(t) becomes

y(mT) =
∑

akh(mT − kT) = a0h(mT) + a1h(mT − T) + ... + amh(mT − mT).
(2.75)

Since we do not want the interference from the other symbols, we would like
the output to contain only the am term, which is

y(mT) = amh(mT − mT). (2.76)

Moreover, it means at a time instant t = mT, we need to have

h(mt − kT) =
{

C k = m
0 k �= m

, (2.77)

where C is some nonzero constant.
If we generalize (2.77) to any time instant t, we can get the Nyquist pulse-

shaping theory as below. The condition that one pulse does not interfere with other

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Equivalent channel 
I --- --- --- --- --- --- --- -- --- --- --- --- --- --- --- --- --- --- --- --- -- --- --- I 

' ~---~ ~---~ ~----~ ' 
~coi i ~o , Transmit Receive : --~ Channel f-+--

i filter 7' ~---~ 7' filter 

i _______ hT (t) _________ / --------~~_<-!) ________ / _________ ~'!_~~~-------' 
I 

Transmitted 
signal 

I 

Received 
signal 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 81 — #63

2.7 Transmit Techniques for SDR 81

pulses at subsequent T-spaced sample instants is formalized by saying that h(t) is a
Nyquist pulse if it satisfies

h(t) = h(kT) =
{

C k = 0
0 k �= 0

, (2.78)

for all integers k.

2.7.5 Two Nyquist Pulses
In this section, we will introduce two important Nyquist pulses; namely, sinc pulse
and raised cosine pulse. When considering (2.78), the most straightforward pulse
we can think of is a rectangular pulse with time width less than T, or any pulse
shape that is less than T wide. However, the bandwidth of the rectangular pulse
(and other narrow pulse shapes) may be too wide. Narrow pulse shapes do not
utilize the spectrum efficiently, but wide pulse shapes may cause ISI, so what is
needed is a signal that is wide in time (and narrow in frequency) that also fulfills
the Nyquist condition in (2.78) [9].

In mathematics, the sinc function is defined as

sinc(x) = sin(πx)

πx
, (2.79)

and is shown in Figure 2.50, when variable x takes an integer value k, the value of
the sinc function will be

sinc(k) =
{

1 k = 0
0 k �= 0

. (2.80)

In other words, zero crossings of the normalized sinc function occur at nonzero
integer values.

Another important property of sinc function is that sinc pulse is the inverse
Fourier transform of a rectangular signal, as shown in Figure 2.51(a). Suppose the

Figure 2.50 The plot of sinc function as defined in (2.79). The x-axis is x, and the y-axis is sinc(x).

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Q) 

"C 
:::J 

:!: 
a. 
E 
<( 

0:8 - - " - - - - - - - " - - - - - - - " - - - - - - - " - - - - - - - 0 - -

0:6 

0:4 

0:2 

0 

0:2 

I I I I 
--1 -------I------ ------ 1------- 1--

__ I _______ I ______ I _______ I _______ I __ 

I I I I I 

10 5 0 

X 

5 10 

1--~l 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 82 — #64

82 Signals and Systems

Figure 2.51 The sinc pulse on time domain and its Fourier transform, rectangular pulse, on
frequency domain. (a) The rectangular pulse on frequency domain, defined in (2.81), and (b) the
sinc pulse defined in (2.84). The x-axis is k, where k = t

T , and the y-axis is sinc(k).

rectangular signal is defined as [19]:

H(ω) =
{

T |ω| < 1
2T

0 otherwise
. (2.81)

Taking the inverse Fourier transform of the rectangular signal will yield the sinc
signal as

h(t) = sinc
(

t
T

)
. (2.82)

Change the variable t = kT in (2.82) yields

h(t) = h(kT) = sinc
(

kT
T

)
= sinc(k). (2.83)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.8 

0.6 

~ ......, 
u 0.4 C 

·;:;:; 

0.2 

0 

-0.2 

-10 

T 

--~-----+-----~--~ aJ 

2T 

-5 

0 

(a) 

0 

k 
(b) 

2T 

5 10 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 83 — #65

2.7 Transmit Techniques for SDR 83

Since k is an integer here, according to (2.80), we can continue writing (2.83) as

h(t) = h(kT) = sinc
(

kT
T

)
= sinc(k) =

{
1 k = 0
0 k �= 0

. (2.84)

Comparing (2.84) with (2.78), we can easily find that if we make t = kT,
the sinc pulse exactly satisfies Nyquist pulse-shaping theory in Section 2.7.4. In
other words, by choosing sampling time at kT (sampling frequency equals 1

T ), our
sampling instants are located at the equally spaced zero crossings, as shown in
Figure 2.51(b), so there will be no intersymbol interference.

Recall the Nyquist sampling theorem in Section 2.2.3 states that a real signal,
x(t), which is bandlimited to B Hz can be reconstructed without error using a
minimum sampling frequency of Fs = 2B Hz. In this case, the minimum sampling
frequency is Fs = 1

T Hz. Therefore, the corresponding minimum bandwidth is

B = Fs

2
= 1

2T
, (2.85)

which is exactly the bandwidth of the rectangular signal defined in (2.81). Based on
the discussion above, this choice of sinc pulse h(t) yields the minimum bandwidth
B = Bmin = 1

2T , so it is called the Nyquist-I Pulse [20].
Sinc pulses are a very attractive option because they are wide in time and narrow

in frequency, which means they have the advantages of both spectrum efficiency and
no ISI. However, sinc pulses are not practical since they have ISI sensitivity due to
timing errors. For instance, for large t, the sinc pulse defined in (2.82) has the
following approximation:

h(t) ∼ 1
t

, (2.86)

so it is obvious that timing error can cause large ISI. We must also note that sinc
pulse are infinite in time, making them unrealizable.

Consequentially, we need to introduce Nyquist-II pulses, which have a larger
bandwidth B > Bmin, but with less ISI sensitivity. Since this type of pulse is more
practical, it is much more widely used in practice.

The raised cosine pulse is one of the most important type of Nyquist-II pulses,
which has the frequency transfer function defined as

HRC(f ) =




T 0 ≤ |f | ≤ 1−β
2T

T
2

(
1 + cos

(
πT
β

(|f | − 1−β
2T )

))
1−β
2T ≤ |f | ≤ 1+β

2T

0 |f | ≥ 1+β
2T

, (2.87)

where β is the rolloff factor, which takes value from 0 to 1, and β
2T is the excess

bandwidth.
The spectrum of raised cosine pulse is shown in Figure 2.52. In general, it has

the bandwidth B ≥ 1/(2T). When β = 0, the bandwidth B = 1/(2T), and there is
no excess bandwidth, which is actually a rectangular pulse. On the other end, when
β = 1, it reaches the maximum bandwidth B = 1/T.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 84 — #66

84 Signals and Systems

Figure 2.52 Spectrum of a raised cosine pulse defined in (2.87), which varies by the rolloff factor
β. The x-axis is the normalized frequency f0. The actual frequency can be obtained by f0/T.

By taking the inverse Fourier transform of HRC(f ), we can obtain the impulse
response of raised cosine pulse, defined as

hRC(t) =
cos

(
π

βt
T

)
1 −

(
2βt

T

)2 sinc
(

π t
T

)
. (2.88)

Nyquist-II pulses do not have an ISI sensitivity because its peak distortion, the
tail of hRC(t), converges quickly, which can be expressed as

Dp =
∞∑

n=−∞
|hRC(ε′ + (n − k))| ∼ 1

n3 . (2.89)

Therefore, when timing error occurs, the distortion will not accumulate to infinity
in a similar fashion related to Nyquist-I pulses [20].

Actually, in many practical communications systems, root raised cosine filters
are usually used [21]. If we consider the communication channel as an ideal channel
and we assume that the transmit filter and the receive filter are identical, we can
use root raised cosine filters for both of them, and their net response must equal to
HRC(f ) defined in (2.87). Since the impulse response of the equivalent channel can
be expressed as

h(t) = hT(t) ∗ hC(t) ∗ hR(t), (2.90)

where hC(t) is the impulse response of the communication channel, and hT(t) and
hR(t) are the impulse responses of the transmit filter and the receive filter, it means
on frequency domain, we have

HRC(f ) = HT(f )HR(f ). (2.91)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

12 

10 

8 
(I) 

"C 
::J 

:!:: 
a. 6 
E 
<( 

4 

2 

0 

-1.5 -1 -0.5 0 0.5 1.5 

Normalized frequency 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 85 — #67

2.8 Chapter Summary 85

Figure 2.53 Internal AD9361 Tx signal path.

Figure 2.54 Internal AD9361 Rx signal path.

Therefore, the frequency response of root raised cosine filter must satisfy

|HT(f )| = |HR(f )| =
√

|HRC(f )|. (2.92)

2.8 Chapter Summary

SDR experimentation requires both strong computer skills and extensive knowledge
of digital signal processing. This chapter lists some useful topics including sampling,
pulse shaping, and filtering. The purpose of this chapter is to help the readers
to get prepared for the experimentation chapters, especially for the Pluto SDR
hardware. For example, on the Pluto SDR transmit path (see Figure 2.53), there is
a programmable 128-tap FIR filter, interpolating halfband filters, a DAC, followed
by two lowpass analog reconstruction filters (LPF). In order to understand how
these work together and properly configure things, you need to understand sampling
theory.

On the Pluto SDR receive path (see Figure 2.54), the signal flows through
an antialiasing filter, the ADC, through digital decimating half band filters, and
eventually a 128-tap programmable FIR, where the filtering knowledge is useful.
This 128-tap programmable FIR can be used to compensate for the loss in the
passband because of the antialiasing filter.

In addition, when you build a real communication system, you will need
additional transmit and receive filters, which requires expertise in pulse shaping.

References

[1] Proakis, J. G., and Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, Third Edition, Upper Saddle River, NJ: Prentice Hall, 1996.

[2] Elali, T. S., and M. A. Karim, Continuous Signals and Systems with MATLAB, Boca Raton,
FL: CRC Press, 2001.

[3] Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform,” Proceedings of the IEEE, Vol. 66, No. 1, January 1978.

[4] Smith, S. W., The Scientist and Engineers Guide to Digital Signal Processing,
Second Edition, 1999, http://www.analog.com/en/education/education-library/scientist_
engineers_guide.html.

[5] Frigo, M., “A Fast Fourier Transform Compiler,” Proceedings of the 1999 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’99), Atlanta,
GA, May 1999, http://www.fftw.org/.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

PROG 
TX FIR 

TIA 
LPF 

HBl 

BB 
LPF 

HB2 

ADC 

HB3/ 
INT3 

HB3/ 
DEC3 

DAC 

HB2 

BB 
LPF 

HBl 
PROG 
RX FIR 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 86 — #68

86 Signals and Systems

[6] Kester, W., Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don’t
Get Lost inthe Noise Floor, Analog Devices, 2008, http://www.analog.com/MT-003.

[7] Kester, W., Mixed Signal and DSP Design Techniques, Analog Devices, 2002, http://
www.analog.com/en/education/education-library/mixed_signal_dsp_design_book.html.

[8] James, J. F., A Student’s Guide to Fourier Transforms: With Applications in Physics and
Engineering, Third Edition, Cambridge, UK: Cambridge University Press, 2011.

[9] Johnson, C. R., Jr., and W. A. Sethares, Telecommunications Breakdown: Concepts of
Communication Transmitted via Software-Defined Radio. Prentice Hall, 2004.

[10] Cavicchi, T. J., Digital Signal Processing. John Wiley and Sons, 2000.
[11] Oppenheim, A. V., and R. W., Schafer, Digital Signal Processing, Prentice-Hall, 1975.
[12] Analog Devices AD7177 Product Page, 2016 http://www.analog.com/AD7177-2.
[13] Analog Devices AD9208 Product Page, 2017 http://www.analog.com/AD9208.
[14] Smith, S., The Scientist and Engineer’s Guide to Digital Signal Processing, San Diego:

California TechnicalPublishing, 1997.
[15] Jeffrey, A., and D. Zwillinger, Table of Integrals, Series, and Products, Seventh edition, San

Diego: Academic Press, 2007.
[16] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation and

Interpolation,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 29,
No. 2, 1981, pp. 155–162, 1981.

[17] Lyons, R. G., Streamlining Digital Signal Processing: A Tricks of the Trade Guidebook,
Piscataway, NJ: Wiley-IEEE Press, 2007.

[18] Kester, W., The Data Conversion Handbook, 2005, http://www.analog.com/en/education/
education-library/data-conversion-handbook.html.

[19] Johnson, C. R., W. A. Sethares, and A. G. Klein, Software Receiver Design: Build Your Own
Digital Communications System in Five Easy Steps, Cambridge, UK: Cambridge University
Press, 2011.

[20] Wyglinski, A. M., M. Nekovee, and Y. T. Hou, Cognitive Radio Communications and
Networks: Principles and Practice, Burlington, MA: Academic Press, 2009.

[21] Barry, J., E. A. Lee, and D. G. Messerschmitt, Digital Communication, Third Edition,
Kluwer AcademicPress, 2004.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 87 — #1

C H A P T E R 3

Probability in Communications

The previous chapter provided us with a range of insights, tools, and algorithms
for the modeling and processing of signals and systems from a purely deterministic
perspective. However, there are numerous elements within the communication
system environment that possess random characteristics, such as the digital values
of the binary data stream from an information source, the noise introduced to
a transmission when transversing a communication channel, and the sources of
interference resulting from multiple users operating within the same environment.
Whereas Chapter 2 presented a collection of useful tools for the understanding and
modeling of deterministic signals and systems, in this chapter we will introduce
a range of techniques and approaches that can be used to model and study
probabilistic signals and systems. Starting with an introduction to the concept
of both the continuous and discrete random variable, this chapter will proceed
with an explanation of time-varying random phenomena, called random processes,
followed by the modeling of various random noise channels.

3.1 Modeling Discrete Random Events in Communication Systems

A discrete random variable represents some sort of behavior occuring within the
communication system where the outcome is not absolutely known. For instance,
the next value produced by a binary information source has the possibility of
producing one of two outputs: a binary 1 or a binary 0. Although we know
that either value is possible, we do not have definite knowledge that one of these
values will be specifically be produced at the output of the information source.
Consequently, we model the output values to be produced by the binary information
source as a random variable. The reason we call this random variable a discrete
random variable is that it produces a single possible output value from a finite
number of options.

To mathematically model this discrete random varaible, suppose we define X
such that there exists a distinct set of real numbers xi that it can produce, each with
a specific probability of that value occuring:∑

i

P(X = xi) = 1, (3.1)

where P(X = xi) is the probability that the random variable will produce an output
value xi. Using the law of total probability [1], we know that

P(X ∈ B) =
∑

i:xi∈B

P(X = xi), (3.2)

87

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 88 — #2

88 Probability in Communications

where the set B is composed of a collection of values xi. A specific form of discrete
random variable is the integer-valued random variable, where its output values are
the integers xi = i; that is,

P(X ∈ B) =
∑
i∈B

P(X = i). (3.3)

Since each output of the random variable X possesses a different probability of
occurrence, we usually define the probability of a specific discrete output xi being
generated by X as

pX(xi) = P(X = xi), (3.4)

where pX(xi) is referred to as the probability mass function (PMF). Note that the
values of the PMF are constrained by

0 ≤ pX(xi) ≤ 1 and
∑

i

pX(xi) = 1. (3.5)

Several frequently used PMFs are specified in Table 3.1, including uniform,
Poisson, and Bernoulli random variables. In particular, Bernoulli random variables
are used to generate random outputs for binary information sources, while Poisson
random variables are often used to model the delays of routing packets in computer
networks.

Table 3.1 Several Frequently Used Probability Mass Functions

Random
Variable

PMF Definition Graphical Representation

Uniform pX(k) =
{

1
n , k = 1, . . . , n
0, otherwise

( )Xp x

x0 1 2 3 1n n

1/ n

Poisson pX(k) = λke−λ

k! , k = 0, 1, 2, . . .

( )Xp x

x0 1 2 3

Bernoulli pX(k) =



p, k = 1
1 − p, k = 0
0, otherwise

( )Xp x

x0 1 2 3

p

1 p

Analog Devices perpetual eBook license – Artech House copyrighted material. 

. . l l . ► 

l I I 1 • 

l I . 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 89 — #3

3.1 Modeling Discrete Random Events in Communication Systems 89

Supposed we now explore how to use these discrete random variables to model
an actual component of a communication system; namely, a binary information
source. One key characteristic that needs to be incorporated into this tool is the
percentage of ones and zeros produced by the random number generator, otherwise
referred to as an RNG. In the MATLAB script in Code 3.1, a binary RNG is
implemented where three vectors are produced. Vector b1 possesses an equal
balance of one and zero values, while vectors b2 and b3 generate ratios of 60/40
and 20/80 in terms of ones and zeros, respectively. Note that the MATLAB rand
uniform RNG function is used to produce the random values between zero and one,
which is then rounded to the nearest integer; namely, one or zero.

Code 3.1 Information Source: random_example.m

24 % Create three binary data streams of length L, each with a different
25 % percentage of 1 and 0 values
26 L = 100;
27 prob1 = 0.5; prob2 = 0.6; prob3 = 0.2; %Probability values for 1 outputs
28 b1 = round(0.5*rand(1,L)+0.5*prob1); %Even split between 1 and 0 values
29 b2 = round(0.5*rand(1,L)+0.5*prob2); %Have 60% 1 values and 40% 0 values
30 b3 = round(0.5*rand(1,L)+0.5*prob3); %Have 20% 1 values and 80% 0 values

Manipulating how the output values of the rand get rounded to either zero
or one by biasing all the values to be closer to one or the other, we can generate
binary random values with different percentages of ones and zeros, as shown in
Figure 3.1. Using the stem command, we can visualize the actual binary values
shown in Figure 3.1(a), Figure 3.1(c), and Figure 3.1(e). Although this gives us a
general observation about the behavior of these binary RNGs, it is very difficult
to distinguish the actual percentages of ones and zeros within the vector. Hence,
using a histogram and a very long sequence of randomly generated values, we
can characterize these percentages, as shown in Figure 3.1(b), Figure 3.1(d), and
Figure 3.1(f). Notice how the histograms accurately show the percentages of ones
and zeros in an outputted vector. One important caveat: Since our characterization
is dependent on the observation of a random phenomenon, you will need to observe
a very substantial amount of data in order to accurately characterize it.

3.1.1 Expectation
Since we are unable to exactly know the output values of these random phenomena
that form part of the communication system and its environment, we must instead
opt for mathematicallly characterizing the statistical behavior of these random
variables. One way to characterize a random variable is by its expected value or
mean, which can be quantitatively determined using the expression

mX = E[X] =
∑

i

xiP(X = xi), (3.6)

where the sum of each value is weighted by its probability of occurrence.
Consequently, using the definition of the PMF, we can rewrite (3.6) as

E[X] =
∑

i

xipX(xi). (3.7)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 90 — #4

90 Probability in Communications

Figure 3.1 Stem plots and histograms of three binary transmissions that each possess different
probabilities of ones and zeros being produced. (a) Binary signal (50% ones, 50% zeros),
(b) histogram (50% ones, 50% zeros), (c) binary signal (60% ones, 40% zeros), (d) histogram
(60% ones, 40% zeros), (e) binary signal (20% ones, 80% zeros), and (f) histogram (20% ones,
80% zeros).

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.8 

0.2 

0 
0 

0.8 

3 
·51i 0.4 
a 

0.2 

0 
0 

20 40 60 
Discrete Time (n) 

(a) 

20 40 60 
Discrete Time (n) 

(c) 

80 100 

Ill ~ 

ll ~ 

80 100 

1 ,--~>Ql>--<9E9Ell:~~~il@-4ID@>Q 

0.8 

g 
«i 0.6 
> 
3 
·51i 0.4 
a 

0.2 

0 
0 20 40 60 

Discrete Time (n) 
(e) 

80 100 

60,------~-----

50 

10 

o,_ ____ _.__ ____ ___,j 

0 0.5 
Digital Value 

(b) 
so .-----~-----

,,..__ 60 
(l)~ 
u'--" 
i::: >-. 
c'.j .-:::: 

S ::: 40 
u ,D 
u <Sl 
0 .g 

;.. 

o.. 20 

o~-----'-------' 
0 0.5 

Digital Value 
(d) 

80 ::::==========-~----~ 

,,..__ 60 
(l)~ u ,._., 
a _q 
S::: 40 
u ,D 
u <Sl 
0 .g 

;.. 

o.. 20 

0 ~-----'-----...-........J 
0 0.5 

Digital Value 

(f) 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 91 — #5

3.1 Modeling Discrete Random Events in Communication Systems 91

Suppose we have a random variable X and a real-valued function g(x) that
maps it to a new random variable Z; that is, Z = g(X). Since X is actually the
mapping of points from a sample space � to a collection of real numbers, we are
thus performing a mapping of a mapping when solving for the random variable Z;
that is, Z(ω) = g(X[ω]). Consequently, in order to compute the expectation of the
random variable Z, namely E[Z], we can employ the following expression:

E[Z] = E[g(X)] =
∑

i

g(xi)pX(xi), (3.8)

which is referred to the expectation of a function of a random variable. One of the
most important aspects of (3.8) is that the expectation of Z can be solved using
the PMF for X rather than having to determine the PMF of Z. Table 3.2 presents
several useful properties associated with the expectation operator.

Table 3.2 Several Useful Properties of Expectation

Name Definition

Linearity If a and b are deterministic constants and X and Y are random
variables, then E[aX+bY] = E[aX]+E[bY] = aE[X]+bE[Y].

Moment The nth moment (n ≥ 1) of a real-valued random variable X is
defined as the expected value of X raised to the nth power; that
is, Momentn(X) = E[Xn].

Mean The mean is the first moment of X; that is, Moment1(X) =
E[X] = µ.

Variance The second moment of X with its mean subtracted is its variance;
that is, Moment2(X − µ) = E[(X − µ)2] = var(X) = σ 2.

Central moment The generalization of the variance is the nth order central moment
of X; that is, E[(X −µ)n]. Note that the skewness and kurtosis
of X are the third-order and fourth-order central moments of
X, respectively.

Correlation The correlation between two random variables X and Y is defined
to be equal to E[XY].

Covariance The covariance between X and Y is defined as cov(X, Y) =
E[(X − µX)(Y − µY )].

Correlation
coefficient

The correlation coefficient of two random variables X and Y is
given as ρXY = E

[(
X−µX

σX

) (
Y−µY

σY

)]
.

Markov inequality If X is a nonnegative random variable, then for any a > 0 we
have P(X ≥ a) ≤ E[X]

a .
Chebyshev

inequality
For any random variable Y and any a > 0, we have P(|Y| ≥ a) ≤

E[Y2]
a2 .

Cauchy-Schwarz
inequality

The Cauchy-Schwarz inequality states that |E[XY]| ≤√
E[X2]E[Y2], which becomes an equality if and only if X and

Y are linearly related.
Independence The random variables are independent if and only if

E[h(X)k(Y)] = E[h(X)]E[k(Y)] for all functions h(x) and k(y).

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 92 — #6

92 Probability in Communications

3.2 Binary Communication Channels and Conditional Probability

In a digital communication system, we can view the operations of the receiver as
attempting to guess what was sent from a particular transmitter when guessing the
value of a transmission, whose values can be modeled as a random variable X,
and once it has been observed at the receiver, whose values can be modeled by a
random variable Y. Consequently, we need some sort of decision rule to figure out
which value of X was originally transmitted. This is illustrated in Figure 3.2, where
X can output values of either 0 or 1 while Y is observed at the receiver. Notice
how the observation Y can be accidentally interpreted as a value other than the one
transmitted; that is, X �= Y.

In order to characterize and understand this random transmission environment,
we can use the definition for the conditional probability, which is mathematically
expressed as

P(X ∈ B|Y ∈ C) = P({X ∈ B}|{Y ∈ C})

= P({X ∈ B} ∩ {Y ∈ C})
P({Y ∈ C}) = P(X ∈ B, Y ∈ C)

P(Y ∈ C)
.

(3.9)

Additionally, the conditional PMF can also be used to mathematically describe
this random phenomenon:

pX|Y(xi|yj) = P(X = xi|Y = yj) = P(X = xi, Y = yj)

P(Y = yj)
= pXY(xi, yj)

pY(yj)

pY|X(yj|xi) = P(Y = yj|X = xi) = P(X = xi, Y = yj)

P(X = xi)
= pXY(xi, yj)

pX(xi)

(3.10)

which can be subsequently expressed as

pXY(xi, yj) = pX|Y(xi|yj)pY(yj) = pY|X(yj|xi)pX(xi). (3.11)

One useful mathematical tool that can be employed to help characterize
phenomena described by conditional probabilities and/or conditional PMFs is the
law of total probability. For example, suppose that Y is an arbitrary random
variable, and we take A = {Y ∈ C}, where C ⊂ R. Consequently, we can define the

Figure 3.2 An example of a binary channel where transmission values generated by the random
variable X are being observed at the receiver as the random variable Y.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

X= 0 P(Y = 0 IX = 0) 

·•·····--...•.••.... :()' - o IX - 1 

P(Y ~-~--1;---:--o}--------
...................... 

P(Y =1 IX =1) 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 93 — #7

3.2 Binary Communication Channels and Conditional Probability 93

Q Derive the Markov inequality, P(X ≥ a) ≤ E[Xr]
ar , using the

definition for the expectation.

law of total probability as

P(Y ∈ C) =
∑

i

P(Y ∈ C|X = xi)P(X = xi). (3.12)

Similarly, if Y is a discrete random variable, taking on distinct values yi and
setting C = {yi}, then this yields the following law of total probability:

P(Y = yj) =
∑

i

P(Y = yj|X = xi)P(X = xi)

=
∑

i

pY|X(yj)pX(xi).
(3.13)

Q Derive the resulting expressions for the law of total probability for
expectation and the substitution law.

Returning to our binary communication channel model described by Figure 3.2,
suppose we would like to decide on what values were transmitted based on the
observation of the intercepted received signal. In this case, we would like to employ
the maximum a posteriori (MAP) decision rule, where given an observed Y = j, the
MAP rule states that we should decide on X = 1 if

P(X = 1|Y = j) ≥ P(X = 0|Y = j), (3.14)

and to decide on X = 0 otherwise. In other words, the MAP rule decides X = 1 if
the posterior probability of X = 1 given the observation Y = j is greater than the
posterior probability of X = 0 given the observation Y = j. Furthermore, we can
observe that

P(X = i|Y = j) = P(X = i, Y = j)
P(Y = j)

= P(Y = j|X = i)P(X = i)
P(Y = j)

, (3.15)

which we can then use to rewrite (3.14) as

P(Y = j|X = 1)P(X = 1)

P(Y = j)
≥ P(Y = j|X = 0)P(X = 0)

P(Y = j)

P(Y = j|X = 1)P(X = 1) ≥ P(Y = j|X = 0)P(X = 0).
(3.16)

If X = 0 and X = 1 are equally likely to occur, we can simplify this expression
such that it yields the maximum likelihood (ML) rule

P(Y = j|X = 1) ≥ P(Y = j|X = 0). (3.17)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I □ - I 

I □ 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 94 — #8

94 Probability in Communications

Code 3.2 Simulate: random_example.m

85 % Define simulation parameters
86 L = 100000; % Transmission length
87 prob00 = 0.95; % Probability zero received given zero transmitted
88 prob11 = 0.99; % Probability one received given one transmitted
89 prob4 = 0.7; % Have 40% 1 values and 60% 0 values
90
91 % Create transmitted binary data stream
92 b4 = round(0.5*rand(1,L)+0.5*prob4);

% Have 40% 1 values and 60% 0 values
93 b4hat = b4; % Initialize receive binary data stream
94
95 % Randomly select 1 and 0 values for flipping
96 ind_zero = find(b4 == 0); % Find those time instances with zero values
97 ind_one = find(b4 == 1); % Find those time instances with one values
98 ind_flip_zero = find(round(0.5*rand(1,length(ind_zero))

+0.5*(1-prob00)) == 1); % Flip zero bits to one bits
99 ind_flip_one = find(round(0.5*rand(1,length(ind_one))

+0.5*(1-prob11)) == 1); % Flip one bits to zero bits
100
101 % Corrupt received binary data stream
102 b4hat(ind_zero(ind_flip_zero)) = 1; % Flip 0 to 1
103 b4hat(ind_one(ind_flip_one)) = 0; % Flip 1 to 0
104
105 % Calculate bit error statistics
106 b4error_total = sum(abs(b4-b4hat))/L;
107 b4error_1 = sum(abs(b4(ind_one) - b4hat(ind_one)))/length(ind_one);
108 b4error_0 = sum(abs(b4(ind_zero) - b4hat(ind_zero)))/length(ind_zero);

Furthermore, in the general case, we can rearrange (3.16) such that it yields the
likelihood ratio; namely:

P(Y = j|X = 1)

P(Y = j|X = 0)
≥ P(X = 0)

P(X = 1)
(3.18)

where the right-handed side is referred to as the threshold since it does not depend
on j.

Given this mathematical formulation, let us now work with this same example
via computer simulation. Using the following MATLAB script, we can model a
binary channel where we produce L binary values with a probability of prob4
being one values and the rest being zero values. Furthermore, we assume that the
binary channel being used is not symmetric, meaning that the probability of one
values being flipped into zero values is different than the probability of zero values
being flipped into one values. Note that the flipping of bit values is considered to
be an error produced by the channel. Consequently, we define the probability of a
transmitted one value being received as a one value to be equal to prob11 while
the probability of a transmitted zero value being received as a zero value is equal
to prob00.

One of fundamental metrics for assessing the performance of any digital
communication system is the probability of bit error, or the bit error rate (BER).
The BER characterizes the amount of bit errors received relative to the total
bits transmitted. For various applications, different BER values are considered

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 95 — #9

3.3 Modeling Continuous Random Events in Communication Systems 95

acceptable while others are considered intolerable. For instance, for typical wireless
data transmission applications, a BER of 10−5 is considered an acceptable amount
of error introduced into the transmission.

In the MATLAB example above involving the binary channel, we would like
to characterize the BER values to see if they conform to the parameters we defined.
In Figure 3.3, we have the BER for the overall transmission, as well as for only
the the transmissions of one values and of zero values. Notice how the BER for
the one values only corresponds to the complement of the probability prob11,
while the same can be observed for the BER of the zero values only and it being
the complement of the probability prob00. Remember that in order to obtain an
accurate statistical assessment of the BER, a very large number of binary values
need to be generated.

3.3 Modeling Continuous Random Events in Communication Systems

As we have seen earlier in this chapter, it is possible to mathematically compute the
probability of a random event occurring within a communication system described
by a discrete random variable; namely,

P(a ≤ X < b) =
b−1∑
i=a

pX(i), (3.19)

where X is the discrete random variable, and both a and b are boundaries of a subset
belonging to the sample space �. However, suppose now that X is a continuous
random variable, which can take on the entire continuum of values within the
interval (a, b). In order to compute the same probability in this case, we can start
by realizing this scenario as the summation of an infinite number of points in (a, b)

with the space between samples equal to �x.
There are numerous random elements contained within a communication

system where each can produce a continuum of possible output values. As we will
discuss later in this chapter, one of these elements represented by a continuous
random variable is the noise introduced in a transmission channel. Suppose this
noise can be represented by an infinite number of samples such that our �x becomes

1 2 3
Bit Error Rates

0

0.02

0.04

0.06

Pr
ob

ab
ili

ty

Figure 3.3 Binary channel error probabilities when the probability for a zero being received
uncorrupted is 0.95 and the probability for a one being received uncorrupted is 0.99. Note that
the transmission consists of 40% ones and 60% zeros. 1 = Total, 2 = one transmitted, 3 = zero
transmitted.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 96 — #10

96 Probability in Communications

so tiny the �x ultimately converges to dx and the summation in (3.19) becomes
an integral expression. Therefore, we can express the probability of a continuous
random variable modeling the noise producing output values ranging between a
and b using the expression

P(a ≤ X < b) =
b∫

a

f (t)dt, (3.20)

where f (t) is called the probability density function (PDF). Note that the PDF is
the continuous version of the PMF that we discussed previously in this chapter.
Moreover, generally we can express the probability of a continuous random variable
using the PDF by the expression

P(X ∈ B) =
∫
B

f (t)dt =
+∞∫

−∞
IB(t)f (t)dt, (3.21)

where IB(t) is an indicator function that produces an output of unity whenever a
value of t belongs to the set B and produces an output of zero otherwise. Note that
+∞∫
−∞

f (t)dt = 1, f (t) is nonnegative, f (t) approximately provides the probability at

a point t, and

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b), (3.22)

where the end points do not affect the resulting probability measure. Finally, a
summary of several commonly used PDFs are presented in Table 3.3, including
uniform, Gaussian, and exponential random variables. Note that Gaussian random
variables are often used to model the randomness of the noise introduced in a
communication channel, while the exponential random variable is used in medium
access protocols to help provide random back-off times in the event that two or more
wireless systems are attempting to communicate over the same wireless channel via
a contention-based framework.

Similar to the expectation of a single discrete random variable, the expectation
for a continuous random variable X with PDF f (x) can be computed using the
following expression:

E[g(X)] =
+∞∫

−∞
g(x)f (x)dx, (3.23)

where g(.) is some real function that is applied to the random variable X.
Many random variables of practical interest are not independent, where it is

often the case that the outcome of one event may depend on or be influenced by
the result of another event. Consequently, it is sometimes necessary to compute the
conditional probability and conditional expectation, especially in circumstances
where we have to deal with problems involving more than one random variable.

Unlike the conditional probability for a discrete random variable, the
conditional probability for a continuous random variable needs to defined in an
alternative manner since the probability of a single exact point occurring is zero;

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 97 — #11

3.3 Modeling Continuous Random Events in Communication Systems 97

Table 3.3 Several Frequently Used Probability Density Functions

Random
Variable

PDF Definition Graphical Representation

Uniform f (x) =
{ 1

(b−a)
, a ≤ x ≤ b

0, otherwise

( )f x

x
0

1/ ( )b a

a b

Exponential f (x) =
{
λe−λx, x ≥ 0
0, x < 0

( )f x

x
0

Laplace f (x) = λ
2 e−λ|x|

( )f x

x
0

/ 2

Cauchy f (x) = λ/π

λ2+x2 , λ > 0

( )f x

x
0

1/ 2
1/

Gaussian f (x) = 1√
2πσ2

e−0.5((x−µ)/σ)2

( )f x

x

Analog Devices perpetual eBook license – Artech House copyrighted material. 

- t I L 

~. 

~­
- + 
~► 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 98 — #12

98 Probability in Communications

that is, P(X = x) = 0. As a result, if we employ the definition for the conditional
probability for a discrete random variable from (3.9); namely,

P(Y ∈ C|X = x) = P(Y ∈ C, X = x)

P(X = x)
, (3.24)

we observe that the occurrence of P(X = x) = 0 would yield a divide-by-zero
scenario. Consequently, we need to determine another definition for the conditional
probability (and conditional expectation) that would work within the continuous
random variable framework.

It can be shown that in order to calculate the conditional probability, one must
employ a conditional density [1], which can be defined as

fY|X(y|x) = fXY(x, y)

fX(x)
, (3.25)

where fX(x) > 0. Thus, leveraging the conditional density, we can now compute
the conditional probability without concern of a divide-by-zero scenario by solving
for the following expression:

P(Y ∈ C|X = x) =
∫
C

fY|X(y|x)dy. (3.26)

Furthermore, we can define the law of total probability as the following:

P(Y ∈ C) =
+∞∫

−∞
P(Y ∈ C|X = x)fX(x)dx, (3.27)

where we weigh all the conditional probabilities by the PDF of X before integrating
them together to form the overall probability of the event Y ∈ C. Finally, just as
in the discrete random variable case, we can employ a form of substitution law for
continuous random variables when dealing with conditional probability, which is
defined by

P((X, Y) ∈ A|X = x) = P((x, Y) ∈ A|X = x). (3.28)

Note that if X and Y are independent, then the joint density factors, yielding
the following expression for the conditional density:

fY|X(y|x) = fXY(x, y)

fX(x)

= fX(x)fY(y)

fX(x)

= fY(y),

(3.29)

which implies that when the two random variables are independent, we do not need
to condition one event on the other.

Similarly, the conditional expectation when dealing with continuous random
variables is defined as the following expression employing the conditional density;

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 99 — #13

3.3 Modeling Continuous Random Events in Communication Systems 99

namely,

E[g(Y)|X = x] =
+∞∫

−∞
g(y)fY|X(y|x)dy. (3.30)

Furthermore, the law of total probability for a conditional expectation is given as

E[g(X, Y)] =
+∞∫

−∞
E[g(X, Y)|X = x]fX(x)dx, (3.31)

and the substitution law for a conditional expectation is defined as

E[g(X, Y)|X = x] = E[g(x, Y)|X = x]. (3.32)

3.3.1 Cumulative Distribution Functions
For both PDFs and PMFs of random variables modeling random elements within
a communication system, it is sometimes important to visualize the cumulative
distribution function or CDF, especially since it provides another perspective on
how the random variable behaves probabilistically. Furthermore, the CDF can
sometimes be use to solve problems that would otherwise be difficult to access
via some other definition.

Mathematically speaking, we can define the CDF by the following expression:

FX(x) = P(X≤x) =
x∫

−∞
f (t)dt, (3.33)

which describes the probability that the outcome of an experiment described by the
random variable X is less than or equal to the dummy variable x.

As an example, suppose that we want to calculate the probability of P(a ≤ X <

b) using the PDF shown in Figure 3.4(a). One approach for quickly evaluating this
probability is to leverage the tail probabilities of this distribution; namely, P(X < a)

(shown in Figure 3.4[b]) and P(X < b) (shown in Figure 3.4[c]). Notice how the tail
probabilities are actually the CDFs of X based on (3.33), where FX(a) = P(X < a)

and FX(b) = P(X < b). Consequently, given that we are only interested in the region
of the PDF where these two tail probabilities do not intersect, we can compute the
following probability:

P(a ≤ X < b) = P(X < b) − P(X < a) = FX(b) − FX(a), (3.34)

where all we really need are the values for the CDF of X at x = a and x = b.
Several fundamental characteristics of the CDF include the fact that FX(x) is

bounded between zero and one, and that FX(x) is a nondecreasing function; that
is, FX(x1)≤FX(x2) if x1 ≤ x2. Furthermore, the PDF is the derivative of the CDF
in terms of the dummy variable x, which we can define as:

fX(x) = d
dx

FX(x). (3.35)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 100 — #14

100 Probability in Communications

( )f x ( )f x ( )f x

x
0 a b

( )P a X b

x
0 a

( )P X a P (X < b)<

x
0 b

≤ <

(a) (b) (c)

Figure 3.4 An example of how the CDF can be used to obtain the tail probabilities P(X < a) and
P(X < b) in order to quickly calculate P(a ≤ X < b). (a) The region of the PDF of the random
variable X that needs to be integrated in order to yield P(a ≤ X < b), (b) the region of the PDF of
the random variable X that needs to be integrated in order to yield P(X < a), and (c) the region of
the PDF of the random variable X that needs to be integrated in order to yield P(X < b).

i

The Q function is a convenient way to express right-tail
probabilities for Gaussian random variables, P(X > x).
Mathematically, this is equivalent to finding the complementary
CDF of X; namely [2]:

Q(x) = 1 − FX(x) = 1 − P(X ≤ x)

= P(X > x) = 1√
2π

∞∫
x

e−t2/2dt,

where FX(x) is the CDF of X.

One important use for CDFs is having them define the exact probabilistic nature
of a random element within a communication system. Noise generation, binary
outputs of an information source, and random access of a wireless channel by
multiple users can all be characterized exactly using CDFs. Consequently, when
modeling these phenomena in a computer simulation, we use a RNG that is defined
by one of these CDFs. In the MATLAB computer simulation environment, there
exists a variety of RNGs that can be used in communication systems experiments,
including those based on uniform, Gaussian (normal), and Rayleigh random
variables. These random variables can be generated in MATLAB via the rand and
randn functions, as well as their combination to create other random variables. For
example, the MATLAB code in Code 3.3 produces three vectors of random values
generated in such a way that they possess statistical characteristics equaivalent to
the uniform, Gaussian, and Rayleigh random variables. Furthermore, using the
randomly generated values using these RNGs, it is possible for us to determine the
probability densities such that we can then generate their cummulative distribution
functions as well as calculate the probability that these random variables produce
a value between 0.7 and 1.0.

To obtain values that possess uniform and Gaussian distributions in MATLAB,
one can simply use the rand and randn functions. If a very large number of these
random values are generated, it is possible to observe the uniform and Gaussian
PDFs, as shown in Figures 3.5(a) and 3.5(c). Since the cumulative distribution
function (CDF) is the progressive accumulation of the PDFs from negative infinity
to positive infinity, those can also be readily generated from the PDF data, as shown

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 101 — #15

3.4 Time-Varying Randomness in Communication Systems 101

Code 3.3 Information Source: random_example.m

120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
121 % Random Variable PDFs and CDFs
122
123 % Define simulation parameters
124 L = 1000000; % Length of random samples
125 mean_normal = 1; stddev_normal = 2;

% Mean and standard deviation of normal RV values
126 res_hist = 100; % Histogram resolution
127
128 % Generate random samples for different distributions
129 b_unif = rand(1,L); % Uniform random values
130 b_normal = (stddev_normal*randn(1,L) + mean_normal);

% Normal random values
131 b_rayleigh = (sqrt(randn(1,L).ˆ2 + randn(1,L).ˆ2));

% Rayleigh random values
132
133 % Obtain cumulative distribution functions
134 [N_unif, edges_unif] = histcounts(b_unif,res_hist);
135 N_unif_cum = cumsum(N_unif)./L;
136 [N_normal, edges_normal] = histcounts(b_normal,res_hist);
137 N_normal_cum = cumsum(N_normal)./L;
138 [N_rayl, edges_rayl] = histcounts(b_rayleigh,res_hist);
139 N_rayl_cum = cumsum(N_rayl)./L;
140
141 % Calculate probability of values between 0.7 and 1
142 x_lower = 0.7;
143 x_upper = 1.0;
144 unif_ind_range = find((x_lower <= edges_unif)

& (edges_unif < x_upper));
145 normal_ind_range = find((x_lower <= edges_normal)

& (edges_normal < x_upper));
146 rayl_ind_range = find((x_lower <= edges_rayl)

& (edges_rayl < x_upper));
147 prob_unif = sum(N_unif(unif_ind_range))./L;
148 prob_normal = sum(N_normal(normal_ind_range))./L;
149 prob_rayl = sum(N_rayl(rayl_ind_range))./L;

for the uniform and Gaussian random values in Figures 3.5(b) and 3.5(d). As for the
values produced by a Rayleigh random variable, a quick way of producing these
values is to take two independently and identically distributed (i.i.d.) Gaussian
random variables, take the square of both values, sum them together, and then take
their square root. As a result of this operation, and given a very large number of
values generated, it is possible to create a PDF and a CDF of a Rayleigh random
variable as shown in Figures 3.5(e) and 3.5(f). Note that if one wants to find the
probability of a randomly generated value produced by these functions between 0.7
and 1.0, simply either sum up the density values between this range or take the CDF
values at these end points and subtract them from each other.

3.4 Time-Varying Randomness in Communication Systems

Until now we have been exploring how to model random phenomena where
these probabilistic characteristics remain the same throughout time. Although this

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 102 — #16

102 Probability in Communications

Figure 3.5 Various cumulative distribution functions and associated probability density functions.
(a) Uniform PDF, (b) uniform CDF, (c) Gaussian PDF, (d) Gaussian CDF, (e) Rayleigh PDF, and (f)
Rayleigh CDF.

simplifies the mathematical derivation of these models, this may not accurately
describe the random phenomena. For example, the binary output values from
an information source might change over time depending on the real-world data
being encoded, such as security camera footage of a dynamic urban environment

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.01 

2:-- 0.008 

1 0.006 

'1.. 0.004 

0.002 

0.5 

Output Values of Random Variable 
(a) 

0.03 

2:--

~ 0.02 .g 
.... 

'1.. 

0.01 

0 10 20 
Output Values of Random Variable 

(c) 

0.03 

2:--

~ 0.02 .g 
.... 

'1.. 

0.0 1 

2 4 6 
Output Values of Random Variable 

(e) 

0.8 

0.2 0.4 0.6 0.8 
Output Values of Random Variable 

(b) 

Output Values of Random Variable 

(d) 

Output Values of Random Variable 

(f) 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 103 — #17

3.4 Time-Varying Randomness in Communication Systems 103

or the internet traffic of a human user on a computer. Consequently, it is necessary
to develop a more comprehensive mathematical representation of these random
phenomena that are also functions of time. We refer to these representations as
random processes or stochastic processes. A random process is a family of time
domain functions depending on the parameters t and ω; that is, we can define a
random process by the function:

X(t) = X(t, ω), (3.36)

where the left-handed side is the shortened representation of a random process that
implicitly assumes the existence of a mapping of an outcome ω from the sample
space � to a real-valued number. Note that the domain of ω is � while the domain
of t is either R for continuous-time random processes or Z for discrete-time random
processes. An illustration depicting how a random process consists of a family of
time domain functions is shown in Figure 3.6.

Suppose we have a random process that is noncountable infinite for each time
instant t. Given this situation, we can define its first-order distribution F(x, t) and
first-order density f (x, t) as

F(x, t) = P(X(t) ≤ x) (3.37)

and

f (x, t) = ∂F(x, t)
∂x

. (3.38)

For determining the statistical properties of a random process, knowledge from
the function F(x1, . . . , xn; t1, . . . , tn) is required. However, in most communication
system applications only certain averages are actually needed. For instance, one
of the mostly commonly used statistical characterizations for a random process is
the mean function, where the mean function µX(t) of a random process X(t, ω)

is the expectation of the random process at a specific time instant t. This can be
mathematically represented by

µX(t) = E[X(t, ω)]. (3.39)

Another useful statistical characterization tool for a random process X(t, ω)

is the autocorrelation function RXX(t1, t2), where we evaluate the amount of

Figure 3.6 Illustration of a random process X(t, ω).

Analog Devices perpetual eBook license – Artech House copyrighted material. 

X 

o;-----;to ________ ;...t,--------t 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 104 — #18

104 Probability in Communications

correlation that the random process X(t, ω) possesses at two different time instants
t1 and t2. We can define this mathematically by the expression

RXX(t1, t2) = E[X(t1, ω)X∗(t2, ω)]

=
+∞∫

−∞

+∞∫
−∞

x1x∗
2f (x1, x2; t1, t2)dx1dx2.

(3.40)

Note that the value of the diagonal for RXX(t1, t2) is the average power of
X(t, ω); namely,

E[|X(t, ω)|2] = RXX(t, t). (3.41)

Several other useful properties and observations about the autocorrelation
function include the following:

1. Since RXX(t1, t2) = E[X(t1, ω)X∗(t2, ω)], then RXX(t2, t1) = E[X(t2, ω)X∗
(t1, ω)] = R∗

XX(t1, t2).
2. We have RXX(t, t) = E[|X(t, ω)|2] ≥ 0.
3. A random process for which E[|X(t, ω)|2] < ∞ for all t is called a second-

order process.
4. For RXX(t, t) = E[|X(t, ω)|2] ≥ 0 and given time instants t1 and t2, we have

the following inequality:

|RXX(t1, t2)| ≤
√

E[|X(t1, ω)|2]E[|X(t2, ω)|2].
5. A normalized process occurs when X(t, ω)/

√
CXX(t, t).

An extension of the definition for the autocorrelation function is the
autocovariance function CXX(t1, t2) of X(t, ω), which is the covariance of the
random process X(t, ω) at time instants t1 and t2. Mathematically, we can represent
the autocovariance function by the expression.

CXX(t1, t2) = RXX(t1, t2) − µX(t1)µ∗
X(t2). (3.42)

Note that for t1 = t2, the autocovariance function produces the variance of
X(t, ω). Furthermore, we can sometimes represent the autocovariance function of a
random process X(t, ω) using a normalized metric called the correlation coefficient,
which we define as

ρXX(t1, t2) = CXX(t1, t2)√
CXX(t1, t1)CXX(t2, t2)

. (3.43)

3.4.1 Stationarity
Although random processes may possess a significant amount variability across
time, there does exist a subset of random processes that exhibit the same behavior
at any two time instants; that is, the random process is time-invariant. We refer
to these types of random processes as stationary processes. Two common forms of
stationary processes are strict-sense stationary (SSS) random processes and wide-
sense stationary (WSS) random processes. A random process is SSS whenever its
statistical properties are invariant to a shift of the origin; that is, the random process

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 105 — #19

3.4 Time-Varying Randomness in Communication Systems 105

X(t, ω) and X(t+c, ω) both possess the same statistics for any time shift c. Therefore,
the nth-order density of an SSS random process would be equal to, by definition,
the following expression:

f (x1, . . . , xn; t1, . . . , tn) = f (x1, . . . , xn; t1 + c, . . . , tn + c) (3.44)

for any time shift c.
It follows that f (x; t) = f (x; t + c) for any time shift c, which means that the

first-order density of X(t, ω) is independent of the time t; namely,

f (x; t) = f (x). (3.45)

Furthermore, f (x1, x2; t1, t2) = f (x1, x2; t1 + c, t2 + c) is independent of c for
any value of c. Consequently, this means that the density becomes

f (x1, x2; t1, t2) = f (x1, x2; τ), where τ = t1 − t2. (3.46)

Thus, the joint density of the random process at time instants t and t + τ is
independent of t and is equal to f (x1, x2; τ).

Although SSS random processes can yield mathematically tractable solutions
based on their useful time-invariant property, the occurrence of SSS random
processes in actual communication systems is not very frequent. On the other hand,
the WSS random processes occur more frequently in the analyses of communication
systems. A random process X(t, ω) is considered to be WSS whenever both of the
following properties are true:

• The mean function µX(t) does not depend on time t; that is, µX(t) =
E[X(t, ω)] = µX.

• The autocorrelation function RXX(t + τ , t) only depends on the relative
difference between t and t + τ ; that is, RXX(t + τ , t) = RXX(τ ).

Several observations about WSS random processes include the following:

• The average power of a WSS random process is independent of time since
E[|X(t, ω)|2] = RXX(0).

• The autocovariance function of a WSS random process is equal to CXX(τ ) =
RXX(τ ) − |µX|2.

• The correlation coefficient of a WSS random process is given by ρXX(τ ) =
CXX(τ )/CXX(0).

• Two random processes X(t, ω) and Y(t, ω) are jointly WSS if each is WSS
and their cross-correlation depends on τ = t1 − t2.

• If the random process X(t, ω) is WSS and uncorrelated, then CXX(τ ) = qδ(τ ),
where q is some multiplicative constant.

There exists another form of stationarity characteristic that often occurs in
wireless data transmission. A cyclostationary random process Y(t) is defined by a
mean function µY(t) that is periodic across time t as well as an autocorrelation
function RYY(τ + θ , θ) that is periodic across θ for a fixed value of τ .
Consequently, a cyclostationary random process Y(t) with period T0 can be

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 106 — #20

106 Probability in Communications

described mathematically by

R̄YY(τ ) = 1
T0

T0∫
0

RXX(τ + θ , θ)dθ . (3.47)

In the area of communication systems engineering, cyclostationary random
processes are often leveraged in the detection of wireless signals in noisy channel
environments, where a target wireless signal will produce a unique characteristic
function that will enable its identification assuming that multiple signals are present
within the same spatiotemporal-frequency region.

3.5 Gaussian Noise Channels

As mentioned previously, Gaussian; that is, normal, random variables have often
been used to model the noise introduced within a communication channel. In
fact, many analyses of communication systems and their performance are often
conducted assuming that the noisy channel possess Gaussian random behavior.
Consequently, this makes the Gaussian random variable one of the most frequently
used random variable in the study of communication systems.

We define the univariate Gaussian PDF as

fX(x) = 1√
2πσ 2

e−(x−µ)2/2σ2
, (3.48)

where µ is the mean of the Gaussian random variable X, and σ 2 is the variance of
X. In the case that µ = 0 and σ 2 = 1, we refer to X as a standard normal random
variable.

Although the univariate Gaussian distribution is frequently used in numerous
applications, there are several instances where we must employ the bivariate
Gaussian distribution in order to characterize a specific application involving two
Gaussian random variables possessing some degree of correlation between each
other; for example, complex baseband transmission channel with inphase and
quadrature signal components. An illustration of an example of a bivariate Gaussian
distribution is shown in Figure 3.7.

Mathematically speaking, the general definition for a bivariate Gaussian density
with parameters µX, µY , σ 2

X, σ 2
Y , and correlation coefficient ρ is given by

fXY(x, y) =
exp

(
−1

2(1−ρ2)

((
x−µX

σX

)2 − 2ρ
(

x−µX
σX

) (
y−µY

σY

)
+
(

y−µY
σY

)2
))

2πσXσY
√

1 − ρ2
, (3.49)

where the correlation coefficient is defined as

ρ = E
[(

x − µX

σX

)(
y − µY

σY

)]
. (3.50)

Suppose we would like to model a complex baseband channel where the inphase
and quadrature noise contributions are represented by bivariate Gaussian random
variables. In several instances, we would like to have the inphase and quadrature

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 107 — #21

3.5 Gaussian Noise Channels 107

Figure 3.7 Density of a bivariate normal distribution with no correlation; that is, ρ = 0.

Code 3.4 Information Source: random_example.m

204 % Define simulation parameters
205 L = 1000000; % Length of data streams
206 res_hist = 100; % Histogram resolution
207 std_dev = 5; % Standard deviation of input Gaussian variables
208
209 % Create uncorrelated 2D Gaussian random variable
210 x_normal_1 = std_dev.*randn(1,L);
211 y_normal_1 = std_dev.*randn(1,L);
212
213 % Create correlated 2D Gaussian random data stream
214 x_normal_2 = x_normal_1+0.1*y_normal_1;
215 y_normal_2 = y_normal_1+0.9*x_normal_1;

components of this noise to be uncorrelated. In other situations, we might want them
to be very correlated. As a result, we need to make sure we model these bivariate
Gaussian random values accurately. The MATLAB script in Code 3.4 models these
types of bivariate Gaussian random variables representing channel noise, where we
have employed the function randn in order to generate two vectors of length L
that contain values possessing Gaussian characteristics. Since we have generated
these vectors separately, by default they are uncorrelated with each other in this
situation. Furthermore, we have made both vectors to be zero mean, and they both
possess standard deviations of std_dev. From these two vectors, we can readily
obtain an uncorrelated bivariate Gaussian distributed data as well as a correlated
bivariate Gaussian distributed data.

Based on the two-dimensional density functions shown in Figure 3.8, we
can readily observe the difference between uncorrelated and correlated bivariate
Gaussian random variables. In the uncorrelated case, the bivariate Gaussian random
variables appear to be symmetric about the x/y plane, which can be seen in
Figure 3.8(a) (3-dimensional viewpoint) and Figure 3.8(b) (top-down viewpoint).
However, once we introduce some correlation between the inphase and quadrature
components of the bivariate Gaussian random variables, this begins to warp the
shape of the density, compressing it in one direction while expanding it in another.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

X 

p = 0 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 108 — #22

108 Probability in Communications

Figure 3.8 Several examples of correlated and uncorrelated bivariate Gaussian densities.
(a) Uncorrelated bivariate Gaussian (3-D view), (b) uncorrelated bivariate Gaussian (top-down view),
(c) correlated bivariate Gaussian (3-D view), and (d) correlated bivariate Gaussian (top-down view).

This can be observed in Figure 3.8(c) (3-dimensional viewpoint) and Figure 3.8(d)
(top-down viewpoint).

3.5.1 Gaussian Processes
As mentioned before, situations exist where the probability characteristics of a
random phenomena representing an element of a communication system varies
over time (e.g., the properties of a noisy channel represented by a Gaussian random
variable). Consequently, we need a mathematical representation that can account
for the time-dependent randomness of these phenomena, especially for those events
modeled by Gaussian random variables. Refering to Section 3.4, we can model a
time-varying Gaussian random variable by a Gaussian process, which is a stochastic
process whose realizations consist of random values associated with every point in
a range of times (or of space) such that each such random variable has a normal
distribution. Moreover, every finite collection of those random variables has a
multivariate normal distribution.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

X 10-3 20 

6 
10 

4 

>- 0 
2 

0 
-10 

-20 

y -20 -20 -10 0 10 20 
X 

X 
(a) (b) 

X 10-3 
30 

20 

6 
10 

4 >- 0 

2 -10 

0 -20 

-30 

-20 -10 0 10 20 
y -20 

X X 

(c) (d) 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 109 — #23

3.6 Power Spectral Densities and LTI Systems 109

Gaussian processes are important in statistical modeling because of properties
inherited from the normal distribution. For example, if a random process is modeled
as a Gaussian process, the distributions of various derived quantities can be obtained
explicitly. Such quantities include the average value of the process over a range of
times and the error in estimating the average using sample values at a small set of
times.

Given the following expression:

y =
∫ T

0
g(t)X(t) dt (3.51)

we can say that X(t) is a Gaussian process if

• E(y2) is finite (i.e., does not blow up).
• Y is Gaussian-distributed for every g(t).

Note that the random variable Y has a Gaussian distribution, where its PDF is
defined as

fY(y) = 1√
2πσ 2

Y

e
−(y−µY )2

2σY
2 , (3.52)

where µY is the mean and σY
2 is the variance. Such processes are important because

they closely match the behavior of numerous physical phenomena, such as additive
white Gaussian noise (AWGN).

Q Why is an uncorrelated random process referred to as white, such
as in the case of additive white Gaussian noise?

3.6 Power Spectral Densities and LTI Systems

To analyze a communication system in the frequency domain, the power spectral
density (PSD), SXX(f ), is often used to characterize the signal, which is obtained by
taking the Fourier transform of the autocorrelation RXX(τ ) of the WSS random
process X(t). The PSD and the autocorrelation of a function, RXX(τ ), are
mathematically related by the Einstein-Wiener-Khinchin (EWK) relations; namely,

SXX(f ) =
∫ ∞

−∞
RXX(τ )e−j2π f τ dτ (3.53)

RXX(f ) =
∫ ∞

−∞
SXX(τ )e+j2π f τ df (3.54)

A very powerful consequence of the EWK relations is its usefulness when
attempting to determine the autocorrelation function or PSD of a WSS random
process that is the output of an LTI system whose input is also a WSS random
process. Specifically, suppose we denote H(f ) as the frequency response of an LTI
system h(t). We can then relate the power spectral density of input and output

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I □ 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 110 — #24

110 Probability in Communications

random processes by the following equation:

SYY(f ) = |H(f )|2SXX(f ), (3.55)

where SXX(f ) is the PSD of input random process and SYY(f ) is the PSD of output
random process. This very useful relationship is illustrated in Figure 3.9.

To understand the impact of an LTI system on the PSD of a random process,
we can use the MATLAB script in Code 3.5, where we have a bivariate uniform
random number generator producing inphase and quadrature values. To highlight
the impact of LTI systems on PSDs, we have designed two filters using the firls
function. One of the filters has a relatively large passband while the other filter has
a relatively small passband. The bivariate uniform random values are then filtered
by both systems and we can observe the resulting PSDs in Figure 3.10.

The three dimensional and top-down perspectives of the original bivariate
uniform random values are shown in Figures 3.10(a) and 3.10(b). We observe that
the density almost appears to be a rectangular block, which is what we are expecting
from a bivariate uniform. Once we filter this data using the filter with the narrow
passband region and observe the resulting PSD, we can readily notice the effects of
the filtering operation, with most of the PSD being filtered away at the peripherals.
This is evident in the three-dimensional and top-down perspectives of these filtered
bivariate uniform random values shown in Figures 3.10(c) and 3.10(d). When using
the filter with the relatively larger passband, we observe that the perimeter of the
PSD is not as filtered, as shown in the three-dimensional and top-down perspectives
of these filtered bivariate uniform random values in Figures 3.10(e) and 3.10(f).
Consequently, the primary take-away point from this example is that the filtering
operations of LTI systems can have a significant impact on the PSDs of random
processes.

3.7 Narrowband Noise

Now that we have a solid foundation with respect to random variables and random
processes, it is time to apply this knowledge to the application of narrowband
transmissions for wireless communication systems. In general, most transmissions
are designed to be bandlimited since there are constraints on the amount of wireless
spectrum that any one transmission can use. These constraints are necessary since
there is a limited amount of wireless spectrum available and a growing number of
wireless applications and users seeking to use this spectrum for their transmissions.

( )h t
H(f)

( )X t ( )Y t

S (f) |H(f)| S (f)YY XX= 2

S (f)YYR ( )YY τS (f)XXR ( )XX τ � �

Figure 3.9 An example of how the an LTI system h(t) can transform the PSD between the WSS
random process input X(t) and the WSS random process output Y(t).

Analog Devices perpetual eBook license – Artech House copyrighted material. 

-►I I ► 
( > ( > 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 111 — #25

3.7 Narrowband Noise 111

Code 3.5 Information Source: random_example.m

254 % Define simulation parameters
255 L = 1000000; % Length of data streams
256 res_hist = 100; % Histogram resolution
257 cutoff_freq1 = 0.2; % Small passband LPF
258 cutoff_freq2 = 0.7; % large passband LPF
259 filt_coeffs1 = firls(13,[0 cutoff_freq1 cutoff_freq1+0.02 1],

[1 1 0 0]);
260 filt_coeffs2 = firls(13,[0 cutoff_freq2 cutoff_freq2+0.02 1],

[1 1 0 0]);
261
262 % Create input 2D Gaussian random variable
263 x_in = rand(1,L);
264 y_in = rand(1,L);
265
266 % Filter input random data stream
267 filt_output1 = filter(filt_coeffs1,1,(x_in+1j.*y_in));
268 x_out1 = real(filt_output1);
269 y_out1 = imag(filt_output1);
270 filt_output2 = filter(filt_coeffs2,1,(x_in+1j.*y_in));
271 x_out2 = real(filt_output2);
272 y_out2 = imag(filt_output2);

One of the key elements of a narrowband communication system is the
narrowband filters at both the transmitter and receiver, which are designed to only
allow only the modulated signals to pass. However, these narrowband filters also
allow a portion of the noise intercepted at the receiver to pass through since it
is very difficult to separate out the noise from the modulated signals. If it turns
out that the noise is white (i.e., uncorrelated), then narrowband noise will take on
the shaped of a cosine-modulated bandpass filter response. This is due to the fact
that the white noise prior to filtering will have a PSD that is flat and spanning the
entire frequency range from negative infinity to positive infinity. When processed
by bandpass filters, the resulting narrowband noise PSD will take on the shape of
the square of the magnitude response of the bandpass filters since the convolution
of the noise with the filters in the time domain translates into the multiplication of
the noise PSD with the filter magnitude response (see Section 3.6).

In terms of setting up a convenient mathematical framework to represent
narrowband noise, there are two approaches: in-phase/quadrature representation
and envelope/phase representation. Both approaches can describe a complex value
x using the definition x = Aejφ = a + jb, where x ∈ C and the envelope A,
phase φ, inphase component a, and quadrature component b are real numbers
A, φ, a, b ∈ R. The relationships between the in-phase/quadrature representation
and the envelope/phase representation is described by the following:

A =
√

a2 + b2φ = tan−1(b/a) (3.56)

a = A cos(φ) b = A sin(φ) (3.57)

Thus, we can describe the in-phase/quadrature representation of narrowband
noise in the complex baseband domain via the equation

ñ(t) = nI(t) + jnQ(t), (3.58)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 112 — #26

112 Probability in Communications

Figure 3.10 Example of how filtering can impact the output power spectral densities of random
processes. (a) Power spectral density of input signal (3-D view), (b) power spectral density of
input signal (top-down view), (c) power spectral density of output signal using filter coefficients
1 (3-D view), (d) power spectral density of output signal using filter coefficients 1 (top-down view),
(e) power spectral density of output signal using filter coefficients 2 (3-D view), and (f) power spectral
density of output signal using filter coefficients 2 (top-down view).

which can then be expressed in the bandpass version of a narrowband noise signal as

n(t) = Real
{
ñ(t)ej2π fct

}
. (3.59)

Using Euler’s relationship; namely, ejω = cos(ω)+ j sin(ω), we get the following
expression:

n(t) = nI(t) cos(2π fct) − nQ(t) sin(2π fct). (3.60)

Several important properties of the in-phase/quadrature representation are
presented in Table 3.4.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

5 

0 
I 

0.5 

0 
I 

y 

2 

0 

(a) 

0 0 

(c) 

0 

(e) 

>-, 0.5 

>-, 0.5 

1 0 

1 

>-< 0.5 

0 
0 

0.2 0.4 0.6 0.8 l 

X 
(b) 

0 0.2 0.4 0.6 0.8 
X 

(d) 

0 0.5 1 
X 

(f) 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 113 — #27

3.8 Application of Random Variables: Indoor Channel Model 113

Table 3.4 Several Important Properties of In-phase/Quadrature Representation

Both nI(t) and nQ(t) have zero mean
If n(t) is Gaussian, so are nI(t) and nQ(t)
If n(t) is stationary, nI(t) and nQ(t) are jointly stationary

PSD of nI(t) and nQ(t) equal to SNI (f ) = SNQ (f ) =
{

SN(f − fc) + SN(f + fc), −B ≤ f ≤ B
0, otherwise

Both nI(t) and nQ(t) have the same variance as n(t)
If n(t) is Gaussian and its PSD symmetric, then nI(t) and nQ(t) are statistically independent
The cross-spectral density between nI(t) and nQ(t) is purely imaginary, and for −B ≤ f ≤ B
it is equal to (zero otherwise) SNINQ (f ) = −SNQNI (f ) = j(SN(f + fc) − SN(f − fc))

Similarly, the complex baseband version of the envelope/phase representation
of narrowband noise can be written as

n(t) = r(t) cos(2π fct + φ(t)) (3.61)

where r(t) = √
nI(t) + nQ(t) is the envelope and φ(t) = tan−1(nQ(t)/nI(t)) is the

phase.
In terms of the relationship between the in-phase/quadrature representation

and the envelope/phase representation with respect to their joint distributions, the
results are very exciting. Suppose we define the joint PDF for nI(t) and nQ(t) as a
bivariate Gaussian distribution equal to

fNINQ(nI, nQ) = 1
2πσ 2 e− n2

I +n2
Q

2σ2 . (3.62)

It turns out that by using the relationships nI = r cos(φ) and nQ = r sin(φ) as
well as a Jacobian, we obtain the following distributions:

fR
(r, φ) =
{

r
2πσ2 e− r2

2σ2 , r ≥ 0 and 0 ≤ φ ≤ 2π

0, otherwise
(3.63)

which are equivalent to the combination of Rayleigh and uniform PDFs.

3.8 Application of Random Variables: Indoor Channel Model

An excellent example of where random variables are used to model a stochastic
phenomenon in the design and implementation of a communication system is
the indoor channel model proposed by Saleh and Valenzuela [3]. The premise of
this channel model is that the indoor environment generates clusters of multipath
components that result from the wireless signals reflecting off of the surrounding
environment.

Mathematically speaking, they described these reflections of the transmitted
signal intercepted at the receiver by the following expression:

h(t) =
∞∑

l=0

∞∑
k=0

βkle
jθklδ(t − Tl − τkl) (3.64)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 114 — #28

114 Probability in Communications

where βkl is the amplitude level of the kth ray of the lth multipath cluster, θkl is
the phase value of the kth ray of the lth multipath cluster, Tl is the delay of the
start of the lth multipath cluster, and τkl is the delay of the kth ray within the lth
multipath cluster. In their work, Saleh and Valenzuela used channel measurements
in order to characterize βkl as a Rayleigh random variable, θkl as a uniform random
variable, and both Tl and τkl as Poisson arrival processes with arrival rates � and
λ. Graphically, this model can be illustrated using Figure 3.11.

3.9 Chapter Summary

In this chapter, a brief introduction to some of the key mathematical tools
for analyzing and modeling random variables and random processes for
communication systems has been presented. Of particular importance, the
reader should understand how to mathematically manipulate Gaussian random
variables, Gaussian random processes, and bivariate normal distributions since
they frequently occur in digital communications and wireless data transmission
applications. Furthermore, understanding how stationarity works and how
to apply the EWK relations to situations involving random processes being
filtered by LTI systems is vitally important, especially when dealing with the
processing and treatment of received wireless signals by the communication system
receiver.

3.10 Additional Readings

Although this chapter attempts to provide the reader with an introduction to some
of the key mathematical tools needed to analyze and model random variables and
random processes that frequently occur in many digital communication systems,
the treatment of these mathematical tools is by no means rigorous or thorough.
Consequently, the interested reader is encouraged to consult some of the available
books that address this broad area in greater detail. For instance, the gold
standard for any textbook on the subject of probability and random processes is by
Papoulis and Pillai [1]. On the other hand, those individuals seeking to understand
probability and random processes theory within the context of communication
networks would potentially find the book by Leon-Garcia to be highly relevant [4].

T0 T

 

1 T2
Time

β2

1/λ

1/

eT/Γ

eτ/γ

Figure 3.11 Illustration of the Saleh and Valenzuela statistical indoor channel model.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

~ A ------. 
' \ ',, 
\ ............... 

.. ' 
\... ..... ................. 

··~------------.. 

·• .. 
·-.... 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 115 — #29

3.10 Additional Readings 115

For individuals who are interested in activities involving physical layer digital
communication systems and digital signal processing, such as Wiener filtering,
the book by Gubner would be a decent option given that many of the examples
and problems included in this publication are related to many of the classic
problems in communication systems [5]. Regarding books that possess numerous
solved examples and explanations, those by Hsu [6] and Krishnan [7] would
serve as suitable reading material. Finally, for those individuals who are interested
in studying advanced topics and treatments of random processes, the book by
Grimmett and Stirzaker would be a suitable publication [8].

References

[1] Papoulis,A., and S. Unnikrishna Pillai, Probability, Random Variables and Stochastic
Processes, Fourth Edition, New York: McGraw Hill Higher Education, 2002.

[2] Abramowitz, M., and I. Stegun, Handbook of Mathematical Functions: with Formulas,
Graphs, and Mathematical Tables, New York: Dover Publications, 1965.

[3] Saleh, A. A. M., and R. A. Valenzuela, A Statistical Model for Indoor Multipath
Propagation, IEEE Journal on Selected Areas in Communications, Vol. 5, No. 2, 1987,
pp. 128–137.

[4] Leon-Garcia, A., Probability, Statistics, and Random Processes for Electrical Engineering,
Third Edition, Upper Saddle River, NJ: Prentice Hall, 2008.

[5] Gubner, J. A., Probability and Random Processes for Electrical and Computer Engineers,
Cambridge, MA: Cambridge University Press, 2006.

[6] Hsu, H., Schaum’s Outline of Probability, Random Variables, and Random Processes,
New York: McGraw-Hill, 1996.

[7] Krishnan, V., Probability and Random Processes, Hoboken, NJ: Wiley-Interscience, 2006.
[8] Grimmett, G., and D. Stirzaker, Probability and Random Processes, Third Edition, Oxford,

UK: Oxford University Press, 2001.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 117 — #1

C H A P T E R 4

Digital Communications Fundamentals

In this chapter, we will provide an overview of several key fundamental concepts
employed in the transmission of digital data. Starting with an understanding of how
binary data can be used to manipulate the physical characteristics of electromagnetic
waveforms, we will then look at the basic anatomy of a digital communication
system before concentrating our attention on several different approaches for
modulating electromagnetic waveforms using binary data. Once we have established
how a digital data transmission process operates, we will then explore one of the
key analytical tools for assessing the quantitative performance of such systems: the
bit error rate. Finally, this chapter will conclude with an introduction to the design
of digital receivers via a signal vector space perspective.

4.1 What Is Digital Transmission?

A digital transceiver is a system composed of a collection of both digital and analog
processes that work in concert with each other in order to handle the treatment and
manipulation of binary information. The purpose of these processes is to achieve
data transmission and reception across some sort of medium, whether it is a twisted
pair of copper wires, a fiber optic cable, or a wireless environment. At the core of
any digital transceiver system is the binary digit or bit, which for the purposes of
this book is considered to be the fundamental unit of information used by a digital
communication system.

Therefore, a digital transceiver is essentially responsible for the translation
between a stream of digital data represented by bits and electromagnetic
waveforms possessing physical characteristics that uniquely represent those bits.
Since electromagnetic waveforms are usually described by sine waves and cosine
waves, several physical characteristics of electromagnetic waveforms commonly
used to represent digital data per time interval T include the amplitude, phase, and
carrier frequency of the waveform, as shown in Figure 4.1. Notice how different
combinations of bits represent different amplitude levels or different phase values or
different carrier frequency values, where each value uniquely represents a particular
binary pattern. Note that in some advanced mapping regimes, binary patterns can
potentially be represented by two or more physical quantities.

However, there is much more going on in a digital transceiver than just a
mapping between bits and waveforms, as shown in Figure 4.2. In this illustration
of the basic anatomy for a digital transceiver, we observe that there are several
functional blocks that constitute a communication system. For instance, the
mapping between bits and electromagnetic waveform characteristics is represented
by the modulation and demodulation blocks. Additionally, there are the source

117

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 118 — #2

118 Digital Communications Fundamentals

Figure 4.1 Possible mappings of binary information to EM wave properties.

Figure 4.2 Generic representation of a digital communication transceiver.

encoding and source decoding blocks that handle the removal of redundant
information from the binary data, channel encoding and channel decoding blocks
that introduce a controlled amount of redundant information to protect the
transmission for potential errors, and the radio frequency front end (RFFE) blocks
that handle the conversation of baseband waveforms to higher carrier frequencies.

One may ask the question, Why do we need all these blocks in our digital
communication system? Notice in Figure 4.2 the presence of a channel between the
transmitter and the receiver of the digital transmission system. The main reason why
the design of a digital communication system tends to be challenging, and that so
many blocks are involved in its implementation, is due to this channel. If the channel
was an ideal medium where the electromagnetic waveforms from the transmitter
are clearly sent to the receiver without any sort of distortion or disturbances, then
the design of digital communication systems would be trivial. However, in reality a
channel introduces a variety of random impairments to a digital transmission that

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Amplitude 
u u CJ u \J \J u u ·t 

.. . .. 
T T T T 

Phase 
[Q] [mJ [DJ [IQ] ---

non(\~ 0 ~ n 0 
.. 

T T T T 

Frequency n nnnnn n n n 
U U UV UV V U U ·t 
.. 

T T T T 

Digital 
I 

Analog 
domain I domain 

Transmitter ◄--------:---------► 
I 
I - - - - - - - - - - ----- - - -

Digital Source Channel Digital Digital-to- RF Front-
source encoding encoding mod analog end 

Lb - - - - - - - - - - - - -I 
I 
I n 
I ::J'" 
I "' I :::J 
I :::J I [Q_ I 
I 

- - - - - - - - - - - _ , - - - -
Digital Source Channel Digital Analog- RF Front-
sink decoding decoding demod to-Digital end 

Lb - - - - - - - - - ---, - - -
I . 

Receiver 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 119 — #3

4.1 What Is Digital Transmission? 119

can potentially affect the correct reception of waveforms intercepted at the receiver.
For instance, a channel may introduce some form of noise that can obfuscate some
of the waveform characteristics. Furthermore, in many real-world scenarios many of
these nonideal effects introduced by the channel are time-varying and thus difficult
to deal with, especially if they vary rapidly in time.

Thus, under real-world conditions, the primary goal of any digital
communication system is to transmit a binary message m(t) and have the
reconstructed version of this binary message m̂(t) at the output of the receiver to be
equal to each other. In other words, our goal is to have P(m̂(t) �= m(t)) as small as
needed for a particular application. The metric for quantitatively assessing the error
performance of a digital communication system is referred to as the probability of
error or BER, which we define as Pe = P(m̂(t) �= m(t)). Note that several data
transmission applications possess different Pe requirements due in part to the data
transmission rate. For instance, for digital voice transmission, a BER of Pe ∼ 10−3

is considered acceptable, while for an average data transmission application a BER
of Pe ∼ 10−5 − 10−6 is deemed sufficient. On the other hand, for a very high data
rate application such as those that employ fiber-optic cables, a BER of Pe ∼ 10−9

is needed since any more errors would flood a receiver given that the data rates can
be extremely high.

To help mitigate errors that may occur due to the impairments introduced by
the channel, we will briefly study how source encoding and channel encoding works
before proceeding with an introduction to modulation.

Hands-On MATLAB Example: Communication systems convey information
by manipulating the physical properties of an electromagnetic signal before it is
broadcasted across a medium. Signal properties such as the amplitude, phase,
and/or frequency are manipulated over time in such a manner that the receiver
can interpret the message being conveyed by the transmitter. These electromagnetic
broadcasts often use sine wave signals, which makes them relatively straightforward
to manipulate for the purposes of conveying information. In the MATLAB script
below, we generate three sine wave-based transmissions, where information is
embedded in them via their amplitude levels (amplitude shift keying), phase
characteristics (phase shift keying), or frequency values (frequency shift keying).
In this script, we generate random binary data using the rand function and then
round it to the nearest integer (one or zero), and then map those binary values to
a corresponding amplitude, phase, or frequency value to be used by a sine wave
signal. Note that since sine wave signals are continuous waveforms, we have to
approximate this situation by using a large number of discrete points to model the
sine wave signal as continuous.

The mapping of these random binary values to the physical attributes of a
signal wave signal are shown in Figure 4.3, where we can readily observe how
the amplitude (Figure 4.3[b]), phase (Figure 4.3[c]), and frequency (Figure 4.3[d])
values change over time in order to represent the binary values being transmitted
to the receiver (see Figure 4.3[a]). In all three case, we use the exact same sine
wave signal as the basis for communicating this information, but the sine wave
characteristics are changing as a function of time.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 120 — #4

120 Digital Communications Fundamentals

Code 4.1 Sending Binary Data via Sinusoidal Signal Manipulation: chapter4.m

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 % Sending binary data via sinusoidal signal manipulation
23
24 % Parameters
25 sig_len = 1000; % Signal length (in samples)
26 sampl_per_bin = 100; % Samples per binary representation
27 bin_data_len = sig_len/sampl_per_bin;

% Length of binary stream is a multiple of signal length
28 bin_data = round(rand(1,bin_data_len));
29
30 % Create sinusoidal carriers
31 sig_carrier_base = sin(2*pi*(0:(1/sampl_per_bin):

(1-(1/sampl_per_bin)))); % Baseline carrier
32 sig_carrier_freq = sin(2*2*pi*(0:(1/sampl_per_bin):

(1-(1/sampl_per_bin)))); % Double frequency
33 sig_carrier_phase = sin(2*pi*(0:(1/sampl_per_bin):

(1-(1/sampl_per_bin)))+(pi/4)); % Phase shifted by 45 degrees
34
35 % Modulate sinusoidal carrier via amplitude, phase, and frequency
36 % manipulations
37 sig_bin = []; % Binary waveform
38 sig_ask = []; % Amplitude modulated
39 sig_psk = []; % Phase modulated
40 sig_fsk = []; % Frequency modulated
41 for ind = 1:1:bin_data_len,
42 if (bin_data(ind)==1)
43 sig_bin = [sig_bin ones(1,sampl_per_bin)];
44 sig_ask = [sig_ask sig_carrier_base];
45 sig_psk = [sig_psk sig_carrier_base];
46 sig_fsk = [sig_fsk sig_carrier_base];
47 else
48 sig_bin = [sig_bin zeros(1,sampl_per_bin)];
49 sig_ask = [sig_ask 0.5*sig_carrier_base];
50 sig_psk = [sig_psk sig_carrier_phase];
51 sig_fsk = [sig_fsk sig_carrier_freq];
52 end;
53 end;

4.1.1 Source Encoding
One of the goals of any communication system is to efficiently and reliably
communicate information across a medium from a transmitter to a receiver. As a
result, it would be ideal if all the redundant information from a transmission could
be removed in order to minimize the amount of information that needs to be sent
across the channel, which would ultimately result in a decrease in the amount of
time, computational resources, and power being expended on the transmission.
Consequently, source encoding is a mechanism designed to remove redundant
information in order to facilitate more efficient communications.

The way source encoding operates is by taking a sequence of source symbols
u and mapping them to a corresponding sequence of source encoded symbols v,
vi ∈ v as close to random as possible and the components of v are uncorrelated
(i.e., unrelated). Thus, by performing this source encoding operation we hopefully
achieve some level of redundancy minimization in vi ∈ v, thus limiting the amount

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 121 — #5

4.1 What Is Digital Transmission? 121

Figure 4.3 Examples of amplitude, phase, and frequency representations of binary transmissions.
These sine wave properties are the building blocks for most commonly used modulation schemes
used in digital communication systems. (a) Binary signal, (b) amplitude shift keying, (c) phase shift
keying, and (d) frequency shift keying.

of wasted radio resources employed in the transmission of otherwise predictable
symbols in u. In other words, a source encoder removes redundant information
from the source symbols in order to realize efficient transmission. Note that in
order to perform source encoding, the source symbols need to be digital.

Hands-On MATLAB Example: Source coding exploits redundancy in a
collection of data by removing it and replacing that redundancy with a short

Analog Devices perpetual eBook license – Artech House copyrighted material. 

<J.) 

"O 
::J ..... 
~0.5 
E 
<( 

<J.) 

"O 
::J ..... 

0 

~o 
E 
<( 

0 200 400 600 
Time (n) 

(a) 

800 

-1~~~~-~~~~~~~~~~ 

<J.) 

"O 
::J ..... 
~o 
E 
<( 

0 200 400 600 
Time (n) 

(b) 

800 1000 

-1 ~~~~~~~~~~~~~~~ 

<J.) 

"O 
::J ..... 
~o 
E 
<( 

0 200 400 600 

Time (n) 
(c) 

800 1000 

-1 ~~~~~~~~~~~~~~~ 
0 200 400 600 

Time (n) 
(d) 

800 1000 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 122 — #6

122 Digital Communications Fundamentals

i
A single analog television channel occupies 6 MHz of frequency
bandwidth. On the other hand, up to eight digitally encoded
television channels can fit within the same frequency bandwidth
of 6 MHz.

codeword, thus reducing the overall amount of information. In the following
MATLAB script, we will illustrate how source coding works when it is applied to
data possessing different amounts of redundancy. Using a combination of the rand
and round functions, we generate two binary data vectors, with one possessing an
equal amount of one and zero values while the other vector possesses approximately
90% one values and 10% zero values. To compress the data in these vectors, we use
an encoding technique where we take all continuous strings of ones in each vector
and replace it with a decimal value representing the length of these strings of one.
For example, if a binary vector existed, and 15 one values exist betwen two zero
values, we would replace those 15 one values with a decimal value (or equivalent
codeword) indicating that 15 one values exist in that part of the binary vector.

Based on the implemented encoding scheme, our intuition would dictate that
the binary vector with the 90/10 ratio of one to zero values would be compressed
more relative to the binary vector with the 50/50 ratio since the former would have
a greater likelihood of having long strings of one values to compress. Referring to
Figure 4.4, our intuition is confirmed, with a significant reduction in size for the
compressed 90/10 binary data stream. On the other hand, we observe that the 50/50
binary vector does not even compress but rather grow in size. This is due to the
fact that the amount of overhead needed to replace every string of one values with
a corresponding codeword actually takes up more information than the original
binary sequence. Consequently, when performing source coding, it is usually worth
our while to compress data streams that possess obvious amounts of redundancy,
otherwise we can actually make the situation even more inefficient.

4.1.2 Channel Encoding
To protect a digital transmission from the possibility of its information being
corrupted, it is necessary to introduce some level of controlled redundancy in order
to reverse the effects of data corruption. Consequently, channel encoding is designed
to correct for channel transmission errors by introducing controlled redundancy into
the data transmission. As opposed to the redundancy that is removed during the
source encoding process, which is random in nature, the redundancy introduced by

Figure 4.4 Impact of source coding on binary transmissions.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

lo 

"' 15,000 +-' 
iii 
0 10,000 
'-
IJ) 

.0 5,000 E 
:::, 
z 0 

Original Encoded (50/50) Encoded (90/10) 
Binary transmission sequences 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 123 — #7

4.1 What Is Digital Transmission? 123

Code 4.2 Reducing Amount of Data Transmission Using Source Coding: chapter4.m

92 % Define parameters

93 len = 10000; % Length of binary data stream

94

95 % Have two binary sources, one 50/50 and the other 90/10 in terms of ones

96 % and zeros

97 bin1 = round(rand(1,len)); % 50/50 binary

98 bin2 = round(0.5*rand(1,len)+0.45); %90/10 binary

99

100 % Encode strings of ones in terms of the length of these strings

101 enc_bin1 = [];

102 enc_bin2 = [];

103 for ind = 1:1:len,

104 if (bin1(ind) == 1) % Encoding 50/50

105 if (ind == 1)

106 enc_bin1 = 1;

107 else

108 enc_bin1(end) = enc_bin1(end)+1;

109 end;

110 else

111 enc_bin1 = [enc_bin1 0];

112 end;

113 if (bin2(ind) == 1) % Encoding 90/10

114 if (ind == 1)

115 enc_bin2 = 1;

116 else

117 enc_bin2(end) = enc_bin2(end)+1;

118 end;

119 else

120 enc_bin2 = [enc_bin2 0];

121 end;

122 end;

123

124 % Find size of encoded binary streams

125 % (assume all one string length values possess the same number of bits)

126 ind1 = find(enc_bin1 ˜= 0);

127 ind2 = find(enc_bin2 ˜= 0);

128 [largest_ebin1,ind_largest_ebin1] = max(enc_bin1(ind1));

129 [largest_ebin2,ind_largest_ebin2] = max(enc_bin2(ind2));

130 numbits1 = length(dec2bin(largest_ebin1)-’0’);

131 numbits2 = length(dec2bin(largest_ebin2)-’0’);

132 total_size_ebin1 = length(ind1)*numbits1 + length(find(enc_bin1 == 0));

133 total_size_ebin2 = length(ind2)*numbits2 + length(find(enc_bin2 == 0));

a channel encoding is specifically designed to combat the effects of bit errors in the
transmission (i.e., the redundancy possesses a specific structure known to both the
transmitter and receiver).

In general, channel encoding operates as follows: Each vector of a source
encoded output of length K; namely, vl where l = 1, 2, ..., 2K, is assigned a unique
codeword such that the vector vl = (101010 . . .) is assigned a unique codeword
cl ∈ C of length N, where C is a codebook. During this process, the channel encoder
has introduced N−K = r controlled number of bits to the channel encoding process.
The code rate of a communications system is equal to the ratio of the number of
information bits to the size of the codeword (i.e., the code rate is equal to k/N).

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 124 — #8

124 Digital Communications Fundamentals

When designing a codebook for a channel encoder, it is necessary to
quantitatively assess how well or how poorly the codewords will perform in
a situation involving data corruption. Consequently, the Hamming distance is
often used to determine the effectiveness of a set of codewords contained within
a codebook by evaluating the relative difference between any two codewords.
Specifically, the Hamming distance dH(ci, cj) between any two codewords, say ci
and cj, is equal to the number of components in which ci and cj are different. When
determining the effectiveness of a codebook design, we often are looking for the
minimum Hamming distances between codewords; that is,

dH,min = min
ci ,cj∈C, i �=j

dH(ci, cj), (4.1)

since our goal is to maximize the minimum Hamming distance in a given codebook
to ensure that the probability of accidentally choosing a codeword other than the
correct codeword is kept to a minimum. For example, suppose we have a codebook
consisting of {101, 010}. We can readily calculate the minimum Hamming distance
to be equal to dH,min = 3, which is the best possible result. On the other hand,
a codebook consisting of {111, 101} possesses a minimum Hamming distance of
dH,min = 1, which is relatively poor in comparison to the previous codebook
example.

In the event that a codeword is corrupted during transmission, decoding spheres
(also known as Hamming spheres) can be employed in order to make decisions
on the received information, as shown in Figure 4.5, where codewords that are
corrupted during transmission are mapped to the nearest eligible codeword. Note
that when designing a codebook, the decoding spheres should not overlap in order
to enable the best possible decoding performance at the receiver (i.e., → dH,min =
2t + 1).

Hands-On MATLAB Example: Let us apply repetition coding to an actual
vector, using a range of repetition rates, and observe its impact when the binary
vector is exposed to random bit-flips. The MATLAB script below takes the original
binary vector bin_str and introduces controlled redundancy into it in the form of
repeating these binary values by a factor of N. For example, instead of transmitting
010, applying a repetition coding scheme with a repetition factor of N = 3 would
yield an output of 000111000. The reason this is important is that in the event
a bit is flipped from a one to a zero or from a zero to a one, which is considered
an error, the other repeated bits could be used to nullify the error at the receiver;

Figure 4.5 Example of decoding spheres.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

001 
010 

Decoding 
sphere for "0" 

Decoding 
sphere for "1" 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 125 — #9

4.1 What Is Digital Transmission? 125

Q

A rate 1/3 repetition code with no source encoding would look
like:

1 → 111 = c1 (1st codeword)

0 → 000 = c2 (2nd codeword)

∴ C = {000, 111}
What are the Hamming distances for the codeword pairs
dH(111,000) and dH(111,101)?

that is, if a zero value is flipped to a one, the other two zero values will inform the
receiver that one of the bits is in error and discard that value when decoding the
incoming binary vector. Intuitively, we would assume that with the more repetition
applied to a binary vector, the more secure it is from corruption; for example, there
are circumstances = where more than one bit is corrupted, which could still yield
an error unless there are even more repeated bits to inform the receiver otherwise.

Code 4.3 Protect Data Using Simple Repetition Channel Coding: chapter4.m

151 % Define parameters
152 len = 100000; % Length of original binary data stream
153 N1 = 3; % First repetition factor; should be odd to avoid tie
154 N2 = 5; % Second repetition factor; should be odd to avoid tie
155 N3 = 7; % Third repetition factor; should be odd to avoid tie
156
157 % Generate binary data stream
158 bin_str = round(rand(1,len));
159
160 % Employ repetition code with repetition factors N1, N2, N3
161 chcode1_bin_str = zeros(1,N1*len);
162 chcode2_bin_str = zeros(1,N2*len);
163 chcode3_bin_str = zeros(1,N3*len);
164 for ind = 1:1:max([N1 N2 N3]),
165 if (ind<=N1)
166 chcode1_bin_str(ind:N1:(N1*(len-1)+ind))=bin_str;
167 end;
168 if (ind<=N2)
169 chcode2_bin_str(ind:N2:(N2*(len-1)+ind))=bin_str;
170 end;
171 if (ind<=N3)
172 chcode3_bin_str(ind:N3:(N3*(len-1)+ind))=bin_str;
173 end;
174 end;
175
176 % Corrupt both binary strings with zero-mean unit variance Gaussian
177 % noise followed by rounding (creates "bit flipping" errors)
178 noisy_bin_str = bin_str + randn(1,len);
179 rx_bin_str0 = zeros(1,len);
180 ind0 = find(noisy_bin_str >= 0.5);
181 rx_bin_str0(ind0) = 1;
182 noisy_chcode1_bin_str = chcode1_bin_str + randn(1,N1*len);
183 rx_chcode1_bin_str = zeros(1,N1*len);
184 ind1 = find(noisy_chcode1_bin_str >= 0.5);
185 rx_chcode1_bin_str(ind1) = 1;

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 126 — #10

126 Digital Communications Fundamentals

186 noisy_chcode2_bin_str = chcode2_bin_str + randn(1,N2*len);
187 rx_chcode2_bin_str = zeros(1,N2*len);
188 ind2 = find(noisy_chcode2_bin_str >= 0.5);
189 rx_chcode2_bin_str(ind2) = 1;
190 noisy_chcode3_bin_str = chcode3_bin_str + randn(1,N3*len);
191 rx_chcode3_bin_str = zeros(1,N3*len);
192 ind3 = find(noisy_chcode3_bin_str >= 0.5);
193 rx_chcode3_bin_str(ind3) = 1;
194
195 % Decode three encoded binary sequences
196 dec1_bin = (vec2mat(rx_chcode1_bin_str,N1)).’;
197 dec2_bin = (vec2mat(rx_chcode2_bin_str,N2)).’;
198 dec3_bin = (vec2mat(rx_chcode3_bin_str,N3)).’;
199 ind11 = find(((sum(dec1_bin,1))/N1) >= 0.5);
200 ind12 = find(((sum(dec2_bin,1))/N2) >= 0.5);
201 ind13 = find(((sum(dec3_bin,1))/N3) >= 0.5);
202 rx_bin_str1 = zeros(1,len);
203 rx_bin_str1(ind11) = 1;
204 rx_bin_str2 = zeros(1,len);
205 rx_bin_str2(ind12) = 1;
206 rx_bin_str3 = zeros(1,len);
207 rx_bin_str3(ind13) = 1;
208
209 % Calculate bit error rate
210 ber0 = sum(abs(bin_str - rx_bin_str0))/len;
211 ber1 = sum(abs(bin_str - rx_bin_str1))/len;
212 ber2 = sum(abs(bin_str - rx_bin_str2))/len;
213 ber3 = sum(abs(bin_str - rx_bin_str3))/len;

Based on the MATLAB script, we can see the impact of repetition coding on
a binary vector being corrupted by bit-flipping in an error-prone environment (see
Figure 4.6). As we introduce more controlled redundancy in the form of larger
repetition rates, the amount of bit errors present in the transmission decreases
gradually. This makes sense since as we are introducing more resources into the
transmission to make it more reliable in an error-prone environment, the rate at
which errors occur will start to decrease. However, one should note that there
is a cost-benefit trade-off here since we are introducing more resources into the
transmission but this may or may not linearly correlate with the benefits we are
obtaining.

4.1.2.1 Shannon’s Channel Coding Theorem
In digital communications, it is sometimes necessary to determine the upper limit
of the data rate for a specific digital transceiver design. Consequently, in 1949

Figure 4.6 Impact of repetition coding on binary transmissions for different repetition factors N.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.4 
QJ ..... 
(l:S ... ... 
0 0.2 ... ... 
QJ ..... 
ii:i 

0 
None N=3 N=5 N=7 

Binary transmission sequences 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 127 — #11

4.2 Digital Modulation 127

Claude Shannon published his seminar paper that addressed this topic, entitled
“Communication in the Presence of Noise” [1]. In this paper, he defined a
quantitative expression that described the limit on the data rate, or capacity, of
a digital transceiver in order to achieve error-free transmission.

Suppose one considers a channel with capacity C and we transmit data at a fixed
code rate of K/N, which is equal to Rc (a constant). Consequently, if we increase
N, then we must increase K in order to keep Rc equal to a constant. What Shannon
states is that a code exists such that for Rc = K/N < C and as N → ∞, we have the
probability of error Pe → 0. Conversely, for Rc = K/N ≥ C, Shannon indicated
that no such code exists. Hence, C is the limit in rate for reliable communications
(i.e., C is the absolute limit that you cannot go any faster than this amount without
causing errors).

So why is the result so important? First, the concept of reliability in digital
communications is usually expressed as the probability of bit error, which is
measured at the output of the receiver. As a result, it would be convenient to know
what this capacity is given the transmission bandwidth, B, the received SNR using
mathematical tools rather than empirical measurements. Thus, Shannon derived
the information capacity of the channel, which turned out to be equal to

C = B log2(1 + SNR) [b/s], (4.2)

where this information capacity tells us the achievable data rate. Note that Shannon
only provided us with the theoretical limit for the achievable capacity of a data
transmission, but he does not tell us how to build a transceiver to achieve this limit.

Second, the information capacity of the channel is useful since this expression
provides us with a bound on the achievable data rate given bandwidth B and received
SNR, employed in the ratio η = R/C, where R is the signaling rate and C is the
channel capacity. Thus, as η → 1, the system becomes more efficient. Therefore,
the capacity expression provides us with a basis for trade-off analysis between B
and SNR, and it can be used for comparing the noise performance of one modulated
scheme versus another.

4.2 Digital Modulation

In analog modulation schemes, the analog message signal modulates a continuous
wave prior to transmission across a medium. Conversely, digital modulation
involves having a digital message signal modulating a continuous waveform. As we
have seen earlier in this chapter, this can be accomplished by uniquely manipulating
the amplitude and phase information of a signal during each symbol period T based
on a specific pattern of bits. However, most digital modulation techniques possess
an intermediary step that we will focus on in this section, where collections of b
bits forming a binary message mb are mapped to a symbol, which is then used to
define the physical characteristics of a continuous waveform in terms of amplitude
and phase. In particular, for each of the possible 2b values of mb, we need a unique
signal si(t), 1 ≤ i ≤ 2b that can then be used to modulate the continuous waveform,
as shown in Figure 4.7.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 128 — #12

128 Digital Communications Fundamentals

Figure 4.7 Modulation process of equivalent binary data.

In this section, we will study several different families of approaches for
mapping binary data into symbols that can then be used to modulate continuous
waveforms. These modulation scheme families are defined by which physical
characteristic or combination of characteristics are manipulated by the mapping
process in order to uniquely represent a specific bit pattern. However, there exist
various trade-offs between these different families, including how efficiently a bit is
mapped to a symbol in terms of the transmit power expended. Consequently, we
will first explore how we assess this trade-off before studying three major families
of digital modulation schemes and how they compare to each other.

4.2.1 Power Efficiency
In order to assess the effectiveness of mapping a bit to a symbol in terms of the
transmit power expended per symbol, we can employ the power efficiency metric.
Suppose we define the energy of a symbol s(t) as

Es =
T∫

0

s2(t)dt, (4.3)

where T is the period of the symbol. Then, for a modulation scheme consisting of
M symbols, we can define the average symbol energy via the following weighted
average:

Ēs = P(s1(t)) ·
∫ T

0
s2
1(t)dt + · · · + P(sM(t)) ·

∫ T

0
s2
M(t)dt, (4.4)

where P(si(t)) is the probability that the symbol si(t) occurs. Furthermore, if we
would like to calculate the average energy per bit, we can approximate this using
Ēs and dividing this quantity by b = log2(M) bits per symbol, yielding

Ēb = Ēs

b
= Ēs

log2(M)
. (4.5)

To quantitatively assess the similarity between two symbols in terms of their
physical characteristics, we define the Euclidean distance as

d2
ij =

∫ T

0
(si(t) − sj(t))2dt = E�sij , (4.6)

where �sij(t) = si(t)− sj(t). Since we are often interested in the worst-case scenario
when assessing the performance of a modulation scheme, we usually compute the

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Source 
Source Channel mb Modulator To 
encoding encoding 2b waveforms channel 

r- Equivalent binary source ------, 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 129 — #13

4.2 Digital Modulation 129

minimum Euclidean distance; namely:

d2
min = min

si(t),sj(t),i �=j

∫ T

0
(si(t) − sj(t))2dt. (4.7)

Thus, the power efficiency of a signal set used for modulation is given by the
expression

εp = d2
min

Ēb
. (4.8)

Q

Suppose we would like to find the εp given the following
waveforms:

s1(t) = A · [u(t) − u(t − T)] = s(t)

s2(t) = −A · [u(t) − u(t − T)] = −s(t)

where u(t) is the unit step function. Compute the following:

• The minimum Euclidean distance d2
min.

• The average bit energy Ēb.
• The power efficiency εP.

4.2.2 Pulse Amplitude Modulation
Of the various physical characteristics of a signal waveform that can be manipulated
in order to convey digital information, the most obvious choice is the signal
amplitude level. Leveraging this physical characteristic, pulse amplitude modulation
(PAM) is a digital modulation scheme where the message information is encoded
in the amplitude of a series of signal pulses. Furthermore, demodulation of a PAM
transmission is performed by detecting the amplitude level of the carrier at every
symbol period.

The most basic form of PAM is binary PAM (B-PAM), where the individual
binary digits are mapped to a waveform s(t) possessing two amplitude levels
according to the following modulation rule:

• “1′′ → s1(t)
• “0′′ → s2(t)

where s1(t) is the waveform s(t) possessing one unique amplitude level while s2(t)
is also based on the waveform s(t) but possesses another unique amplitude level.
Note that the waveform s(t) is defined across a time period T and is zero otherwise.
Since the duration of the symbols is equivalent to the duration of the bits, the bit
rate for a B-PAM transmission is defined as Rb = 1/T bits per second.

The energy of the waveform s(t) is defined as

Es =
∫ T

0
s2(t)dt (Joules). (4.9)

Suppose we define s(t) as a rectangular waveform; namely,

s(t) = A · [u(t) − u(t − T)], (4.10)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 130 — #14

130 Digital Communications Fundamentals

where u(t) is the unit step function and A is the signal amplitude. Furthermore,
suppose that the bit “1” is defined by the amplitude A while the bit “0” is defined by
the amplitude −A. We can subsequently write our modulation rule to be equal to

• “1" → s(t)
• “0" → −s(t)

Therefore, the symbol energy is given by Es=E−s=A2T=A2

Rb
. From this result, we can

define the energy per bit for a B-PAM transmission as

Ēb = P(1) ·
∫ T

0
s2
1(t)dt + P(0) ·

∫ T

0
s2
2(t)dt, (4.11)

where P(1) is the probability that the bit is a “1,” and P(0) is the probability that
the bit is a “0.” Thus, if we define s1(t) = s(t) and s2(t) = −s(t), then the average
energy per bit is equal to

Ēb = Es{P(1) + P(0)} = Es =
∫ T

0
s2(t)dt = A2T. (4.12)

Calculating the minimum Euclidean distance, we get

d2
min =

∫ T

0
(s(t) − (−s(t)))2dt =

∫ T

0
(2s(t))2dt = 4A2T, (4.13)

which is then plugged into (4.8) in order to yield a power efficiency result for a
B-PAM transmission of

εp = d2
min

Ēb
= 4A2T

A2T
= 4. (4.14)

As we will observe throughout the rest of this section, a power efficiency result
of 4 is the best possible result that you can obtain for any digital modulation scheme
when all possible binary sequences are each mapped to a unique symbol.

Suppose we now generalize the B-PAM results obtained for the average bit
energy, the minimum Euclidean distance, and the power efficiency and apply them
to the case when we try mapping binary sequences to one of M possible unique signal
amplitude levels, referred to as M-ary pulse amplitude modulation (M-PAM). First,
let us express the M-PAM waveform as

si(t) = Ai · p(t), for i = 1, 2, . . . , M/2 (4.15)

where Ai = A(2i − 1), p(t) = u(t) − u(t − T), and u(t) is the unit step
function. Graphically speaking, the M-PAM modulation scheme looks like the
signal constellation shown in Figure 4.8.

In order to compute the power efficieny of M-PAM, εp,M−PAM, we select the d2
min

pair s1(t) = A · p(t) and s2(t) = −A · p(t) since this pair of signal waveforms are
the closest to each other in terms of shape. Thus, using this selection of waveforms,
we can solve for the difference between them:

�s(t) = 2A · p(t), (4.16)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 131 — #15

4.2 Digital Modulation 131

Figure 4.8 M-PAM signal constellation.

which yields a minimum Euclidean distance of

d2
min = 4A2T. (4.17)

In order to calculate the average symbol energy, Ēs, we can simplify the
mathematics by exploiting the symmetry of signal constellation, which yields

Ēs = 2
M

A2T
M/2∑
i=1

(2i − 1)2

= A2T
(M2 − 1)

3
which is simplified via tables

→ Ēb = Ēs

log2(M)
= A2T(22b − 1)

3b
.

(4.18)

Finally, solving for the power efficiency yields

εp,M−PAM = 12b

22b − 1
. (4.19)

4.2.3 Quadrature Amplitude Modulation
Similar to PAM, quadrature amplitude modulation (QAM) implies some sort of
amplitude modulation. However, QAM modulation is a two-dimensional signal
modulation scheme as opposed to PAM modulation. The two dimensions of
the QAM modulation; namely, the in-phase and quadrature components, are
orthogonal to each other, which implies that one can essentially double the
transmission data rate for free. Furthermore, rectangular QAM can be thought
of as two orthogonal PAM signals being transmitted simultaneously.

Mathematically, if a rectangular QAM signal constellation consists of M
unique waveforms, this could potentially be represented as

√
M-PAM transmissions

operating simultaneously in orthogonal dimensions. Note that QAM signal
constellations could also take the form of nested circles (called circular QAM),
or any other geometric pattern that involves orthogonal modulators. Rectangular
QAM is a popular modulation scheme due to its relatively simple receiver structure,
as shown in Figure 4.9, where each dimension employs a

√
M-ary PAM detector.

In order to determine the power efficiency of M-QAM, let us first define
the mathematical representation of a signal waveform belonging to this form of
modulation:

sij(t) = Ai · cos(ωct) + Bj · sin(ωct), (4.20)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Im 

-(M- 1)A O O O -SA -3A -A A 3A SA O O O (M- 1)A Re 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 132 — #16

132 Digital Communications Fundamentals

Figure 4.9 M-QAM receiver structure.

where ωc is the carrier frequency, and Ai and Bj are the in-phase and quadrature
amplitude levels. Notice how the cosine and sine functions are used to modulate
these amplitude levels in orthogonal dimensions. Visualizing M-QAM as a signal
constellation, the signal waveforms will assume positions in both the real and
imaginary axes, as shown in Figure 4.10.

To compute the power efficiency of M-QAM, εp,M−QAM, we first need to
calculate the minimum Euclidean distance, which becomes

d2
min =

T∫
0

�s2(t)dt = 2A2T, (4.21)

where we have selected the following signal waveforms without loss of generality:

s1(t) = A · cos(ωct) + A · sin(ωct)

s2(t) = 3A · cos(ωct) + A · sin(ωct).
(4.22)

In order to derive the average symbol energy, Ēs, we leverage the expression
from M-ary PAM by replacing M with

√
M such that

Ēs = A2T
M − 1

3
, (4.23)

which can then be used to solve

Ēb = Ēs

log2(M)
= A2T

2b − 1
3b

. (4.24)

Thus, the power efficiency is equal to

εp,M−QAM = 3!b
2b − 1

. (4.25)

Hands-On MATLAB Example: QAM modulation is a very useful technique
for sending information efficiently within the same symbol period. As mentioned
previously, it exploits both the in-phase and quadrature domains in order to
transmit information in parallel down both channels orthogonally. In the MATLAB
script above, we implement a QAM transmitter and receiver that takes binary
vectors samp_I and samp_Q, modulates them to the in-phase and quadrature
channels of a QAM transmission, and then extracts these binary vectors using QAM

Analog Devices perpetual eBook license – Artech House copyrighted material. 

.---~·xi-----11~~-Lo_w_p_a_ss__,1----~r _filter · • ~ 

cos "'ct) 

'---~Xl-----11~-Lo_w_p_a-ss__,1----~r _ filter . ., ~ 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 133 — #17

4.2 Digital Modulation 133

Figure 4.10 M-QAM signal constellation.

demodulation. At the core of QAM modulation are the sine and cosine functions,
which are mathematically orthogonal. As we can see in the script, the in-phase
and quadrature data is modulated onto the cosine and sine wave signals at the
transmitter. At the receiver, the in-phase and quadrature information is separated
out of the received signal by exploiting this orthogonality and using trigonometric
properties.

In Figure 4.11, we can observe the usage cosine and sine waves as carriers
of information, where this information can be transmitted simultaenously
and recovered perfectly. By exploiting two dimensions for the transmission of
information, we make more efficient use of each symbol period that we use when
broadcasting data.

4.2.4 Phase Shift Keying
Phase shift keying (PSK) is a digital modulation scheme that conveys data by
changing or modulating the phase of a reference signal (i.e., the carrier wave).
Any digital modulation scheme uses a finite number of distinct signals to represent
digital data. PSK uses a finite number of phases, each assigned a unique pattern of
binary digits. Usually, each phase encodes an equal number of bits. Each pattern of
bits forms the symbol that is represented by the particular phase. The demodulator,

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Im 

• • • M4-l)A • • • • • • • • • • • 

• • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • 

• • • • • • eSA • • • . . . • 
• • • • • • e3A • • • • • • • 
• • • • • • • A • • • • • • • 

-(./M-l)A -SA -3A -A A 3A SA M4-l)A Re • • • • • • . - • • • • • • • 
• • • • • • e3A • • • • • • • 
• • • -SA • • • • • • • • • • • 

• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 

• • • • • • • • • • • • • • 
-(./M- l)A 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 134 — #18

134 Digital Communications Fundamentals

Code 4.4 Decoding QAM Waveform Using I/Q Receiver: chapter4.m

383 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
384 % Decoding QAM waveform using I/Q receiver
385
386 % Define parameters
387 N_samp = 1000; % Number of samples per symbol
388 N_symb = 10; % Number of symbols in transmission
389 cfreq = 1/10; % Carrier frequency of cosine and sine carriers
390
391 % Generate inphase and quadrature channels with 2-PAM waveforms
392 chI = 2*round(rand(1,N_symb))-1;
393 chQ = 2*round(rand(1,N_symb))-1;
394 samp_I = [];
395 samp_Q = [];
396 for ind = 1:1:N_symb,
397 samp_I = [samp_I chI(ind)*ones(1,N_samp)];
398 samp_Q = [samp_Q chQ(ind)*ones(1,N_samp)];
399 end;
400
401 % Apply cosine and sine carriers to inphase and quadrature components,
402 % sum waveforms together into composite transmission
403 tx_signal = samp_I.*cos(2.*pi.*cfreq.*(1:1:length(samp_I)))

+ samp_Q.*sin(2.*pi.*cfreq.*(1:1:length(samp_Q)));
404
405 % Separate out inphase and quadrature components from composite

Figure 4.11 Example of quadrature amplitude modulation waveform using an in-phase/quadrature
receiver. (a) In-phase signal component, and (b) quadrature signal component.

which is designed specifically for the symbol set used by the modulator, determines
the phase of the received signal, and maps it back to the symbol it represents, thus
recovering the original data. This requires the receiver to be able to compare the
phase of the received signal to a reference signal. Such a system is termed coherent.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Q) 

"O 
:::J 

.-!:= 0 c.. 
E 
<( 

-2~-~-~--~-~--~-~-~--~-~-~ 

Q) 
"O 

-~ 0 c.. 
E 
<( 

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 6,000 9,000 10,000 

Time (n) 
(a) 

--Recovered 

--Original 

-2~-~-~--~-~--~-~-~--~-~-~ 
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 6,000 9,000 10,000 

Time (n) 
(b) 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 135 — #19

4.2 Digital Modulation 135

PSK characterizes symbols by their phase. Mathematically, a PSK signal
waveform is represented by

si(t) = A cos (2π fct + (2i − 1)
π

m
), for i = 1, ..., log2 m, (4.26)

where A is the amplitude, fc is carrier frequency, and (2i − 1) π
m is the phase offset

of each symbol. PSK presents an interesting set of trade-offs with PAM and QAM.
In amplitude modulation schemes, channel equalization is an important part of
decoding the correct symbols. In PSK schemes, the phase of the received signal is
much more important than the amplitude information.

There are several types of PSK modulation schemes based on the number of
M possible phase values a particular PSK waveform can be assigned. One of the
most popular and most robust is binary PSK, or B-PSK, modulation, whose signal
constellation is illustrated in Figure 4.12. In general, the modulation rule for B-PSK
modulation is the following:

“1” → s1(t) = A · cos(ωct + θ)

“0” → s2(t) = −A · cos(ωct + θ)

= A · cos(ωc(t) + θ + π)

= −s1(t).

(4.27)

In other words, the two signal waveforms that constitute a B-PSK modulation
scheme are separated in phase by θ .

In order to derive the power efficiency of a B-PSK modulation scheme, εp,BPSK,
we first need to compute the minimum Euclidean distance d2

min by employing the
definition and solving for

d2
min =

T∫
0

(s1(t) − s2(t))2dt

= 4A2

T∫
0

cos2(ωct + θ)dt

Figure 4.12 BPSK signal constellation.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Im 

S7 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 136 — #20

136 Digital Communications Fundamentals

i

Notice how in (4.28) how the second term disappeared from the
final result. This is due to the fact that the second term possessed
a carrier frequency that was twice that of the original signal. Since
the carrier signal is a periodic sinusoidal waveform, integrating
such a signal possessing such a high frequency would result in
the positive portion of the integration canceling out the negative
portion of the integration, yielding an answer than is close to zero.
Consequently, we refer to this term as a double frequency term.
Also note that many communication systems filter their received
signals, which means the probability of filtering out the double
frequency term is also quite high.

= 4A2T
2

+ 4A2

2

T∫
0

cos(2ωct + 2θ)dt

= 2A2T. (4.28)

Note that another way for computing d2
min is to use the concept of correlation,

which describes the amount of similarity between two different signal waveforms.
In this case, we can express the minimum Euclidean distance as

d2
min =

T∫
0

(s2(t) − s1(t))2dt = Es1 + Es2 − 2ρ12 (4.29)

where the symbol energy for symbol i, Esi , and the correlation between symbols 1
and 2, ρ12, are given by

Esi =
T∫

0

s2
i (t)dt and ρ12 =

T∫
0

s1(t)s2(t)dt.

Employing the definition for Ēb, we can now solve for the average bit energy
of the B-PSK modulation scheme by first solving for the symbol energies of the two
signal waveforms and then averaging them; that is,

Es1 =
T∫

0

s2
1(t)dt = A2

T∫
0

cos2(ωct + θ)dt

= A2T
2

+ A2

2

T∫
0

cos(2ωct + 2θ)dt

= A2T
2

Es2 = A2T
2

Ēb = P(0) · Es2 + P(1) · Es1 = A2T
2

.

(4.30)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 137 — #21

4.2 Digital Modulation 137

Note that since the number of bits represented by a single symbol is equal to
one, and both the bit energy and symbol energy are equivalent.

Finally, applying the definition for the power efficiency, we get the following
expression:

εp,BPSK = d2
min

Ēb
= 4. (4.31)

This is supposed to be the largest possible value for εp for a modulation scheme
employing all possible signal representations; that is, M = 2b waveforms. Notice
when using the correlation approach to calculate the minimum Euclidean distance,
in order to get a large εp, we need to maximize d2

min, which means we want ρ12 < 0.
Thus, to achieve this outcome, we need the following situation:

Es1 = Es2 = E = A2T/2, (4.32)

which means d2
min = 2(E − ρ12) and consequently ρ12 = −E.

Q

Show that for the following signal waveforms:

s1(t) = A · cos(ωct + θ)

s2(t) = 0

the power efficiency is equal to εp = 2.

Q

Show that for the following signal waveforms:

s1(t) = A · cos(ωct + θ)

s2(t) = A · sin(ωct + θ)

the power efficiency is equal to εp = 2.

So far we have studied a PSK modulation scheme that consists of only just one
of two waveforms. We will now expand our PSK signal constellation repertoire to
include four distinct waveforms per modulation scheme. In quadrature PSK (QPSK)
modulation, a signal waveform possesses the following representation:

si(t) = ±A · cos(ωct + θ) ± A · sin(ωct + θ), (4.33)

where each signal waveform possesses the same amplitude but one of four possible
phase values. This kind of phase modulation is illustrated by the signal constellation
diagram shown in Figure 4.13, where each waveform is located at a different phase
value.

In order to derive the power efficiency of QPSK, εp,QPSK, we first need to solve
for the minimum Euclidean distance, d2

min, which is equal to

d2
min =

T∫
0

�s2(t)dt = 2A2T. (4.34)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 

□ 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 138 — #22

138 Digital Communications Fundamentals

Figure 4.13 QPSK signal constellation.

Next, we would like to find Ēb, which requires us to average over all the signal
waveforms. Consequently, this is equal to

Ēb = (Es1 + Es2 + Es3 + Es4)/4
log2(M)

= A2T
2

, (4.35)

where the symbol energy of all four symbols is equal to Es1 = Es2 = Es3 = Es4 =
A2T. Finally, solving for the power efficiency using (4.8), we get

εp,QPSK = d2
min

Ēb
= 4, (4.36)

which is the same as BPSK but with 2 bits per symbol, making this a fantastic result!
Finally, let us study the general case when a PSK modulation scheme has a choice

of M possible phase values, where the distance of a signal constellation point to the
origin is always a constant and the signal constellation consists of M equally spaced
points on a circle. Referred to as M-PSK, a signal waveform can be mathematically
represented as

si(t) = A · cos
(

ωct + 2π i
M

)
, for i = 0, 1, 2, . . . , M − 1. (4.37)

Note that there are several advantages and disadvantages with this modulation
scheme. For instance, as M increases the spacing between signal constellation points
decreases, thus resulting in a decrease in error robustness. Conversely, having
the information encoded in the phase results in constant envelope modulation,
which is good for nonlinear power amplifiers and makes the transmission robust to
amplitude distortion channels.

Regarding the derivation of the power efficiency for an M-PSK modulation
scheme, εp,M−PSK, suppose we define two adjacent M-PSK signal waveforms as
s1(t) = A · cos(ωct) and s2(t) = A · cos(ωct + 2π/M). Calculating the minimum
Euclidean distance using

d2
min = Es1 + Es2 − 2ρ12 (4.38)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Im 

~--------- s 7 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 139 — #23

4.2 Digital Modulation 139

where we define the symbol energy as

Esi =
T∫

0

s2
i (t)dt = A2T

2
, for i = 1, 2, (4.39)

and the correlation between the two signal waveforms as

ρ12 =
T∫

0

s1(t)s2(t)dt = A2T
2

cos
(

2π

M

)
, (4.40)

this yields

d2
min = A2T

(
1 − cos

(
2π

M

))
. (4.41)

The average bit energy Ēb is equal to Ēb = Ēs
log2(M)

= Ēs
b , where Ēs = A2T/2.

Using the definition for the power efficiency from (4.8), we see that

εp,M−PSK = 2b
(

1 − cos
(

2π

M

))
= 4b sin2

(
π

2b

)
. (4.42)

4.2.5 Power Efficiency Summary
After examining the power efficiency performance of several different modulation
schemes, it is important to assess the trade-offs between the different schemes such
that we can make the appropriate design decisions in the future when implementing
a digital communication system. To determine how much power efficiency we
are losing relative to εp,QPSK, which possesses the best possible result, we use the
following expression:

δSNR = 10 · log10

(
εp,QPSK

εp,other

)
. (4.43)

Using this expression, we created a table of δSNR values for the modulation
schemes studied in this chapter, as shown in Table 4.1.

From Table 4.1, notice how the two-dimensional modulation schemes perform
better than the one-dimensional modulation schemes. Furthermore, notice how
all of the modulation schemes studied are linear modulation schemes, which means
they possess a similar level of receiver complexity. Given these insights on the power
efficiency performance of these modulation schemes, we now turn our attention to
the robustness of a modulation technique in the presence of noise.

Table 4.1 δSNR Values of Various Modulation Schemes
M b M-ASK M-PSK M-QAM
2 1 0 0 0
4 2 4 0 0
8 3 8.45 3.5 —
16 4 13.27 8.17 4.0
32 5 18.34 13.41 —
64 6 24.4 18.4 8.45

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 140 — #24

140 Digital Communications Fundamentals

Hands-On MATLAB Example: Noise introduced by a transmission medium can
potentially result in symbols being decoded in error. In the following MATLAB
script, we will examine the behavior of how the introduction of noise can obfuscate
the true identity of an intercepted symbol. Specifically, we will compare the
originally transmitted symbols and the noisy received symbols using a visual
representation referred to as a signal constellation diagram, which plots the
locations of symbols across a 2-axis plot with an in-phase axis and a quadrature
axis. Notice that we are considering three different waveforms in this example: 4-
PAM, 4-QAM, and QPSK. For each of these waveforms, we generated an alphabet
of different symbols that each can produce. The randomly generated binary data
streams representing in-phase and quadrature information are mapped to these
different waveform symbols for each modulation scheme. Then, we introduce
Gaussian noise to the three transmissions using the randn function.

The before-and-after signal constellation plots for the 4-PAM, 4-QAM, and
QPSK modulated transmissions are shown in Figure 4.14. The original symbols are

Figure 4.14 Examples of four-level pulse amplitude modulation, quadrature amplitude modulation,
and quadrature phase shift keying waveforms. (a) Four-level pulse amplitude modulation, (b) four-
level quadrature amplitude modulation, and (c) four-level quadrature phase shift keying.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

QJ ... 
:J .... 
o::s 0 ... 

""C 
o::s 
:J 
Cl 

-1 
-4 -2 0 2 4 

lnphase 
(a) 

~ 
:J .... 
o::s ... 

0 ""C 
o::s 
:J 
Cl 

-1 

-1.5 -1 -0.5 0 0.5 1.5 

lnphase 
(b) 

QJ ... 
:J .... 
o::s 0 ... 

""C 
o::s 
:J 

Cl -1 

-1.5 -1 -0.5 0 0.5 1.5 

In phase 
(c) 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 141 — #25

4.3 Probability of Bit Error 141

Code 4.5 Generating Four Level Pulse Amplitude Modulation, Quadrature Amplitude
Modulation, and Quadrature Phase Shift Keying Waveforms: chapter4.m

232 % Define parameters
233 len = 10000; % Length of binary string
234 nvar = 0.15; % Noise variance
235
236 % Generate the random bit streams that have already been demultiplexed
237 % from a single high speed data stream
238 bin_str1 = round(rand(1,len)); % Inphase data stream
239 bin_str2 = round(rand(1,len)); % Quadrature data stream
240
241 % Perform mapping of binary streams to symbols
242 ind_wavefm = 2.*bin_str2 + 1.*bin_str1; % Create waveform indices
243 wavefm_4pam = zeros(1,len); % 4-PAM
244 wavefm_4qam = zeros(1,len); % 4-QAM
245 wavefm_qpsk = zeros(1,len); % QPSK
246 symb_4pam = [-3 -1 3 1];
247 symb_4qam = [-1+i 1+i -1-i 1-i];
248 symb_qpsk = [exp(i*(pi/5+pi/2)) exp(i*(pi/5+pi)) exp(i*(pi/5+0))

exp(i*(pi/5+3*pi/2)) ];
249 for ind = 1:1:4,
250 wavefm_4pam(find(ind_wavefm == (ind-1))) = symb_4pam(ind);
251 wavefm_4qam(find(ind_wavefm == (ind-1))) = symb_4qam(ind);
252 wavefm_qpsk(find(ind_wavefm == (ind-1))) = symb_qpsk(ind);
253 end;
254
255 % Add complex zero-mean white Gaussian noise
256 noise_signal = (1/sqrt(2))*sqrt(nvar)*randn(1,len)

+ i*(1/sqrt(2))*sqrt(nvar)*randn(1,len);
257 rx_wavefm_4pam = wavefm_4pam + noise_signal;
258 rx_wavefm_4qam = wavefm_4qam + noise_signal;
259 rx_wavefm_qpsk = wavefm_qpsk + noise_signal;

shown as little red cross marks in the center of a cloud of corrupted received symbols
after the noise is added to them. This is occurring since whenever a transmission
is occurring over a noisy channel, the symbols that are sent over this channel are
being displaced from their original coordinates in the in-phase/quadrature plane
by the complex Gaussian noise. This displacement is what makes it difficult for the
receiver to decode these symbols without any error since the noise might sufficiently
displace these symbols closer to another nearby symbol location that is part of the
signal constellation. For all of these modulation schemes shown in Figure 4.14(a) (4-
PAM), Figure 4.14(b) (4-QAM), and Figure 4.14(c) (QPSK), there is a nonneglible
probability that these symbols have been moved closer to another point in the overall
signal constellation, which would result in an error in decode that would translate
into a bit error.

4.3 Probability of Bit Error

One of the most commonly used quantitative metrics for measuring the performance
of a digital communication system is the probability of BER, which is the probability
that a bit transmitted will be decoded incorrectly. This metric is very important
when assessing whether the design of a digital communication system meets the

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 142 — #26

142 Digital Communications Fundamentals

specific error robustness requirements of the application to be supported (e.g.,
voice, multimedia, or data). Furthermore, having a metric that quantifies error
performance is helpful when comparing one digital communication design with
another. Consequently, in this section we will provide a mathematical introduction
to the concept of BER.

Suppose that a signal si(t), i = 1, 2 was transmitted across an AWGN channel
with noise signal n(t), and that a receiver intercepts the signal r(t). The objective of
the receiver is to determine whether either s1(t) or s2(t) was sent by the transmitter.
Given that the transmission of either s1(t) or s2(t) is a purely random event, the
only information that the receiver has about what was sent by the transmitter is the
observed intercepted signal r(t), which contains either signal in addition to some
noise introduced by the AWGN channel.

Given this situation, we employ the concept of hypothesis testing [2] in order
to set up a framework by which the receiver can decide on whether s1(t) or s2(t)
was sent based on the observation of the intercepted signal r(t). Thus, let us employ
the following hypothesis testing framework:

H1 : r(t) = s1(t) + n(t), 0 ≤ t ≤ T

H0 : r(t) = s2(t) + n(t), 0 ≤ t ≤ T

where H0 and H1 are Hypothesis 0 and Hypothesis 1.
Leveraging this framework, we next want to establish a decision rule at the

receiver such that it can select which waveform was sent based on the intercept
signal. Suppose we assume that s1(t) was transmitted. In general, we can determine
the level of correlation between two signals x(t) and y(t) over the time interval
0 ≤ t ≤ T using the expression

T∫
0

x(t)y(t)dt.

Consequently, our decision rule on whether s1(t) or s2(t) was transmitted given
that we observe r(t) is defined as

T∫
0

r(t)s1(t)dt ≥
T∫

0

r(t)s2(t)dt, (4.44)

where we assume that s1(t) was transmitted. Recall that correlation tells us how
similar one waveform is to another waveform. Therefore, if the receiver knows the
appearance of s1(t) and s2(t), we can then determine which of these two waveforms
is more correlated to r(t). Since s1(t) was assumed to be transmitted, ideally the
received signal r(t) should be more correlated to s1(t) than s2(t).

On the other hand, what happens if some distortion, interference, and/or noise
is introduced in the transmission channel such that the transmitted signal waveforms
are corrupted? In the situation where a transmitted signal waveform is sufficiently
corrupted such that it appears to be more correlated to another possible signal
waveform, the receiver could potentially select an incorrect waveform, thus yielding
an error event. In other words, assuming s1(t) was transmitted, an error event occurs

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 143 — #27

4.3 Probability of Bit Error 143

when
T∫

0

r(t)s1(t)dt ≤
T∫

0

r(t)s2(t)dt. (4.45)

Since r(t) = s1(t) + n(t), we can substitute this into the error event in order to
obtain the decision rule

T∫
0

s2
1(t)dt +

T∫
0

n(t)s1(t)dt ≤
T∫

0

s1(t)s2(t)dt +
T∫

0

n(t)s2(t)dt

Es1 − ρ12 ≤
T∫

0

n(t)(s2(t) − s1(t))dt

Es1 − ρ12 ≤ z.

From this expression, we observe that both Es1 and ρ12 are deterministic
quantities. On the other hand, z is based on the noise introduced by the transmission
channel, and thus it is a random quantity that requires some characterization. Since
n(t) is a Gaussian random variable, then z is also a Gaussian random variable. This
is due to the fact that the process of integration is equivalent to a summation across
an infinite number of samples, and since we are summing up Gaussian random
variables, the result in is also a Gaussian random variable. With z ∼ N (0, σ 2), we
now need to calculate the variance of z, σ 2, which can be solved as follows:

σ 2 = E{z2} = N0

2

T∫
0

(s1(t) − s2(t))2dt

= N0

2
(Es1f :ch44modsqpsk + Es2 − 2ρ12) → Assume Es1 = Es2 = E

= N0(E − ρ12),

where E = Ei =
T∫
0

s2
i (t)dt and ρ12 =

T∫
0

s1(t)s2(t)dt. Note that we are assuming that

the channel is introducing zero-mean noise, which means the sum of these noise
contributions; that is, z will also be zero-mean.

With both deterministic and random quantities characterized, we can now
proceed with the derivation for the probability of bit error. The probability of
an error occurring given that a “1” was transmitted; that is, P(e|1) is equal to

P(z ≥ E − ρ12) = Q
(

E − ρ12

σ

)
→ Since z ∼ N (0, σ 2)

and E − ρ12 is constant

= Q



√

(E − ρ12)2

σ 2


 → Use σ 2 = N0(E − ρ12)

= Q

(√
E − ρ12

N0

)
,

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 144 — #28

144 Digital Communications Fundamentals

where the Q-function is defined as

Q(x) = 1√
2π

∞∫
x

e−t2/2dt. (4.46)

The next step is to optimize the probability of bit error by optimizing the
probability of error by minimizing P(e|1), which can be achieved by optimizing the
correlation term ρ12. Intuitively, the best choice we can make is when s2(t) = −s1(t),
which gives us ρ12 = −E. Consequently, this result yields

P(e|1) = Q



√

2Ēb

N0


 . (4.47)

Note that when Es1 �= Es2 , we can then use d2
min = Es1 + Es2 − 2ρ12, which

yields the following expression for the probability of bit error:

Pe = Q



√

d2
min

2N0


 . (4.48)

Q
Show that the total probability of bit error is equal to:

Pe = P(e|1)P(1) + P(e|0)P(0) = Q

(√
E − ρ12

N0

)
(4.49)

When dealing with a large number of signal waveforms that form a modulation
scheme, the resulting probability of error, Pe, is expressed as a sum of pairwise error
probabilities; that is, the probability of one received symbol being another specific
received symbol. The pairwise error probability of si(t) being decoded when sj(t)
was transmitted is given as

Q

(
d2

ij

2N0

)
, (4.50)

where N0 is the variance of the noise. An important note here is that we are
assuming the noise is AWGN, since Q functions apply specifically to Gaussian
random variables. Therefore, the complete expression for Pe can be expressed as

Q

(
d2

min

2N0

)
≤ Pe ≤ Q

(
d2

1j

2N0

)
+ . . . + Q

(
d2

Mj

2N0

)
, i �= j, (4.51)

where the second half of the relationship is the summation of every single pairwise
error probability.

Hands-On MATLAB Example: We have previously observed the impact of a
noisy channel on a received signal constellation, where the signal constellation

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 145 — #29

4.3 Probability of Bit Error 145

points corresponding to specific symbols of the modulation scheme are potentially
shifted to other nearby signal constellation points and risk being incorrectly decoded
at the receiver. In the following MATLAB script, we will translate these shifts of
signal constellation points into actual BER values in order to quantify the actual
severity of the noise being introduced by the channel. The code below employs a
nearest neighbor approach for decoding symbols at the receiver, where a received
signal constellation point that has been corrupted by noise is decoded by mapping it
to the nearest originally transmitted signal constellation point. Using the Euclidean
distance, we can calculate the distance between a received signal constellation point
with all possible signal constellation point options, map it to the one with the
shortest Euclidean distance, and then decode the symbol into the corresponding
binary word.

Using this MATLAB script and the Euclidean distance approach for deciding
on the nearest neighbors, we can decode the received messages sent across the
noisy channel. However, since there are instances where the noise is significant
enough that it can move a symbol much closer to another signal constellation
point, we should anticipate that there might be several symbols that have been
incorrectly decoded. Figure 4.15 presents the BER results for our nearest neighbor
decoding scheme for 4-PAM, 4-QAM, and QPSK modulation. Although the first
two modulation schemes do not possess a substantial amount of error, the QPSK
modulation scheme possesses a large amount of incorrect decisions. This is due
to the fact of how the signal constellation points are spaced out, with the QPSK
signal constellation points being closer together relative to the other two modulation
schemes. As a result, for the same amount of noise, the QPSK modulation will
perform noticeably worse compared to the other two schemes.

4.3.1 Error Bounding
Computing each pairwise error probability is not always practical. It is possible to
create an upper and lower bound on Pe by computing only the pairwise errors of
points that are within one degree of the point of interest. Consider the behavior
of the Q function Q(.). As the input to Q(.) increases, the resulting output of
the Q function approaches zero. You will find that computing the pairwise error
probability of points farther away yields negligible contributions to the total Pe, but
can save a significant amount of time as well as cycles. Thus, an accurate estimate
of P(e) can be computed from the following bounds.

These upper and lower bounds can be expressed as

Q

(
d2

min

2N0

)
≤ P (e) ≤

∑
i∈I

Q

(
d2

ij

2N0

)
, (4.52)

where I is the set of all signal waveforms within the signal constellation that are
immediately adjacent to the signal waveform j. In order to accurately assess the
performance of a communications system, it must be simulated until a certain
number of symbol errors are confirmed [3]. In most cases, 100 errors will give
a 95% confidence interval, which should be employed later on in this book in
order to characterize the bit error rate of any digital communication system under
evaluation.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 146 — #30

146 Digital Communications Fundamentals

Code 4.6 Decode Messages from Previous Example Using Euclidean Distance: chapter4.m

290 % Go through every received waveform and determine Euclidean distance
291 % between received waveform and the available waveforms
292 eucl_dist_4pam = zeros(4,len);
293 eucl_dist_4qam = zeros(4,len);
294 eucl_dist_qpsk = zeros(4,len);
295 for ind = 1:1:4,
296 eucl_dist_4pam(ind,1:1:len) = abs(symb_4pam(ind).*ones(1,len)

- rx_wavefm_4pam);
297 eucl_dist_4qam(ind,1:1:len) = abs(symb_4qam(ind).*ones(1,len)

- rx_wavefm_4qam);
298 eucl_dist_qpsk(ind,1:1:len) = abs(symb_qpsk(ind).*ones(1,len)

- rx_wavefm_qpsk);
299 end;
300
301 % Select shortest Euclidean distances
302 [mdist_4pam,min_ind_4pam] = min(eucl_dist_4pam);
303 [mdist_4qam,min_ind_4qam] = min(eucl_dist_4qam);
304 [mdist_qpsk,min_ind_qpsk] = min(eucl_dist_qpsk);
305
306 % Decode into estimated binary streams
307 bin_str_est_4pam = dec2bin(min_ind_4pam-ones(1,len)).’;
308 bin_str_est_4qam = dec2bin(min_ind_4qam-ones(1,len)).’;
309 bin_str_est_qpsk = dec2bin(min_ind_qpsk-ones(1,len)).’;
310
311 % Calculate bit error rate
312 ber_4pam = sum([abs((bin_str_est_4pam(1,:)-’0’) - bin_str2) ...
313 abs((bin_str_est_4pam(2,:)-’0’) - bin_str1)])/(2*len);
314 ber_4qam = sum([abs((bin_str_est_4qam(1,:)-’0’) - bin_str2) ...
315 abs((bin_str_est_4qam(2,:)-’0’) - bin_str1)])/(2*len);
316 ber_qpsk = sum([abs((bin_str_est_qpsk(1,:)-’0’) - bin_str2) ...
317 abs((bin_str_est_qpsk(2,:)-’0’) - bin_str1)])/(2*len);

Figure 4.15 Impact of noise on modulation scheme performance.

Hands-On MATLAB Example: We have previosly observed the performance of
three simple communication systems using different modulation schemes operating
in a noisy environment. Although the results displayed in Figure 4.15 were
insightful, we often want to observe how a communication system performs across
a broad range of conditions, especially as the intensity of noise varies. In this
MATLAB script, we examine the performance of a simple binary communication
system across a range of different channel environments possessing varying degrees
of noise.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

6 X ,0-3 

QJ 
+-' 
(ll 

4 L. 

L. 
0 
L. 
L. 

2 QJ 

+-' 
i:ii 

0 
4-PAM 4-QAM 

Modulation scheme 

QPSK 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 147 — #31

4.3 Probability of Bit Error 147

Code 4.7 Create Waterfall Curves for the Bit Error Rate of a Communication System via
Monte Carlo: chapter4.m

336 % Define parameters
337 len = 1000; % Length of individual data transmission
338 N_snr = 9; % Number of SNR values to evaluation
339 N_tx = 100; % Number of transmissions per SNR
340 nvar = [(10.ˆ((1:1:N_snr)/10)).ˆ(-1)]; % Noise variance values
341
342 ber_data = zeros(N_snr,N_tx);
343 for ind = 1:1:N_snr, % Different SNR values
344 for ind1 = 1:1:N_tx, % Different transmissions for same SNR value
345
346 % Generate BPSK waveform (we will keep this the same for each
347 % SNR value for now)
348 tx_sig = 2*round(rand(1,len))-1;
349
350 % Create additive noise
351 noise_sig = sqrt(nvar(ind))*randn(1,len);
352
353 % Create received (noisy) signal
354 rx_sig = tx_sig + noise_sig;
355
356 % Decode received signal back to binary
357 decode_bin_str = zeros(1,len);
358 decode_bin_str(find(rx_sig >= 0)) = 1;
359
360 % Determine and store bit error rate
361 ber_data(ind,ind1) = sum(abs(decode_bin_str - (tx_sig+1)/2))/len;
362 end;
363 end;
364
365 % Calculate mean bit error rate and its standard deviation
366 mean_ber = mean(ber_data,2).’;
367 std_ber = std(ber_data,’’,2).’;

The end result of this analysis, which explores transmission reliability when
operating across an AWGN channel, is something referred to as a waterfall curve,
as shown in Figure 4.16. Waterfall curves are extensively used by researchers and
designers in the digital communications community as a way of characterizing the
error robustness of a communication system operating in a noisy environment.
The reason why we call these plots waterfall curves is due to the shape they make
whenever we generate them using either theoretical analyses or via experimentation
(computer simulation or hardware testing). The x-axis describes the SNR of the
operating environment and is a gauge of how much noise is present in the channel.
The y-axis describes the probability of bit error as a ratio of corrupted bits versus
total number of bits transmitted. In Figure 4.16, we not only show the mean
BER curve but also the standard deviation above and below the mean in order
to establish the degree of confidence we have with respect to the technique we used
to generate these curves. Since we are using Monte Carlo techniques for generating
the transmission and then corrupting the bits with additive noise, we need to make
sure that we conduct this experiment long enough such that the performance results
we obtain are reliable (e.g., running an experiment and only obtaining one bit error

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 148 — #32

148 Digital Communications Fundamentals

Figure 4.16 Example of waterfall curves for the bit error rate of a communication system employing
binary phase shift keying via Monte Carlo simulation techniques.

is not statistically adequate with respect to an accurate assessment of the BER for
that communication system). Thus, having the standard deviation curves close to
the mean BER curve shows that an adequate number of bits have been used in the
experiment, and that a sufficient number of errors have been obtained. Note that
for different SNR values, the amount of errors obtained might be different for the
same total number of bits transmitted. Consequently, we often have to transmit
more bits at higher SNR values in order to obtain an adequate number of bit errors.

4.4 Signal Space Concept

Until this point we have studied digital communication systems from a
signal waveform perspective. Leveraging this perspective, we have developed
mathematical tools for analyzing the power efficiency and BER of different
modulation schemes. However, there are several instances where the use of a signal
waveform framework can be tedious or somewhat cumbersome. In this section, we
will introduce another perspective on how to characterize and analyze modulation
scheme using a different mathematics representation: signal vectors.

Suppose we define φj(t) as an orthonormal set of functions over the time interval
[0, T] such that

T∫
0

φi(t)φj(t)dt =
{

1 i = j
0 otherwise

Given that si(t) is the ith signal waveform, we would like to represent this
waveform as a sum of several orthonormal functions; that is,

si(t) =
N∑

k=1

sikφk(t), (4.53)

which can be equivalently represented by the vector

si = (si1, si2, si3, . . . siN), (4.54)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

--Mean 
- - Mean - Std Dev 
- - - - Mean + Std Dev 

70-4~--~---~--~---~--~---~---~--~ 

1 2 3 4 5 6 7 8 9 

Signal to noise ratio (dB) 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 149 — #33

4.4 Signal Space Concept 149

where the elements of the vector si define the amplitude scaling of each orthonormal
function used to represent the waveform. An illustration of a signal waveform
represented by three orthonormal functions is shown in Figure 4.17. Consequently,
given this relationship between the signal waveform and the orthonormal functions,
where the former can be represented as the weighted sum of the latter, we can readily
describe the signal waveform as a simple vector, which we will see next possesses
the advantage of enabling us to employ relatively straightforward mathematical
operations based on linear algebra.

In order to find the vector elements, sil, we need to solve the expression

T∫
0

si(t)φl(t)dt =
N∑

k=1

sik

T∫
0

φk(t)φl(t)dt = sil, (4.55)

which is essentially a dot product or projection of the signal waveform si(t) on the
orthonormal function φl(t). At the same time, if we perform the vector dot product
between the signal waveforms si(t) and sj(t), we get a correlation operation that is
equal to

T∫
0

si(t)sj(t)dt = si · sj = ρij, (4.56)

while the energy of a signal si(t) is equal to

Esi =
T∫

0

s2
i (t)dt = si · si = ||si||2. (4.57)

All of these mathematical operations will be employed when determining the
power efficiency of a modulation scheme or deriving the optimal decision rule for
a receiver.

Figure 4.17 Sample vector representation of si(t) in three-dimensional space using basis functions
φ1(t), φ2(t), and φ3(t).

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I 
I 

I 
I 

I 
I 

I 
I 

I 

(0,0,0) 

I 
I 

I 
I 

I 

I 

S;= (5;,,5;2 ,s,3) 

; 
I 

I 
I 

¢,(t) 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 150 — #34

150 Digital Communications Fundamentals

Suppose we would like to compute the power efficiency for a modulation scheme
using a signal vector approach rather than a signal waveform approach. The first
step would be to calculate the minimum Euclidean distance, which can be solved
using the following:

d2
min =

T∫
0

�s2
ij(t)dt =

T∫
0

(si(t) − sj(t))2dt

= ||si − sj||2 = (si − sj) · (si − sj)

= Esi + Esj − 2ρij

where the correlation term between signal waveforms si(t) and sj(t) is given by

ρij =
T∫

0

si(t)sj(t)dt = si · sj. (4.58)

In order to solve for the power efficiency, we choose a set of orthonormal basis
functions φi(t), i = 1, 2, . . . , k, where k is the dimension of the signal vector space.
Given this set of functions, we can now represent the vector si, i = 1, 2, . . . , M
where si = (si1, si2, . . . sik) and

sij =
T∫

0

si(t)φj(t)dt. (4.59)

Consequently, using the vector representations for the signals and the
orthonormal functions, we can calculate the minimum Euclidean distance:

d2
min = min

i �=j
||si − sj||2, (4.60)

the average symbol and bit energy values:

Ēs = 1
M

M∑
i=1

||si||2

Ēb = Ēs/ log2(M),

(4.61)

and the power efficiency:
εp = d2

min/Ēb. (4.62)

4.5 Gram-Schmidt Orthogonalization

In mathematics, particularly linear algebra and numerical analysis, the Gram-
Schmidt orthogonalization process is a method for creating an orthonormal
set of functions in an inner product space such as the Euclidean space
Rn. The Gram-Schmidt orthogonalization process takes a finite set of signal
waveforms {s1(t), . . . , sM(t)} and generates from it an orthogonal set of functions

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 151 — #35

4.5 Gram-Schmidt Orthogonalization 151

{φ1(t), . . . , φi(t)} that spans the space Rn. Note that an orthonormal function
possesses the following property:

T∫
0

φi(t)φj(t)dt =
{

1 i = j
0 otherwise

.

Furthermore, it is possible to represent a signal waveform si(t) as the weighted
sum of these orthonormal basis functions; that is,

si(t) =
N∑

k=1

sikφk(t). (4.63)

However, what we need now is an approach to generate the set of orthonormal
basis functions {φj(t)}.

To derive a set of orthogonal basis functions {φ1(t), . . . , φi(t)} from a set of
signal waveforms denoted by {s1(t), . . . , sM(t)}, let us first start with s1(t) and
normalize it:

φ1(t) = s1(t)√
Es1

where Es1 is the energy of the signal s1(t). This normalized version of the signal
waveform s1(t) will serve as our first orthonormal basis function from which we
will construct the rest of our orthonormal basis function set. In other words, we are
effectively bootstrapping a set of orthonormal basis functions based on the existing
signal waveforms of the modulation scheme to be used. Note that we can represent
s1(t) as

s1(t) = √
Es1φ1(t) = s11φ1(t)

where the coefficient s11 = √
Es1 and the orthonormal function φ1(t) satisfy the

unit energy constraint as required.
Next, we would like to create the second orthonormal function, φ2(t). In order

to accomplish this task, we use the signal waveform s2(t) as a starting point.
However, s2(t) may contain elements of φ1(t), and thus we need to remove this
component before normalizing it in order to transform this waveform into φ2(t).
To achieve this, we first determine how much of φ1(t) is contained within s2(t) by
taking the dot product between these two functions and determining how much
s2(t) projects onto φ1(t); that is,

s21 =
T∫

0

s2(t)φ1(t)dt.

To help in getting the basis function φ2(t), we define the intermediate function:

g2(t) = s2(t) − s21φ1(t),

which is orthogonal to φ1(t) over the interval 0 ≤ t ≤ T by virtual of the fact that
we have removed the φ1(t) component from s2(t). Finally, normalizing g2(t) yields

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 152 — #36

152 Digital Communications Fundamentals

the basis function φ2(t):

φ2(t) = g2(t)√
T∫
0

g2
2(t)dt

(4.64)

which can be expanded to

φ2(t) = s2(t) − s21φ1(t)√
Es2 − s2

21

(4.65)

where Es2 is the energy of the signal s2(t). A quick sanity check clearly shows that
the orthonormal basis function φ2(t) satisfies the constraint

T∫
0

φ2
2(t)dt = 1 and

T∫
0

φ1(t)φ2(t)dt = 0

In general, we can define the following functions that can be employed in an
iterative procedure for generating a set of orthonormal basis functions:

gi(t) = si(t) −
i−1∑
j=1

sijφj(t)

sij =
T∫

0

si(t)φj(t)dt, j = 1, 2, . . . , i − 1

φi(t) = gi(t)√
T∫
0

g2
i (t)dt

, i = 1, 2, . . . , N.

(4.66)

We will now work out an example that deals with the Gram-Schmidt
orthogonalization process.

An Example: Suppose we want to perform the Gram-Schmidt orthogonalization
procedure of the signals shown in Figure 4.18 in the order s3(t), s1(t), s4(t), s2(t)
and obtain a set of orthonormal functions {φm(t)}. Note that the order in which the
signal waveforms are employed to generate the orthonormal basis functions is very
important, since each ordering of signal waveforms can yield a potentially different
set of orthonormal basis functions.

Starting with s3(t), we get

φ1(t) = s3(t)√
Es3

= s3(t)√
3

. (4.67)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 153 — #37

4.5 Gram-Schmidt Orthogonalization 153

Figure 4.18 Example signal waveforms.

Then, leveraging the result for φ1(t), we then derive the orthonormal basis
function φ2(t) using s1(t):

g2(t) = s1(t) − s12φ1(t) = s1(t) − 2
3

s3(t) =



1/3, 0 ≤ t < 2
2/3, 2 ≤ t < 3
0, t ≥ 3

∴ φ2(t) = g2(t)√
T∫
0

g2
2(t)dt

=



1/
√

6, 0 ≤ t < 2
2/

√
6, 2 ≤ t < 3

0, t ≥ 3
.

(4.68)

We subsequently repeat this operation for s4(t):

g3(t) = s4(t) −
2∑

j=1

s4jφj(t) = 0

∴ φ3(t) = 0,

(4.69)

but we notice the resulting φ3(t) is equal to zero. This implies that the signal
waveform s4(t) can be entirely characterized by only φ1(t) and φ2(t). Finally, for
s2(t), we get the following:

g4(t) = s2(t) −
3∑

j=1

s2jφj(t) = 0

∴ φ4(t) = g4(t)√
T∫
0

g2
4(t)dt

= s2(t)√
2

.
(4.70)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0 2 3 0 2 3 

(a) (b) 

0 2 3 0 2 3 

(c) (d) 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 154 — #38

154 Digital Communications Fundamentals

Consequently, with the orthonormal basis functions {φ1(t), φ2(t), φ4(t)}
defined, we can now express the four signal waveforms as

• s1 = (2/
√

3,
√

6/3, 0),
• s2 = (0, 0,

√
2),

• s3 = (
√

3, 0, 0),
• s4 = (−1/

√
3, −4/

√
6, 0).

Now let us implement these waveforms via the orthonormal basis functions
using the following MATLAB script. In this script, we assume that there are N_samp
sampling instants per unit time. Consequently, since each waveform is of a duration
of 3 seconds, each waveform representation in this MATLAB model is 3*N_samp
long.

Code 4.8 Gram-Schmidt Orthogonalization and Vectorization: chapter4.m

437 % Define parameters
438 N_samp = 1000; % Number of samples per time unit
439
440 % Create orthonormal basis functions
441 phi1 = [( 1/sqrt(3))*ones(1,N_samp) ...
442 ( 1/sqrt(3))*ones(1,N_samp) ...
443 (-1/sqrt(3))*ones(1,N_samp)];
444 phi2 = [( 1/sqrt(6))*ones(1,N_samp) ...
445 ( 1/sqrt(6))*ones(1,N_samp) ...
446 ( 2/sqrt(6))*ones(1,N_samp)];
447 phi3 = [0*ones(1,N_samp) 0*ones(1,N_samp) 0*ones(1,N_samp)];
448 phi4 = [( 1/sqrt(2))*ones(1,N_samp) ...
449 (-1/sqrt(2))*ones(1,N_samp) ...
450 0*ones(1,N_samp)];
451
452 % Based on these orthonormal basis functions, create the four symbol

% waveforms
453 sig_s1 = (2/sqrt(3))*phi1 + (sqrt(6)/3)*phi2 + 0*phi3 + 0*phi4;
454 sig_s2 = 0*phi1 + 0*phi2 + 0*phi3 + sqrt(2)*phi4;
455 sig_s3 = (sqrt(3))*phi1 + 0*phi2 + 0*phi3 + 0*phi4;
456 sig_s4 = (-1/sqrt(3))*phi1 + (-4/sqrt(6))*phi2 + 0*phi3 + 0*phi4;

Using these orthonormal basis functions, and the results of the Gram-Schmidt
orthogonalization process, we are able to produce the same waveforms shown in
Figure 4.18 using this MATLAB script, as shown in Figure 4.19.

4.6 Optimal Detection

Detection theory, or signal detection theory, is used in order to discern between
signal and noise [2]. Using this theory, we can explain how changing the decision
threshold will affect the ability to discern between two or more scenarios, often
exposing how adapted the system is to the task, purpose, or goal at which it is
aimed.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 155 — #39

4.6 Optimal Detection 155

Figure 4.19 Creation of the waveforms (a) s1(n), (b) s2(n), (c) s3(n), and (d) s4(n) from a collection
of orthonormal basis functions.

4.6.1 Signal Vector Framework
Let us assume a simple digital transceiver model as shown in Figure 4.20. As
mentioned previously, the receiver only observes the corrupted version of si(t)
by the noise signal n(t); namely, r(t). The noise signal n(t) usually represents the
culmination of all noise sources into a single variable. Therefore, our detection
problem in this situation can be summarized as follows: Given r(t) for 0 ≤ t ≤
T, determine which si(t), i = 1, 2, . . . , M, is present in the intercepted signal
r(t).s1(n).

Suppose we decompose the waveforms si(t), n(t), and r(t) into a collection of
weights applied to a set of orthonormal basis functions; namely,

si(t) =
N∑

k=1

sikφk(t), r(t) =
N∑

k=1

rkφk(t), n(t) =
N∑

k=1

nkφk(t).

Given that all of these signal waveforreliablems use the same orthonormal basis
functions, we can rewrite the waveform model expression r(t) = si(t) + n(t) into

N∑
k=1

rkφk(t) =
N∑

k=1

sikφk(t) +
N∑

k=1

nkφk(t)

r = si + n.

Since r consists of a combination of the deterministic waveform si and
probabilistic signal n, our attention now turns to mathematically characterizing
n. Since the noise signal n(t) is assumed to be a Gaussian random variable, we need
to determine how the characteristics of this random variable translates into a signal

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Q) 

I 
Q) 1 

"O "O 
:::J :::J 

.-!:= 0 ~ 0 c.. c.. 

I E E 
<( -1 <( -1 

0 2 3 0 1 2 3 

Time (n) Time (n) 
(a) (b) 

Q) 1 Q) 1 
"O "O 
:::J :::J 

~ 0 c.. ~ 0 c.. 
E E 
<(_7 <( -1 

0 2 3 0 2 3 

Time (n) Time (n) 
(c) (d) 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 156 — #40

156 Digital Communications Fundamentals

Figure 4.20 Simple digital transceiver model.

vector representation. We know that the noise vector element nk is equal to

nk =
T∫

0

n(t)φk(t)dt, (4.71)

which is the projection of the noise signal waveform on the orthonormal basis
function φk(t). Since the noise signal n(t) is a Gaussian random variable and the
integration process is a linear operation, this means that nk is a Gaussian random
variable as well. Thus, the noise signal vector n is a Gaussian vector. Let us now
proceed with determining the statistical characteristics of n in order to employ this
knowledge in signal waveform detection.

First, we would like to calculate the mean of these vector elements. Thus, by
applying the definition for the expectation, this yields

E{nk} = E




T∫
0

n(t)φk(t)dt




=
T∫

0

E{n(t)}φk(t)dt

= 0

(4.72)

since E{n(t)} = 0, which ultimately means that the mean of the noise signal vector
is Ereliable{n} = 0.

The next step is to calculate the variance of these vector elements. Suppose we
let (nnT)kl = nknl be equal to the (k, l)th element of nnT . Therefore, in order to
determine E{nknl}, where nk and nl are defined by

nk =
T∫

0

n(t)φk(t)dt, nl =
T∫

0

n(ρ)φl(ρ)dρ,

we can apply the definition for E{nknl}, which yields

E{nknl} = E




 T∫

0

n(t)φk(t)dt




 T∫

0

n(ρ)φl(ρ)dρ






= E




T∫
0

T∫
0

n(t)n(ρ)φk(t)φl(t)dtdρ




Analog Devices perpetual eBook license – Artech House copyrighted material. 

Transmitting 
device 

S;(t) 

Additive noise channel 
r---------- I 

I I 
I I 

I I 
I I 
~------n(t) _ I 

r(t) Receiving 
device 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 157 — #41

4.6 Optimal Detection 157

Solving E{nknl} yields

E{nknl} =
T∫

0

T∫
0

E{n(t)n(ρ)}φk(t)φl(t)dtdρ

=
T∫

0

T∫
0

N0

2
δ(t − ρ)φk(t)φl(t)dtdρ

= N0

2

T∫
0

φk(t)φl(t)dt

= N0

2
δ(k − l),

(4.73)

where the integration of the product of the two orthonormal functions φk(t) and
φl(t) yields a delta function since only when k = l do these two functions project
onto each other. As a result, the matrix equivalent of this outcome is equal to

E{nnT} = N0

2
IN×N . (4.74)

Given the vector representation of the Gaussian random variable obtained in
(4.74), we need to define the joint probability density function of this representation
in order to characterize the individual elements of this vector. Leveraging the
assumption that the noise elements are independent to each other, we can express
the joint probability density function as the product of the individual probability
density functions for each element, yielding

p(n) = p(n1, n2, . . . , nN) = 1
(2πσ 2)N/2

N∏
i=1

e−n2
i /2σ2

= p(n1)p(n2) . . . p(nN)

where p(ni) = 1
σ
√

2π
e−n2

i /2σ2
is the probability density function for the vector

element ni. Since we know that E{nknl} = N0
2 δ(k − l), we can then solve E{n2

k} =
N0
2 = σ 2. Additionally, we know that the dot product of a vector can be written as

the summation of the squared elements; namely,

N∑
i=1

n2
i = ||n||2, (4.75)

which can then be used to yield the following expression for the joint probability
density function:

p(n) = p(n1, n2, . . . , nN) = 1
(2πσ 2)N/2 e−||n||2/2σ2

. (4.76)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 158 — #42

158 Digital Communications Fundamentals

4.6.2 Decision Rules
With the formulation of the joint probability density function derived in (4.76), we
can now define a rule for the receiver that can be used to determine which signal
waveform is being intercepted given the presence of some noise introduced by the
channel. Suppose we define the following criterion for the receiver as

Minimize P(error) → P(m̂i �= mi)

Maximize P(correct) → P(m̂i = mi),
(4.77)

where the probability of error is P(e) = P(error), the probability of correct reception
is P(c) = P(correct), and P(e) = 1 − P(c) is the complementary relationship
between these two probabilities. Then, using the law of total probability, the overall
probability of correct detection is equal to

P(c) =
∫
V

P(c|r = ρ)p(ρ)dρ, (4.78)

where P(c|r = ρ) ≥ 0 and p(ρ) ≥ 0. Therefore, we observe that when P(c) attains
a maximum value, this occurs when P(c|r = ρ) also possesses a maximum value.

In order to maximize P(c|r = ρ), we use the following decision rule at the
receiver:

P(sk|ρ) ≥ P(si|ρ), for i = 1, 2, . . . , M and i �= k, (4.79)

for i = 1, 2, . . . , M and i �= k. Note that for this decision rule we are assuming that
sk is present in ρ such that

ρ = sk + n → m̂ = mk. (4.80)

Employing a mixed form of Bayes rule that is composed of probability density
functions and probabilities; namely,

P(si|r = ρ) = p(ρ|si)P(si)

p(ρ)
, (4.81)

we would like to manipulate this decision rule into a formulation that can be
employed by a receiver. Specifically, recall how we wanted to maximize P(c|r = ρ)

earlier in this section. By employing the mixed Bayes rule formulation, the optimal
detector can be rewritten such that it is equal to

max
si

P(si|r = ρ) = max
si

p(ρ|si)P(si)

p(ρ)
, (4.82)

for i = 1, 2, . . . , M. Since p(ρ) does not depend on si, we can simplify the optimal
detector expression such that

max
si

p(ρ|si)P(si), (4.83)

for i = 1, 2, . . . , M
Based on our result in (4.83), two types of detectors can be derived based on

this expression. The first type of detector is referred to as MAP detector, which can
be expressed as

P(si|r = ρ) = max
si

p(ρ|si)P(si), (4.84)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 159 — #43

4.6 Optimal Detection 159

for i = 1, 2, . . . , M. However, in the event that P(si) = 1
M , which implies

that P(si) does not depend on si, we can omit the P(si) term from the optimal
detector expression, yielding the second type of detector, referred to as a maximum
likelihood (ML) detector:

P(si|r = ρ) = max
si

p(ρ|si), (4.85)

for i = 1, 2, . . . , M. In the next section, we will mathematically derive the maximum
likelihood detector given the optimal decision rule for data transmissions being
performed across AWGN channels.

4.6.3 Maximum Likelihood Detection in an AWGN Channel
Maximum likelihood detection is a popular statistical method employed for fitting
a statistical model to data, and for identifying model parameters. In general, for a
fixed set of data and underlying probability model, a maximum likelihood approach
selects values of the model parameters that produce the distribution that are most
likely to have resulted in the observed data (i.e., the parameters that maximize the
likelihood function).

Suppose that a data transmission is operating across an AWGN channel prior
to interception by the receiver. Recall that the transmission model for this scenario
is given by

r = si + n, (4.86)

where si is the ith signal waveform sent by the transmitter, n is the noise introduced
to the data transmission by the AWGN channel, and r is the intercepted signal
waveform by the receiver. Given that si is a deterministic quantity, and n is a random
entity that has just been characterized by a joint probability density function,
what is needed now is a characterization of r, which can be derived from the
characterization of n coupled with the deterministic properties of si.

Suppose we consider the conditional probability of a single element of the
received vector r = ρ, say the kth element, given that the signal waveform si was
assumed to be transmitted:

p(ρk|sik) = 1√
2πσ 2

e−(ρk−sik)2/2σ2
, (4.87)

where the kth element of the noise vector is equal to nk = ρk − sik. Since we assume
that the AWGN vector elements are uncorrelated (i.e., independent), we can rewrite
this conditional probability expression as

p(ρ|si) =
N∏

k=1

p(ρk|sik), for i = 1, 2, . . . , M. (4.88)

Consequently, this product of multiple elemental probability density functions
will ultimately yield the following expression:

p(ρ|si) = 1
(2πσ 2)N/2 e−||ρ−si||2/2σ2

. (4.89)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 160 — #44

160 Digital Communications Fundamentals

Notice how we now have a formulation for the conditional probability that
is entirely represented in terms of si, ρ, and their respective elements. Leveraging
this expression, we can proceed with mathematically determining the maximum
likelihood detector.

Since we would like to solve for max
si

p(ρ|si), suppose we take the expression

for p(ρ|si), apply it to the detector, and take the natural logarithm of the resulting
expression. Performing these operations would yield the following:

ln(p(ρ|si)) = N
2

ln
(

1
2πσ 2

)
− ||ρ − si||2

2σ 2 . (4.90)

Note that the natural logarithm was employed in order to get rid of the
exponential base in the expression, thus yielding a linear expression for the optimal
decision rule. Furthermore, since natural logarithms are monotonic functions (i.e.,
if x2 ≥ x1 then ln(x2) ≥ ln(x1)), the decision rule would still remain valid when the
inequality is employed.

Solving for this linear decision rule and given the monotonic behavior of the
natural logarithm, we can derive the following:

max
si

ln(p(ρ|si)) = max
si

(
N
2

ln
(

1
2πσ 2

)
− ||ρ − si||2

2σ 2

)

= max
si

(
−||ρ − si||2

2σ 2

)

= max
si

(
−||ρ − si||2

)
= min

si
||ρ − si||.

(4.91)

Since we are interested in the choice of si that yields the maximum value for the
decision rule, we can rewrite this decision rule as

sk = arg min
si

||ρ − si|| → m̂ = m. (4.92)

Note that one of the advantages of employing a vector representation for these
decision rules is that the entire scenario can be interpreted in terms of distance.
Specifically, the term ||ρ − si|| actually represents the distance between the heads
of two vectors, ρ and si, whose tails are located at the origin. Thus, a maximum
likelihood detector is the equivalent of a minimum distance detector.

4.7 Basic Receiver Realizations

The fundamental challenge of digital communications is recovering what was
transmitted after it has passed through a channel and been corrupted by noise.
The first receiver structure we will examine is based on filtering the received signal
with a static filter that maximizes the SNR of the channel, which will subsequently
minimize the bit error rate. However, one of the disadvantages of a matched filtering

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 161 — #45

4.7 Basic Receiver Realizations 161

Q

Referring to the signal constellation diagram shown in Figure 4.21,
implement a simple QPSK transceiver operating in an AWGN
channel and implement a maximum likelihood detector. Does this
decision rule match the decision regions in Figure 4.21? Does this
decision rule adequately declare si as the transmitted signal based
on which quadrant ρ appears in? What is the impact of the AWGN
channel for different values for the variance given that the noise is
zero-mean?

Figure 4.21 Decision regions for QPSK signal constellation.

approach is that it requires a priori knowledge of all the possible signal waveforms
sent by the transmitter.

4.7.1 Matched Filter Realization
When designing a receiver, we are interested in a decision rule where the receiver
yields the correct result more often than any other decision rule that can be employed
by the receiver. In other words, we are interested in detecting a pulse transmitted
over a channel corrupted by noise.

Suppose we employ the following transmission model:

x(t) = g(t) + w(t), 0 ≤ t ≤ T, (4.93)

where g(t) is a pulse signal, w(t) is a white noise process with mean µ = 0 and power
spectral density equal to N0

2 , and x(t) is the observed received signal. Assuming the
receiver knows all the possible waveforms of g(t) produced by the transmitter, the
objective of the receiver is to detect the pulse signal g(t) in an optimum manner
based on an observed received signal x(t). Note that the signal g(t) may represent
a “1” or a “0” in a digital communication system

In order to enable the receiver to successfully detect the pulse signal g(t) in an
optimal manner given the observed received signal x(t), let us filter x(t) the effects of
the noise are minimized in some statistical sense such that the probability of correct
detection is enhanced. Suppose we filter x(t) using h(t) such that the output of this

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 
Deci~i9r:, 
Regio.1\4 

D 

Decision 
ion 1 

sion 
Region 2 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 162 — #46

162 Digital Communications Fundamentals

process yields
y(t) = g0(t) + n(t), (4.94)

where n(t) is the result of the noise signal w(t) filtered by h(t) and g0(t) is the filtered
version of g(t) by h(t). The transmission model and filtering operation by h(t) is
illustrated in Figure 4.22.

Let us rewrite this filtering operation in the frequency domain, where the time
domain convolution operations become frequency domain products. Thus, taking
the inverse Fourier transform of H(f )G(f ), which is equivalent to a convolution of
h(t) and g(t), we get the following expression for the filtered version of g(t):

g0(t) =
∫ ∞

−∞
H(f )G(f )ej2π ft df , (4.95)

where the inverse Fourier transform returns the filtering operation back to the time
domain.

Let us now calculate the instantaneous reliable power of the filtered signal g0(t),
which is given as:

|g0(t)|2 = |
∫ ∞

−∞
H(f )G(f )ej2π ft df |2. (4.96)

In order to determine a quantitative metric that would indicate when we have
achieved the goal of maximizing g0(t) relative to n(t), let us employ the peak pulse
SNR, which is defined as

η = |g0(T)|2
E{n2(t)} , (4.97)

where |g0(T)|2 is the instantaneous power of the output signal at sampling instant
T, and E{n2(t)} is the average power of the output noise. Thus, goal of this matched
filter realization is to maximize g0(t) with respect to n(t) using the peak pulse SNR
metric, which can be achieved by designing a filter h(t) that can yield the largest
possible value for η.

In order to design h(t), we need to mathematically solve for h(t), which consists
of evaluating the expression

|g0(t)|2 =
∣∣∣∣∣∣

∞∫
−∞

H(f )G(f )ej2π ftdf

∣∣∣∣∣∣
2

, (4.98)

which is the magnitude squared of the inverse Fourier transform of H(f )G(f ) =
F{h(t) ∗ g(t)}. Since w(t) is a white Gaussian process with power spectral density
N0
2 , we know from the EWK theorem that the power spectral density of the filtered

noise signal n(t) is equal to SN(f ) = N0
2 |H(f )|2. Therefore, applying the definition

Figure 4.22 Filtering process for detecting g(t).

Analog Devices perpetual eBook license – Artech House copyrighted material. 

t kT y(T) 
_g_( t_) ______ +-+--x( ___ t) h( t) ( t) _______. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 163 — #47

4.7 Basic Receiver Realizations 163

for η and including these expressions will yield

η = | ∫∞
−∞ H(f )G(f )ej2π fTdf |2

N0
2

∫∞
−∞ |H(f )|2df

. (4.99)

From this resulting expression, we see that we need to solve for frequency
response H(f ) such that it yields the largest possible value for the peak pulse SNR
η. In order to obtain a closed-form solution, let us employ Schwarz’s inequality.
Suppose that we have two complex functions, say φ1(x) and φ2(x), such that:

∞∫
−∞

|φ1(x)|2dx < ∞ and

∞∫
−∞

|φ2(x)|2dx < ∞. (4.100)

Then, by Schwarz’s inequality we can rewrite the following integral expression
as an inequality:

∣∣∣∣∣∣
∞∫

−∞
φ1(x)φ2(x)dx

∣∣∣∣∣∣
2

≤

 ∞∫

−∞
|φ1(x)|2dx


 ·


 ∞∫

−∞
|φ1(x)|2dx


 , (4.101)

with this expression becoming an equality when φ1(x) = K · φ∗
2(x).

Therefore, leveraging Schwarz’s inequality in our expression for the peak pulse
SNR, it can be shown that the numerator of (4.99) can be rewritten as:

∣∣∣∣∣∣
∞∫

−∞
H(f )G(f )ej2π ftdf

∣∣∣∣∣∣
2

≤

 ∞∫

−∞
|H(f )|2df


 ·


 ∞∫

−∞
|G(f )|2df


 , (4.102)

which then yields the following inequality for η:

η ≤ 2
N0

∞∫
−∞

|G(f )|2df . (4.103)

Thus, in order to make this expression an equality, the optimal value for H(f )

should be equal to

Hopt(f ) = K · G∗(f )e−j2π fT , (4.104)

whose time domain representation can be mathematically determined using the
inverse Fourier transform:

hopt(t) = K ·
∞∫

−∞
G∗(f )e−j2π fTe−j2π ftdf = K · g(T − t). (4.105)

Notice that when we are performing a matched filtering operation, we are
convolving the time-flipped and time-shifted version of the transmitted pulse with
the transmitted pulse itself in order to maximize the SNR.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 164 — #48

164 Digital Communications Fundamentals

i

The reason why we call these filters matched filters is due to
the fact that when we convolve the time-flipped and time-shifted
version of the transmitted pulse signal with itself, the process
is SNR maximizing. Consequently, if a receiver intercepts some
unknown noise-corrupted signal, it can readily identify which one
was sent by a transmitter by matching this intercepted signal to
all the available signal waveforms known at the receiver using an
implementation illustrated in Figure 4.23.

Q
Referring to Figure 4.24, suppose we have a signal g(t). Show that
h(t) and g0(t) are the corresponding matched filter and filtered
output signals.

4.7.2 Correlator Realization
Recall that a matched filter realization assumes some sort of knowledge regarding
the transmitted data. However, if the receiver possesses this information about the
reliable transmitter and its signal characteristics, it is also possible to employ a more
statistical approach for determining which signal waveforms have been sent, even
in the presence of a noisy, corruption-inducing channel. Specifically, we can employ
the concept of correlation such that we only need to assume knowledge about the
waveforms themselves.1

Suppose we start with the decision rule derived at the beginning of this section
and expand it such that

min
si

||ρ − si||2 = min
si

(ρ − si) · (ρ − si)

= ρ · ρ − 2ρ · si + si · si.
(4.106)

Since ρ ·ρ is common to all the decision metrics for different values of the signal
waveforms si, we can conveniently omit it from the expression, thus yielding

min
si

(−2ρ · si + si · si) = max
si

(2ρ · si − si · si) , (4.107)

where ρ · si and si · si are defined by

ρ · si =
T∫

0

ρ(t)si(t)dt si · si =
T∫

0

s2
i (t)dt = Esi .

We can observe that the waveform representation of ρ · si is equal to the
correlation of r(t) = ρ(t) with respect to si(t). Thus, when sk(t) is present in r(t),

1. For a matched filtering implementation, knowledge of both the transmission signal waveforms and the
statistical characteristics of the noise introduced by the channel is needed by the receiver.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0 

I □ 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 165 — #49

4.7 Basic Receiver Realizations 165

Figure 4.23 Schematic of matched filter realization of receiver structure.

Figure 4.24 An example of the time domain input and output signal waveforms processed by a
matched filter. (a) Time domain representation of the input signal to the matched filter, (b) time
domain impulse response of the matched filter, (c) time domain representation of the output signal
of the matched filter.

the optimal detector is equal to

reliablesk = arg max
i


 T∫

0

ρ(t)si(t)dt − Esi

2


 . (4.108)

Based on this result, we can design a receiver structure that leverages correlation
in order to decide on which signal waveform was sent by the transmitter based on
the observed intercepted signal at the receiver. An schematic of a correlation-based

Analog Devices perpetual eBook license – Artech House copyrighted material. 

r(t) 

h,(t) 

g(t) 

A tne,~ = A2 T 

T 

(a) 

h(t) 

A k·~ = A2 T 

T 

(b) 

9o(t) 

-Es, I 2 X 
('a 

E 
Q) 
V, 

-f52 I 2 0 
0 

..c u 

-f5M/ 2 

KA'Tr~, 
0 T 2T t 

(c) 

m(t) 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 166 — #50

166 Digital Communications Fundamentals

implementation is shown in Figure 4.25. Given r(t) = si(t) + n(t) and we observe
only r(t) = ρ(t) at the input to the receiver, we first correlate r(t) with si(t) across all
i. Next, we normalize the correlation result by the corresponding signal energy Esi

in order to facilitate a fair comparison. Note that if all energy values are the same
for each possible signal waveform, we can dispense with the energy normalization
process since this will have no impact on the decision making. Finally, the resulting
decision values for each of the branches are compared against each other and the
branch with the largest resulting value is selected.

Hands-On MATLAB Example: To highlight the how a correlator receiver
structure would work in decoding the intercepted waveforms and translating them
in the corrsponding binary output, the following MATLAB script can be used,
where we begin by generating a stream of random waveforms consisting of symbols
s1(n), s2(n), s3(n), and s4(n). These waveforms are obtained from the
MATLAB script shown in Section 4.5. Once this stream of waveforms has been
generated, the next step is to vectorize the waveforms into a three-dimensional signal
constellation space. Once vectorized, we use the correlation receiver approach in
order to find out the Euclidean distance between the received vectorized waveforms
and the available signal vectors. Once these distances have been calculated per
received waveform, a decision-making process is performed in order to find out the
closest match between the received and available symbol vectors.

The result of this waveform vectorization and correlator-based receiver design
for these examples is shown in Figure 4.26. We can see that both the orignally
transmitted and the decoded waveforms are a perfect match. However, in this model
we did not include any forms of distortion such as noise. Consequently, it is a perfect
exercise to observe how the correlator-based receiver performs when additive white
Gaussian noise introduced to the received signal.

4.8 Chapter Summary

A deep and thorough understanding of digital communication theory is vitally
essential when designing and evaluating software-defined radio implementations.
In this chapter, an overview of several useful topics, including several different types
of modulation schemes, the derivation of the probability of error, Gram-Schmidt

( 1)

(.)
k T

kT

dt

( 1)

(.)
k T

kT

dt

( 1)

(.)
k T

kT

dt

( )r t

1( )s t

2 ( )s t

( )Ms t

1sE

2sE

sME

ˆ ( )m t

Figure 4.25 Correlator realization of a receiver structure assuming perfect synchronization.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

C
H

O
O

S
E

 M
A

X
 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 167 — #51

4.8 Chapter Summary 167

Code 4.9 Correlator-Based Receiver Implementation Using Gram-Schmidt: chapter4.m

500 % Define parameters

501 N_symb = 10; % Number of symbols contained within intercepted signal

502

503 % Randomly generate intercepted waveform consisting of s1(n), s2(n),

% s3(n), and s4(n)

504 rx_sig = [];

505 orig_msg = [];

506 for ind = 1:1:N_symb,

507 rnd_val = rand(1,1);

508 if (rnd_val < 0.25) % Add s1(n) waveform

509 rx_sig = [rx_sig sig_s1];

510 orig_msg = [orig_msg 1];

511 elseif ((rnd_val >= 0.25)&&(rnd_val < 0.5)) % Add s2(n) waveform

512 rx_sig = [rx_sig sig_s2];

513 orig_msg = [orig_msg 2];

514 elseif ((rnd_val >= 0.5)&&(rnd_val < 0.75)) % Add s3(n) waveform

515 rx_sig = [rx_sig sig_s3];

516 orig_msg = [orig_msg 3];

517 else % Add s4(n) waveform

518 rx_sig = [rx_sig sig_s4];

519 orig_msg = [orig_msg 4];

520 end;

521 end;

522

523 % Vectorize the intercepted signal

524 dim1_comp = [];

525 dim2_comp = [];

526 dim4_comp = [];

527 for ind = 1:1:N_symb,

528 dim1_comp = [dim1_comp sum(rx_sig(((ind-1)*3*N_samp+1):1:

(ind*3*N_samp)).*phi1)];

529 dim2_comp = [dim2_comp sum(rx_sig(((ind-1)*3*N_samp+1):1:

(ind*3*N_samp)).*phi2)];

530 dim4_comp = [dim4_comp sum(rx_sig(((ind-1)*3*N_samp+1):1:

(ind*3*N_samp)).*phi4)];

531 end;

532 dim1_comp = dim1_comp/N_samp;

533 dim2_comp = dim2_comp/N_samp;

534 dim4_comp = dim4_comp/N_samp;

535

536 % Using the correlator receiver approach, we determine the closest

537 % symbol vector to each vectorized waveform based on Euclidean distance

538 s1vec = [(2/sqrt(3)) (sqrt(6)/3) 0 0];

539 s2vec = [0 0 0 sqrt(2)];

540 s3vec = [(sqrt(3)) 0 0 0];

541 s4vec = [(-1/sqrt(3)) (-4/sqrt(6)) 0 0];

542 est_msg = [];

543 for ind = 1:1:N_symb,

544 [val,symb_ind] = min([ ...

545 sum((s1vec - [dim1_comp(ind) dim2_comp(ind) 0 dim4_comp(ind)]).ˆ2) ...

546 sum((s2vec - [dim1_comp(ind) dim2_comp(ind) 0 dim4_comp(ind)]).ˆ2) ...

547 sum((s3vec - [dim1_comp(ind) dim2_comp(ind) 0 dim4_comp(ind)]).ˆ2) ...

548 sum((s4vec - [dim1_comp(ind) dim2_comp(ind) 0 dim4_comp(ind)]).ˆ2) ...

549 ]);

550 est_msg = [est_msg symb_ind];

551 end;

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 168 — #52

168 Digital Communications Fundamentals

Figure 4.26 Matching correlator receiver output with original transmission.

orthogonalization, formulation of the optimal decision rule, and the presentation
of two receiver structures were studied in order to provide the reader with the
fundamentals needed in order to master these versatile yet complex systems. In the
subsequent chapters, the fundamental knowledge obtained in this chapter, as well as
the two previous chapters, will be leveraged extensively when implementing digital
communication systems and networks based on software-defined radio technology.

4.9 Additional Readings

Given the introductory nature of this chapter with respect to the topic of digital
communications, the interested reader is definitely encouraged to explore the
numerous books that provide a substantially more detailed and advanced treatment
of this topic. For instance, the latest edition of the seminal digital communications
book by Proakis and Salehi [4] provides a rigorous, mathematical treatment of
many of the concepts covered in this chapter, in addition to many other topics not
presented such as spread spectrum technologies, equalization, and RAKE receiver
implementations. To complement this mathematically terse document, the authors
also published a companion book that treats digital communications from a more
applied perspective, including examples in MATLAB and Simulink [5].

As for introductory textbooks on digital communications, Sklar wrote an
excellent document that provides the reader with a balance of mathematical
rigor, detailed explanations, and several well-crafted examples [6]. The book by
Couch is also in the same category as Sklar, but it treats both analog and digital
communications [7], which is well suited for individuals that do not possess a
background in the communications field. Rice wrote his introductory book on
digital communications from a discrete-time perspective, which is suited for an
individual possessing a background in discrete-time signal and systems [8]. The book
also provides numerous end-of-chapter problems as well as MATLAB examples
available online, providing the reader with many opportunities to practice the
theoretical concepts covered within this text.

The classic digital communications book by Barry, Messerschmitt, and Lee [9]
is an excellent reference for those individuals who possess some understanding
about digital communications but need convenient and immediate access to detailed
information. Similarly, the books by Madhow [10] and Pursley [11] both provide
readers with a more advanced treatment of digital communication theory. Finally,

Analog Devices perpetual eBook license – Artech House copyrighted material. 

>< 4 
QJ Original 

"C 
.!: Recovered 
QJ 2 O"I 
11:l 

"' "' QJ 

2 0 
0 2 3 4 5 6 7 8 9 

Time (n) 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 169 — #53

4.9 Additional Readings 169

the book by Hsu [12] is an excellent reference that mostly consists of a popular
collection of solved problems.

References

[1] Shannon, C. E., “Communication in the Presence of Noise,” in Proceedings of the Institute
of Radio Engineers, Vol. 37, No. 1, January 1949, p. 1021.

[2] Poor, H. V., An Introduction to Signal Detection and Estimation, New York: Springer,
2010.

[3] Wyglinski, A. M., Physical Layer Loading Algorithms for Indoor Wireless Multicarrier
Systems, Ph.D. thesis, McGill University, Montreal, 2004.

[4] Proakis, J., and M. Salehi, Digital Communications, Fifth Edition, Boston: McGraw-Hill,
2007.

[5] Proakis, J. G., M. Salehi, and G. Bauch, Contemporary Communication Systems Using
MATLAB, Second Edition, Brooks/Cole, 2003.

[6] Sklar, B., Digital Communications: Fundamentals and Applications, Second Edition,
Prentice Hall PTR, 2001.

[7] Couch, L. W., Digital and Analog Communication Systems, Seventh Edition, Upper Saddle
River: Prentice Hall, 2006.

[8] Rice, M., Digital Communications: A Discrete-Time Approach, Third Edition,
Pearson/PrenticeHall, 2009.

[9] Barry, J. R., D. G. Messerschmitt, and E.A. Lee, Digital Communication, Third Edition,
Norwell, MA: Kluwer Academic Publishers, 2003.

[10] Madhow, U., Fundamentals of Digital Communication, Cambridge, UK: Cambridge
University Press, 2008.

[11] Pursley, M. B., Introduction to Digital Communications, Prentice Hall, 2004.
[12] Hsu, H. P., Schaum’s Outline of Theory and Problems of Analog and Digital

Communications, Second Edition, New York: McGraw-Hill, 2002.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 171 — #1

C H A P T E R 5

Understanding SDR Hardware

In this chapter, we will discuss the real-world implications of using SDR hardware
and fundamentals for interacting with the Pluto SDR from MATLAB. Using Pluto
SDR as a template we will provide an introduction in the receive and transmit
chains, discussing how analog waveforms become digital samples in MATLAB.
Once we have a solid grasp on this process a common code templating will be
introduced, which will be used throughout the remaining chapters when working
with the radio in MATLAB. This templating will provide a simplified workflow
that can help alleviate common problems faced when working with SDR’s and
specifically Pluto SDR. Finally, the chapter will conclude with a small example to
make sure the Pluto SDR is configured correctly with MATLAB.

5.1 Components of a Communication System

The software-defined radio described in Section 5.1.1 can constitute a radio node
in anything from a point-to-point link to an element in a large ad hoc network of
radios. It can be used as an RFFE to a MATLAB script or Simulink model or it can
be programmed and used as a complete stand-alone radio. The radio front end, in
this case the Pluto SDR, is a single components in a larger communications system,
which would also normally include external filters and band-specific antennas. A
description of the communication systems, and the block diagram are shown in
Figure 5.1(c). The major aspects of that are

• An analog RF section (atennna, RF filters, input mux, LNA, gain,
attenuation, mixer);

• An analog baseband section (analog filters, ADC or DAC);
• Some signal processing units (fixed filters inside a transceiver, or user defined

inside a FPGA or DSP, or general-purpose processor).

While Pluto SDR provides a great low-cost platform for STEM education and SDR
experimentation, it is representive of many SDRs used in commuications systems.
Although it is small and low-cost, the Pluto SDR has enough capability to tackle
a wide range of SDR applications, such as GPS or weather satellite receiver or
ad hoc personal area networks. The Pluto SDR plays the part of the communications
systems described above as follows:

• An analog RF section (atennna, RF filters, input mux, LNA, gain,
attenuation, mixer)
– Antenna and RF filters are expected to be done outside the Pluto SDR and

are the responsibility of the end user

171

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 172 — #2

172 Understanding SDR Hardware

– The remaining portions of the first first bullet (input mux, LNA, gain,
attenuation, mixer), are all implmented in the AD9363, Integrated RF
Agile Transceiver

• Analog baseband section (analog filters, ADC or DAC) is implmented in the
AD9363, Integrated RF Agile Transceiver

• Signal processing; this is split between
– Parts of signal processing is implmented in the AD9363, Integrated

RF Agile Transceiver. This includes the fixed halfband decimiation and
interpolation filters and programmable 128-tap FIR filters.

– Optional filtering and decimation may be done in the Xilinx Zynq’ FPGA
fabric.

– The I/Q data is then passed up to the USB to a host, where MATLAB can
continue the signal processing.

To understand the details of these pieces, it is necessary to peel back the plastic
on the Pluto SDR and look at the devices that make up the device itself. Being
a SDR platform specifically targeted for students, not only are schematics for the
Pluto SDR readily available, but also the entire software and HDL stack, so we
can examine in detail the makeup of the device at any level from hardware to
software.

5.1.1 Components of an SDR
Most modern SDR devices typically share a similar structural design, which makes
up the receive and/or transmit chains to translate data from the analog RF domain
into analog baseband domain, and into IQ samples, and eventually into a software
package such as MATLAB. In the very simplest sense the Pluto SDR (shown in
Figure 5.1[b]) is made up of two components, as shown in Figure 5.1(a):

• An analog RF section (which specifies the receive and transmit capabilities);
• The communications mechanism (Ethernet, USB) to get IQ data back to host

for processing.

Referring to Figure 5.1(c), the receive, transmit, and communication specifications
of the ADALM-PLUTO consist of

• Transmit (SMA connector labeled Tx)
– 300–3, 800 GHz, 200–20, 000 kHz channel bandwidth, 65.1–61, 440

kSPS
– 2.4 Hz LO step size, 5 Hz sample rate step size
– Modulation accuracy (EVM): 40 dB (typical, not measured on every unit)
– 12-bit DACs

• Receive (SMA connector labeled Rx)
– 300–3, 800 GHz, 200–20, 000 kHz channel bandwidth, 65.1–61, 440

kSPS
– 2.4 Hz LO step size, 5 Hz sample rate step size
– Modulation accuracy (EVM): 40 dB (typical, not measured on every unit)
– 12-bit ADCs

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 173 — #3

5.1 Components of a Communication System 173

Figure 5.1 Views of the ADALM-PLUTO SDR. (a) Simplified block diagram of the ADALM-PLUTO,
(b) photo of the ADALM-PLUTO [1], and (c) I/O on the ADALM-PLUTO.

• USB 2 OTG (480 Mbits/seconds), device mode
– libiio USB class, for transfering IQ data from/to the RF device to the host
– Network device, provides access to the Linux on the Pluto device
– USB serial device, provides access to the Linux console on the Pluto device
– Mass storage device

• USB 2 OTG (480 Mbits/seconds), host mode
– Mass storage device, plug in a thumb drive, and capture or playback

waveforms
– Wifi dongle, access the Pluto SDR via WiFi
– Wired LAN, access the Pluto SDR via wired LAN

• External power, for when using the Pluto SDR in host mode.

It is possible to run the Pluto SDR out of spec and extend the frequency range
to 70–6, 000 MHz to be able to capture and listen to FM broadcasts (in the 87.5–
108.0 MHz bands most places, 76–95 MHz in Japan, and legacy 65.8–74.0 MHz in
some Eastern European countries) at the low end, and the all the interesting things
happening in 5.8-GHz ISM worldwide bands.

Because of the wide tuning range, 70–6, 000 MHz, which is over three orders
of magnitude, there are no band-specific receive or transmit filters in the Pluto SDR.
What this means is that from a receive side, everything that is broadcasting from
70–6, 000 MHz will be picked up, and could affect your signal. This is normally
only an issue when you are trying to receive a very low amplitude signal. More
about this in Section 5.2.6.

5.1.2 AD9363 Details
At the front of the Pluto SDR is a AD9363 5.2 transceiver from Analog Devices Inc.,
which is responsible for capturing and digitization of the RF data. This transceiver

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Interface 
DMA 

>< Drivers O'" 
C C 

USB 2.0 >< 
Linux kernel >, 

N 

f 
libiio 

USB 2.0 

(a) (b) (c) 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 174 — #4

174 Understanding SDR Hardware

provides amplification, frequency translation (mixing), digital conversion, and
filtering of transmitted and receive signals. In Figure 5.2 we provide a detailed
outline of the of the AD9363. While it can look complicated to the beginner,
it is has nothing more than the three sections we mentioned before: an analog
RF section, an analog baseband section, and some signal processing for both
receive and transmit. It is important to understand the physical analog and
digital hardware boundary because it will provide the necessary knowledge to
configure the device from MATLAB and understand nonidealities experienced in
the transmitted and received data. However, an extreme indepth understanding
of the device is not required to effectively work with a SDR but some basics are
invaluable.

We will discuss the AD9363 from the perspective of the receiver, but logically
the same operations just apply in reverse order for the transmitter. At the very
front of the AD9363 is a low-noise amplifier (LNA) providing analog gain that is a
component of the automatic gain control (AGC) pipeline of the receiver. Following
the LNA is the mixer, which is responsible for direct frequency translation. Unlike
many traditional heterodyne transceivers, the AD9363 is a direct conversion,
or ZeroIF design that does not utilize an intermediate frequency (IF) stage. For
more details on the trade-offs between heterodyne and direct-conversion receivers,
consider reading Razavi [2].

The mixer in the AD9363 operates from 325 MHz to 3.8 GHz within datasheet
specification [2], but software modifications can be made to expand this range,
which we will discuss in Section 5.2.6. Prior to this mixing process, the signal is
split and fed along two different but identical paths. This process creates the in-
phase and quadrature components of our signal through a simple phase rotation
of the mixer’s clock. Effectively this doubles the effectively bandwidth of the
receiver since the in-phase and quadrature signals are orthogonal (bandwidth is
− fs

2 to fs
2 ).

After mixing, the signal is filtered to remove aliasing effects of the now down-
mixed signal and to reduce out of band interference and noise. The combined
transimpedance amplifier (TIA) and analog filter are configured together to maintain
the desired analog bandwidth, which can range from 200 kHz to 20 MHz. The
TIA acts as a single pole filter and the analog programmable filter is a third-order
Butterworth.

The final stage of the AD9363 is the digital conversion and decimation
stage. Here the ADC will typically run at a much higher rate than the desired
receive bandwidth, but the ADC itself will not provide all 12 bits defined in the
specifications. The additional bits are gained in the halfband filter (HBF) stages,
which will allow bit growth. The ADC itself only provides ∼ 4.5 bits of resolution.
This is a typical design for sigma-delta converters (�-� ADC), which inherently
have low noise and run faster than the alternative successive approximation (SAR)
ADCs. Refer to Section 2.5.4 for more information about �-� ADCs. However,
by utilizing a very high speed ADC and associated HBFs the receive signal can be
digitized at 12 bits at the desired configured sample rate. Therefore, for the best
signal resolution is achieved through large oversampling of the input signal and
then followed by several decimation stages.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



W
yglinski:

“ch05_new
”

—
2018/3/26

—
11:43

—
page

175
—

#5

5.1
C

om
p

onents
ofa

C
om

m
unication

System
175

Figure 5.2 Block diagram of the AD9363 [3].

A
nalog D

evices perpetual eB
ook license – A

rtech H
ouse copyrighted m

aterial. 

RADIO 
SWITCHING 

RX2A_P, 
RX2A N 
RX1A-P, 

RX1A=N 
RX2B_P, 
RX2B_N 
RX1B_P, 
RX1B_N 

RX2C_P, 
RX2C N 
RX1C-P, 

RX1C=N 

TXMON2 

TXMON1 

RXLO 

XTALP 

XTALN 

TXLO 

AUXDAC1 
AUXDAC2 

TX2A_P, 
TX2A_N 
TX1A_P, 
TX1A_N 

TX2B_P, 
TX2B N 
TX1B-P, 

TX.1B=N 

AUXADC 

Automatic 
Gain 
Control 

□ Manual 
□ Slow 
□ Fast 

AD9363 

1.3V 

1.2V-2.5V 

1.8-3.3V 

GND 

P0_JD11:D0]/ 
TX_JD5:D0] 

P1_jD11:D0]/ 
RX_JDS:DO] 

SPI 

CTRL 

RESETB 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 176 — #6

176 Understanding SDR Hardware

5.1.3 Zynq Details
Once the data is digitized it is passed to the Xilinx Zynq System on Chip (SoC),
shown in Figure 5.3. The Zynq-7000 family offers the flexibility and scalability of
an FPGA, while providing performance, power, and ease of use typically associated
with ASIC and ASSPs. Providing integrated ARM Cortex-A9 based processing
system (PS) and programmable logic (PL) in a single device, the Zynq is the used in
the Pluto SDR as the main controller.

Having the combination of the programmable logic and a programming
subsystem provide some unique advantages. The AD9363 ADC’s lowest data
conversion rate is 25 MHz. The maximum amount of decimation allows is 48.
This provides a lowest sample rate of 520.833 kSPS. An additional divide by 8
decimation filter was put inside the FPGA to extend the lowest sample rate to
65.1042 kSPS. Running Linux on the ARM-A9 inside the Pluto SDR provides some
unique advantages. Being able to use the Linux IIO infrastructure allows existing
device drivers to be used for the AD9363. Controlling all aspects of the device, from
sample rates, to FIR settings, to LO settings, to the additional decimation filters,
this proven software did not have to be touched for the creation of the Pluto SDR.

Once the digital receive IQ data from the AD9363, described in Section 5.1.2 is
transferred to the FPGA fabric, the AXI DMAC core writes that to the Pluto’s
external memory. During this step, a change is made from unique continuous
samples to n-sample buffers.

Figure 5.3 Block diagram of the Zynq [4].

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Zynq-7000 All Programmable Soc 

1/0 
Processing System 

Peripherals I Clock I Reset I lsw□TI 
Application Processor Unit 

/ 
~ , 

USB Generation FPU and NEON Engine I FPU and NEON Engine I 
~ 

~ USB 2xUSB MMU I ARM Cortex-A9 
I 

MMU I ARM Cortex-A9 
I 

GigE ~ 
I I 

2x GigE CPU I CPU I 

~ 2xSD Level 32 KB I 32 KB I 32 KB 

I 
32 KB I 

SD r:-7 Control I-Cache □-Cache I I-Cache □-Cache I 
SDIO ~ ~ " SD II ~ - GIC Snoop Controller, AWDT, Timer 
SDIO ' ~ ~ ~ ~ l I s12 KB L2 Cache & Controller 

Q '-- ~ UART I 
::;; UART f4 
~ I OCM I256K I ~ I 

I 
~ Interconnect SRAM 

I ~ Memory 
~ Central Interfaces 
SP! Interconnect 

I 

DDR2/3, 

I 
Memory I 

CoreSight 

I 
DDR3L, 

~ Interfaces -- Components LPDDR2 

'\ 
~ • Controller 

SRAM/ 
NOR 

~ ♦ ♦ f-----
ONFI 1.0 

I NAND Tl Programmable Logic to 
f----- Memory Interconnect Q-SPI 

CTRL i t t ♦ ♦ ♦ ♦ 
EMIO I XADC 

I General-Purpose □MA IRQ I Config 

I 
High-Performance Ports ACP 

12-BitADC Ports Sync AES/ 
SHA Programmable Logic 

Noles: 
SelectlO 

Resources 
1) Arrow direction shows control (master to slave) 
2) Data flows in both directions: AXI 32-BiU64-Bit, AXI 64-Bit, AXI 32-Bit, AHB 32-Bit, APB 32-Bit, Custom 
3) Dashed line box indicates 2nd processor in dual-core devices 

D8190_01_072916 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 177 — #7

5.1 Components of a Communication System 177

Figure 5.4 Block diagram of libiio and iiod [5].

5.1.4 Linux Industrial Input/Output Details
The industrial input/output (IIO) subsystem inside the Linux kernel is intended
to provide support for devices that in some sense are ADCs or DACs, which don’t
have their own existing subsystems (like audio or video). This is not specific to Pluto
nor specific to any SDR implmentation. It is an open-source standard adopted by
many different manufactures for providing a common API to deal with a variety
of different devices, This includes, but is not limited to, ADCs, accelerometers,
gyros, IMUs, capacitance to digital converters (CDCs), pressure sensors, color,
light and proximity sensors, temperature sensors, magnetometers, DACs, direct
digital synthesis (DDS), phase-locked loops (PLLs), variable/programmable gain
amplifiers (VGA, PGA), and integrated RF transceivers, like the AD9363.

There are three main aspects:

• The Linux kernel IIO driver, which runs inside the Linux kernel, in this case
in the ARM in the Pluto SDR.

• libiio, the userspace library for accessing local and remote IIO devices, in this
case both in the ARM, and on the host.

• iiod, the IIO Daemon, responsible for allowing remote connection to IIO
clients, in this case on the ARM inside the Pluto SDR.

libiio is used to interface to the Linux industrial input/output (IIO) subsystem.
libiio can be natively used on an embedded Linux target (local mode) or to
communicate remotely to that same target from a host Linux, Windows, or MAC
over USB, Ethernet, or Serial.

Although libiio was primarily developed by Analog Devices Inc., it is an active
open-source library that many people have contributed to. It released under the
GNU Lesser General Public License, version 2.1 or later, this open-source license
allows anyone to use the library on any vendor’s processor/FPGA/SoC that may
be controlling any vendor’s peripheral device (ADC, DAC, etc.) either locally or

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Client 
Applicatio 

on Linux 

LibllO 
/ Linux 

High-level API 

Linux Kernel 

110 devices 

110D Server Client 
Application 

on Windows ·~ 
LibllO 

/Windows,, 

High-level API 

Network backend 

. 
"' 

Network link 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 178 — #8

178 Understanding SDR Hardware

remotely. This includes closed- or open-source, commercial or noncommercial
applications (subject to the LGPL license freedoms, obligations and restrictions).

Once buffers of Rx data are in external memory, they are passed to iiod, the
IIO Daemon. The iiod is responsible for managing various iio clients (normally
remote on a network or USB), and translating their requests to local devices. It is
able to accomplish this via the libiio library, which provides access to the AD9363
through a series of interfaces. Convinently, the libiio API access to the transceiver
is identical whether working on the ARM or on a host PC which also has a libiio
driver installed. Therefore, code can be implemented on the host machine connected
to Pluto SDR and then deployed onto the ARM with the same code.

5.1.5 MATLAB as an IIO client
MATLAB can be used as a cross-platform IIO client to interface with the Pluto
SDR. It includes a Pluto SDR system object interface. A fundamental background
on system objects in MATLAB is provided in Appendix B.3. The two system objects
provided in the hardware support package (HSP) for Pluto SDR are:

• comm.SDRRxPluto: Pluto SDR Receiver System object
• comm.SDRTxPluto: Pluto SDR Transmitter System object

These objects are typically constructed through the sdrrx or sdrtx function calls
as in Code 5.1.

Code 5.1 Instantiating Pluto SDR System Objects: pluto1.m

1 rx = sdrrx(’Pluto’)
14 tx = sdrtx(’Pluto’)

However, these objects can also be directly instantiated directly. The resulting
object of sdrrx either way will have the following basic properties, which will be
directly printed to the terminal when not using the semicolon as Code 5.2.

Code 5.2 Instantiating Pluto SDR System Objects: pluto1.m

1 rx = sdrrx(’Pluto’)
2 rx =
3 comm.SDRRxPluto with properties:
4 DeviceName: ’Pluto’
5 RadioID: ’usb:0’
6 CenterFrequency: 2.4000e+09
7 GainSource: ’AGC Slow Attack’
8 ChannelMapping: 1
9 BasebandSampleRate: 1000000

10 OutputDataType: ’int16’
11 SamplesPerFrame: 3660
12 ShowAdvancedProperties: false

Since the Pluto SDR is part of a larger family of SDR devices, it shares the
DeviceName attribute, which will be defined as Pluto for the Pluto SDR. As seen

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 179 — #9

5.1 Components of a Communication System 179

from the usage in Code 5.2, there are various attributes for the System object.

• RadioID is related to the enumerate interface that the radio is using. This
will either be USB:# where # is a number associated with the number of USB
radios connected to MATLAB starting at zero, or ip:<ipaddress>, which
utilizes the Pluto SDR over Ethernet.

• CenterFrequency defines the RF center frequency in hertz. Note there are
separate Rx and Tx LO, on the Pluto SDR, and these are managed separately
in the Rx and Tx Objects.

• BasebandSampleRate defines the sample rate of the in-phase/quadrature
receive chains, respectively. Note, there is only one clock generator for both
the ADC and DAC in the AD9363, so these must be set to the same value
managing Rx and Tx on the same device.

• GainSource has three possible options: Manual, AGC Slow Attack, and
AGC Fast Attack. When Manual is selected, another option called Gain will
become available. This Gain value is associated with a gain table located
within the AD9363. Therefore, when the Gain value changes multiple stages
in the receive path shown in Figure 5.2 are updated based on this internal
table. Custom gain tables can be used if necessary. However, such settings
are considered advanced implementation options and will not be considered
in this book. The other GainSource settings enable state machine based gain
control within the AD9363 to adapt during operation based on receive signal
strength (RSSI).

• The ChannelMapping attribute for the Pluto SDR can only be set to 1.
However, on other SDRs in the Analog Devices Inc. family this is used for
multichannel (multiple-input and multiple-output, or MIMO) reception.

• OutputDataType determines the format data is provided out of the object.
Technically, from the AD9363 and libiio, MATLAB can only receive 16-bit
complex integers, but we can tell MATLAB to cast them to other data types
by default. Typically we will cast them to doubles since they provide the most
precision, and working with trigonometric functions will require double or
single precision data. As mentioned previously the receive and transmit paths
only provide 12 bits of resolution, but since several of the hardware and
software layers can only deal with base 8-bit types these 12 bits are provided
as a 16-bit integer. For reference, on the receive side the 16-bit samples are
sign extended and the transmitter will simply throw away the lowest four
significant bits.

• SamplesPerFrame determines the number of samples in the buffer or frame
that is passed to MATLAB from iiod. This will be the size of the vector
provided at a given call to the object. This data will always be continguous as
received from the radio unless an overflow has occurerd. However, successive
calls to an instantiated object will not guarantee buffer-to-buffer continuity.
Therefore, it can be useful to collect large amounts of data at a given time
for processing.

The transmitter system object comm.SDRTxPluto has nearly identical properties
except for GainSource, SamplesPerFrame, and OutputDataType, which do not
make sense in the transmitter context.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 180 — #10

180 Understanding SDR Hardware

5.1.6 Not Just for Learning
The architecture combination of the AD936x RF transceiver, the Zynq SoC, and
external memory, which is found on the Pluto SDR should not just be thought of as
just a learning platform. There are many commercial systems built on a similar
architectures that can use the same software (HDL, Linux kernel, and IIO) to
communicate with the IIO clients (like MATLAB). For example, Epiq Solutions,
located in Schaumburg, Illinois, builds an industrial-grade, commercial solution,
shown in Figure 5.5 known as Sidekiq Z2.

Although the Sidekiq Z2 utilizes a similar architecture as Pluto SDR, it does it
in a standards-compliant Mini PCIe card form factor measuring ∼ 51 × 30 mm.
In addition, the Sidekiq Z2 incorporates RF filtering, a high-precision reference
clock, a more powerful dual-core Zynq, an extended RF tuning range from 70 –
6, 000 MHz using the AD9364, doing so with industrial temperature range (-40◦
– +70◦ C) rated components. This allows the Sidekiq Z2 to serve as the basis for
real-world flexible RF solutions, even in harsh industrial environments.

By building on the same architecture and using the same software infrastructure,
this allows algorithm developers to prototype using a device like the Pluto SDR, and
when they are ready for an industrial form factor, or need something embeddable,

Figure 5.5 Sidekiq Z2 from Epiq [6]. Not to scale.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

50.95 
+0.00/-0 30 

30.00 +0.00/-0.30@ 
1$1 p .10 ~IAIBlcl 

2420 

2x 02 .60 :t 0.10 

l½I 00.10 !A!BI 

Top Side 

Pin 51 

t 
[l][IIIIIlD□ 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 181 — #11

5.2 Strategies For Development in MATLAB 181

they can easily transition over to the Sidekiq Z2. This also allows developers using
the Sidekiq Z2 to communicate directly to MATLAB or any of the other IIO client
software packages for testing in their specific end product. There are many things
about RF that just cannot be simulated, and unless you have a final product with
the ability to save and playback waveforms, or to remotely connect to the device,
making a final release to production can be difficult to impossible. There is nothing
more frustrating for an engineer than to have something that works on the bench
fail in the field and have to go there for local troubleshooting. Using the provided
open-source, industry-standard frameworks can reduce that.

5.2 Strategies For Development in MATLAB

As we discussed in Section 5.1.5, controlling how data enters MATLAB is very
important for consistent operation. In this section we will discuss some strategies
for structuring MATLAB code to effectively develop an algorithm. To help guide
the development process we have provided templates to show how to appropriately
form source around the radio’s API. These templates can help progression of designs
to real-time or offline work without the radio attached.

5.2.1 Radio I/O Basics
In each of these templates we will assume that a radio has been instantiated as
the object rx, as in running the code in Code 5.1. Additionally, we assume that
the SamplesPerFrame parameter of the object is set to some variable frameSize. In
the first template presented in Code 5.3 we first collect framesToCollect frames
of data, where each frame is of frameSize samples. The code in Code 5.1 tries to
guarantee that we have collect framesToCollect×frameSize samples of continguous
data from the radio with gaps. This is a good technique if more data than 220

samples need to be collected, which is the maximum value you can make the
SamplesPerFrame parameter of the Pluto SDR System object. After this data is
collected we perform some processing, which in this case is a visualization with
dsp.SpectrumAnalyzer scope.

Alternatively, if we don’t require fresh samples for every run it can be useful
to save data to a file so we don’t have to worry about clearing data from the
workspace. A useful tool for this work is thecomm.BasebandFileWriter, which
saves complex received data with additional metadata like sample rate to a file for
off-line processing. We show usage of the comm.BasebandFileWriter system
object in Code 5.4 with the collected data from Code 5.3.

Utilizing data from a filesource can make testing much more repeatable when
debugging issues during algorithm development. It can also be much faster to
address a file than to go out to the radio and pull in new data, especially
when setting up a transmitter is also required. In Code 5.5 we show use of
the complementary System object to thecomm.BasebandFileWriter called
comm.BasebandFileRead. The comm.BasebandFileRead System object can
be configured to provide a specific amount of samples for each call to the object
through the SamplesPerFrame parameters to emulate using the Pluto SDR. This is
a useful strategy when a radio is not available.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 182 — #12

182 Understanding SDR Hardware

Code 5.3 Template Example: template1.m

1 %% Template 1
2 % Perform data collection then offline processing
3 data = zeros(frameSize, framesToCollect);
4 % Collect all frames in continuity
5 for frame = 1:framesToCollect
6 [d,valid,of] = rx();
7 % Collect data without overflow and is valid
8 if ˜valid
9 warning(’Data invalid’)
10 elseif of
11 warning(’Overflow occurred’)
12 else
13 data(:,frame) = d;
14 end
15 end
16
17 % Process new live data
18 sa1 = dsp.SpectrumAnalyzer;
19 for frame = 1:framesToCollect
20 sa1(data(:,frame)); % Algorithm processing
21 end

Code 5.4 Template Example for Saving Data: template1.m

23 % Save data for processing
24 bfw = comm.BasebandFileWriter(’PlutoData.bb’,...
25 rx.BasebandSampleRate,rx.CenterFrequency);
26 % Save data as a column
27 bfw(data(:));
28 bfw.release();

Code 5.5 Template Example for Saving Data: template2.m

1 %% Template 2
2 % Load data and perform processing
3 bfr = comm.BasebandFileReader(bfw.Filename, ’SamplesPerFrame’,frameSize);
4 sa2 = dsp.SpectrumAnalyzer;
5 % Process each frame from the saved file
6 for frame = 1:framesToCollect
7 sa2(bfr()); % Algorithm processing
8 end

Once an algorithm has been tuned we can place the processing sections within
the main loop with the Pluto SDR’s System object like in Code 5.6. This type of
processing is defined as stream processing in MATLAB [7], where we immediately
work on new data. This will limit the amount of information required to be collected
and can be useful if logical actions, such as changing channels, need to be applied.
As long as the algorithm placed within the loop is able to keep up with the data
streaming in from the radio, no overflow warning should occur. This is known as

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 183 — #13

5.2 Strategies For Development in MATLAB 183

operating in real time. However, since there is some elasticity with the buffers to
and from the radio overflows will not always happen immediately. For example,
if the algorithm is only slightly slower than the radio’s data rate then it may take
many loop iterations for the internal radio and operating system buffers to fill to
a point of overflow. Therefore, when testing for real-time operation it is useful to
run an algorithm for several minutes to check if an overflow will occur.

Code 5.6 Template Example for Saving Data: template3.m

1 %% Template 3
2 % Perform stream processing
3 sa3 = dsp.SpectrumAnalyzer;
4 % Process each frame immediately
5 for frame = 1:framesToCollect
6 [d,valid,of] = rx();
7 % Process data without overflow and is valid
8 if ˜valid
9 warning(’Data invalid’)
10 else
11 if of
12 warning(’Overflow occurred’)
13 end
14 sa3(d); % Algorithm processing
15 end
16 end

5.2.2 Continuous Transmit
Anytime the Pluto SDR is powered on, the transceiver is activated and begins to
operate even if the user did not intend to. When powered on Pluto SDR will transmit
data; this is just how the transceiver was designed. Therefore, when using just the
receiver System object (comm.SDRRxPluto) data will be transmitted by the actual
device. Normally, the transceiver will transmit the last buffer available in the DMA
continuously until powered down. If the Tx LO is accedentily tuned to the same
value as the RX LO, when communicating between multiple radios or just receiving,
this continuous transmit operation can cause significant interference.

Code 5.7 Template Example Transmit Repeat: transmitRepeat.m

1 % Transmit all zeros
2 tx = sdrtx(’Pluto’);
3 fs = 1e6; fc = 1e4; s = 2*pi*fs*fc*(1:2ˆ14).’;
4 wave = complex(cos(s),sin(s));
5 tx.transmitRepeat(wave);

There are two options to reduce or even remove this interference. The first
option is to instantiate a transmitter System object (comm.SDRTxPluto) and write
a vector of zeros to the object as shown in Code 5.8. This will reduce the transmit
energy of the device to a minimal level. However, there will still be leakage into the
receiver’s data due to Tx LO leakage.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 184 — #14

184 Understanding SDR Hardware

Code 5.8 Template Example Transmit Zeros: transmitzeros.m

1 % Transmit all zeros
2 tx = sdrtx(’Pluto’);
3 tx(zeros(1024,1));

Alternatively, we can simply shift the LO of the transmitter to a frequency
beyond the receive bandwith. We demonstrate this configuration in Code 5.9 where
we offset the CenterFrequency of the transmitter’s System object. This is a better
alternative since there LO leakage from the transmitter should not appear in the
received data.

Code 5.9 Template Example Transmit Zeros: transmitoffset.m

1 % Move transmitter out of receive spectrum
2 tx = sdrtx(’Pluto’);
3 rx = sdrrx(’Pluto’);
4 tx.CenterFrequency = rx.CenterFrequency + 100e6;

5.2.3 Latency and Data Delays
When working with the Pluto SDR from a host it will soon become obvious that
there will delays associated with transmitted and received data, especially when
performing loop-back operations from transmitter to receiver. These delays are
a function of the internal buffers and FIFOs of the host PC and the Pluto SDR
itself. However, there exists both deterministic and elastic/random delay across the
various layers illustrated in Figure 5.6. The reason why there is a nondeterministic
delay in the transport stacks is due to contention in the kernels of the ARM and
host PC. In the worst case the round-trip time should be on the order of tens of
milliseconds. In order to guarantee certain delays or minimal delay would require
operating directly on the ARM or on the FPGA. Nevertheless, development in
these processing regions becomes much more time consuming. However, any radio
platform that passes data into MATLAB will have to deal with these delays, but
they may have different sources depending on the radio architecture.

One of the complications of looking at Figure 5.6 is that in many places, the
transport is defined by bytes, while in other places it convenient to discuss samples.
A single I/Q sample (complex) in this circumstance (singe radio channel) is two
16-bit samples, or 4 bytes.

To review Figure 5.6 in detail on the receive side, when an IIO client like
MATLAB requests a buffer of 32768 samples at a sample rate of 1 MSPS:

• iiodwill capture 32768 continuous samples via libiio. This will take 32.768
milliseconds, and consume 131,072 bytes. While iiod ensures the packet is
contiguous by not sending any data until it has all been captured, it does
increase a fixed latency of the sample rate × the number of samples being
captured. iiod was designed to ensure there are no memory copies after the
data has been captured, and simply passes pointers around from the AD9363
driver to libiio to iiod and then to the USB stack.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 185 — #15

5.2 Strategies For Development in MATLAB 185

Figure 5.6 Hardware and software stacks transmitted and received packets must traverse from
MATLAB to the transceiver throught the various layers in the system.

• This data will then be passed to the Linux kernel on the Pluto where it will
be segmented into 512 byte USB packets (per the USB 2.0 spec), were it
will be reassembled into a 131,072-byte buffer on the host side. The USB
stack will introduce an unknown, and unbounded latency, which will be
determined by the host operating system and how much free memory it has
available.

• Once the entire buffer is assembled, it is passed to libiio, where it is then
passed (untouched) to the iio client, in this case MATLAB, which may do
further processing.

• In this case, MATLAB may cast the data from fixed point to floating point
or double ±1.0 data, which also takes some time.

Due to these delays we must design our algorithms and overall system with an
understanding of these conditions. For example, if a single frame wanted to be
transmitted and received from the same Pluto SDR we can observe a large gap of
samples before the frame is observed at the receiver output vectors due to these
delays.

It is for these reasons that many systems want to put as much processing as
possible as close to the radio as possible. With this architecture, that would be on
the FPGA or the ARM processor. However, on the Pluto SDR, the FPGA is small,
and there is only a single core ARM, limiting its targeting capabilities.

5.2.4 Receive Spectrum
The receive signals we observe will always will contain noise from the environment
and from the radios themselves. To provide perspective on this noise we demonstrate
a simple example using the script shown in Code 5.10.

If one employs Code 5.10, we will notice the spectrum is not perfectly flat,
containing peaks or spurs in the spectrum. These are actually artifacts of the

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Vector{ 

110 buffers{ 

OS USB Frames { 
max 4MB for Windows 7 

USB Packets { 
max 51 2 byte data packet 

OS USB Frames { 

110 buffers { 
max224bytes 

Sampl~{ 
Analog RF < 

+-' ,_ ·E 
V, 

>- ~ 
i!= 

,Ir 

110 Client (MATLAB) ' 
libiio 

libusb 

host (Linux, MAC, Windows) kernel drivers 

USB Hardware -~ -USB cable QJ 
u 
QJ -

USB Hardware c::: 

Pluto SDR Linux USB driver 

libusb 

iiod 

libiio 

Pluto SDR Linux AD9363 driver 

FPGA 

AD9363 Transceiver 

Antennas 

}cable 

c::: 
Cl 
V) 

.8 
:J 

C: 

}Analog RF 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 186 — #16

186 Understanding SDR Hardware

Code 5.10 Template Example View Spectrum: template_rt.m

1 % View some spectrum
2 rx = sdrrx(’Pluto’);
3 rx.SamplesPerFrame = 2ˆ15;
4 sa = dsp.SpectrumAnalyzer;
5 sa.SampleRate = rx.BasebandSampleRate;
6 for k=1:1e3
7 sa(rx());
8 end

radio itself, which naturally come about through the complex receive chain, which
provides signal gain enhancement through the AGC stages. Depending on the
bandwidths we choose in the receive chain and the AGC configuration itself, we
can modify these spurs. However, due to the complexity of the AD9363 transceiver
this can be a challenging task since it contain thousands of registers for the AGC
itself for configuration. Therefore, since these spurs can be minor relatively to the
signal of interest itself we can simply ignore them or perform filtering in software to
reduce their affects. Nonetheless, when working with Pluto SDR we should always
be aware of these nonidealities in the hardware.

Fortunately, Pluto SDR does maintain many built-in calibrations to help reduce
self-induced problems. These include RF DC tracking, quadrature tracking, and
baseband DC tracking. To access these features, Pluto SDR enabled the parameter
ShowAdvancedProperties, which will then display these features. Since the AD9363
is a direction conversion receiver, a common problem with such devices is the
presence of a tone or energy at DC or near the zeroith frequencies. This is due to
the radio itself. The DC tracking components, RF and baseband, both work to
reduce these effects.

The last advanced feature is quadrature tracking. The quadrature tracking
reduces and in-phase and quadrature (IQ) imbalance that may occur, which may be
difficult to spot in a frequency domain plot. An imbalance would typically appear
as a spur reflection in the frequency domain. When enabling quadrature tracking,
these image spurs should be reduced significantly. However, when working with
a constellation plot IQ imbalances become more noticable. There will always be
some residual imbalance, but corrections are performed during initialization so it
will not be improved over time necessarily.

5.2.5 Automatic Gain Control
One of the most complex pieces of the AD9363 is the AGC. The AGC is actually
spread out through the receive chain apply gain at different stages and sensing the
amplitude of the received signals. From the simplistic API of MATLAB we have
three options: Manual, AGC Slow Attack, and AGC Fast Attack. Under Manual
the receiver will simply fix the input gain to a specific value based on an internal
gain table. Essentially the manual gain acts as a single index into the internal table.
This Manual setting is useful when using cabling or when the transmitter is at a
fixed known distance. Under the Manual setting it can make receiver algorithms
easier to debug since the AD9363’s state will remain the same.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 187 — #17

5.3 Example: Loopback with Real Data 187

In practice the amplitude of the receive signal will be unknown and even change
across multiple transmissions. Therefore, we can simply utilize the AGC Slow
Attack and AGC Fast Attack modes. If the received transmission is very short or
rapidly changes in amplitude AGC Fast Attack will be the best option. However,
AGC Slow Attack will be prefered when received data has a relatively maintained
amplitude. An obvious question would be, why not always used AGC Fast Attack?
The main disadvantage of AGC Fast Attack is that it can create large discontinuities
in the amplitude, which may distort the received signal. For illustration we provide
a comparison of a system setup in loopback with a single Pluto SDR transmitted
a QPSK signal. We provide a time plot of the received signal to demonstrate
both the delay of the received signal and the changes in amplitude when using
the different gain modes. As we can observe there are rapid changes in gain for
the AGC Fast Attack mode, but the gain is more gradual over time for the AGC
Slow Attack mode. The determination of the correct mode is not always obvious.
Therefore, time series testing and observation can be useful during algorithm
development.

5.2.6 Common Issues
The way that various signals mix can also be an issue. As described in Section 2.3.1,
the mixer accepts a single-ended local oscillator (LO).

5.3 Example: Loopback with Real Data

Now that we have a solid understanding of the system object that controls the
Pluto SDR and some coding structures for interacting with Pluto, we can explore a
simple loopback example. Loopback means that the waveform is both transmitted
and received by the same Pluto SDR, which is a common strategy for algorithm
debugging and general hardware debugging.

Starting from the transmitter (tx), in this example you will first notice we have
set the gain to −30, which is 20 dB down from the default. The reasoning behind
reducing the gain is to prevent clipping or saturation at the receiver. Since the
transmit and receive antennae are about 12 mm from one another the received
signal will be rather loud. The sinewave used here was simply generated by the
dsp.SineWave system object for convenience, which will provide a complex
output for the Pluto SDR. A special method called transmitRepeat was used,
which will continuously transmit the passed vector. This will prevent any gaps in
the transmission.

In the received waveform in Figure 5.7 we can observe both the complex and
real components of the signal over time, which are π

2 radians out of phase with one
another as expected. At the start of the signal we can observe a larger amplitude than
future samples. This is a direct result of the AGC settling, and since the AGC starts
from a high gain by default at configuration or setup time. In MATLAB this setup
time only occurs on the first call to the receiver object (rx), not the construction
time. This is also known as the first Step method call, which will call an internal
method of the system object called setupImpl.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 188 — #18

188 Understanding SDR Hardware

Code 5.11 Loopback Example: loopback.m

1 % Setup Receiver
2 rx=sdrrx(’Pluto’,’OutputDataType’,’double’,’SamplesPerFrame’,2ˆ15);
3 % Setup Transmitter
4 tx = sdrtx(’Pluto’,’Gain’,-30);
5 % Transmit sinewave
6 sine = dsp.SineWave(’Frequency’,300,...
7 ’SampleRate’,rx.BasebandSampleRate,...
8 ’SamplesPerFrame’, 2ˆ12,...
9 ’ComplexOutput’, true);

10 tx.transmitRepeat(sine()); % Transmit continuously
11 % Setup Scope
12 samplesPerStep = rx.SamplesPerFrame/rx.BasebandSampleRate;
13 steps = 3;
14 ts = dsp.TimeScope(’SampleRate’, rx.BasebandSampleRate,...
15 ’TimeSpan’, samplesPerStep*steps,...
16 ’BufferLength’, rx.SamplesPerFrame*steps);
17 % Receive and view sine
18 for k=1:steps
19 ts(rx());
20 end

Figure 5.7 Loopback sinewave of 300 Hz from Pluto SDR generated by Code 5.11.

Looking closer on the sine wave, discontinuities can be observed that result
from small gaps between received frames. This is actually a result of the transmitter
that is repeating the same waveform over and over. Since the transmitted waveform
is not cyclic when relating the start and end of the data passed to the transmitter
we observe these discontinuities. To avoid these we would need to make sure a
period ends at the end of the passed frame and started exactly at the beginning of
the passed frame.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.8 

0.6 

0.4 

Q) 
-0 0.2 :, 
.<:= 
Q. 
E 0 

<l'. 

-0.2 

-0.4 

-0.6 

-0.8 

-1.0 

0 10 20 30 40 50 60 70 80 90 
Time (ms) 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 189 — #19

5.4 Noise Figure 189

5.4 Noise Figure

With the receiver pipeline discussed in the previous section, the AD9363 is able
to achieve a noise figure (NF) of only 2 dB at 800 MHz. NF is a common metric
to compare receivers, which is a measure of the internal or thermal noise of the
electrical components of the device. NF is calculated based on the SNR ratio of
output to input in dB as

NF = 10 log10
SNRINPUT

SNROUTPUT
, (5.1)

where NF is in dB, and both SNRINPUT and SNROUTPUT are in linear scale [8]. For
comparison, another popular SDR the RTL-SDR has a NF of 4.5 dB, which is almost
double the NF of the Pluto SDR. NF is important because it will affect the eventual
sensitivity of the receiver, and the lower the better. The easiest way to measure NF
is with a noise figure analyzer that generates noise into the receive path of a system,
which is then fed back out. The output noise is then measured and compared with
the input noise to create an NF measurement. Figure 5.8 demonstrates an example
set up to evaluate NF using a noise figure analyzer where the device under test (DUT)
will operate in loopback mode transmitted out the received noise. When measuring
NF it can be useful to use a very stable LO to drive the device to limit internal noise,
since generally the noise of a DUT needs to be measured, not the source oscillator
driving it. Furthermore, NF is always based on frequency and the measured NF of
a DUT such as an SDR will typically be based on the noisiest part of the device.

NF is a common metric that hardware manufacturers typically use but it can be
difficult to relate to a communications problem, since communications engineers
tend to measure further down the receive chain after the filter stages. NF also
requires specific and usually expensive instruments to measure. However, it is
important to understand its meaning when specified on a datasheet, since it can
give a rough estimate on the low bound for error vector magnitude measurements.

Figure 5.8 Example noise figure evaluation of SDR or device under test using a noise figure analyzer
and external stable LO source.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Noise figure analyzer 
LO source 

·----- • ,,. 

I -

\ . 
I • ---. 

TX No;se o,tp,t J 
SDR or DUT 

Noise source 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 190 — #20

190 Understanding SDR Hardware

References

[1] Analog Devices ADALM-PLUTO Software-Defined Radio Active Learning Module,
http://www.analog.com/plutosdr 2017.

[2] Razavi, B., “Design considerations for direct-conversion receivers,” IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, Vol. 44, No. 6, June 1997,
pp. 428–435.

[3] Analog Devices AD9363 Datasheet, http://www.analog.com/AD9363 2015.
[4] Xilinx, Zynq-7000 All Programmable SoC Overview, [Online], 2017, https://

www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.
[5] Analog Devices, What is libiio?, [Online], 2018, https://wiki.analog.com/resources/tools-

software/linux-software/libiio.
[6] Epiq Solutions, Sidekiq Embeddable Software Defined Radio 70MHz–6GHz, [Online],

https://epiqsolutions.com/sidekiq/.
[7] The Math Works, Inc., Stream Processing in MATLAB: Process Streaming Signals and Large

Data with System Objects, https://www.mathworks.com/discovery/stream-processing.html.
[8] Friis, H. T., “Noise Figures of Radio Receivers,” Proceedings of the IRE, Vol. 32, No. 7,

July 1944.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 191 — #1

C H A P T E R 6

Timing Synchronization

In the next series of chapters we will be introducing receiver synchronization and
signal recovery concepts, which are necessary for wireless communications between
multiple devices. In this chapter will introduce the concept of timing recovery and
approach this topic first for two primary reasons. First the downstream recovery
methods used in this book for coherent modulations are sensitive to timing offset and
must be compensated for first. The second reason is for prototyping with the Pluto
SDR. We will be relying heavily on the loopback features of the radio, which will
allow for control of nonidealities to some degree. However, since signals must travel
a distance between the transmitting DAC and receiving ADC there will be a fixed
but random time offset between the chains. This is where timing recovery is used to
correct for this offset. With that said, a receiver can be designed in many different
ways but the specific ordering of chapters here relates to the successive application
of algorithms to be used: First timing recovery, then carrier phase correction, and
finally frame synchronization. Once these three major pieces are handled we will
then move on to more advanced topics including equalization and coding. Blocks
in Figure 6.1 will be highlighted at the start of each relevant chapter to outline the
progress of the overall receiver design and show how they fit with one another. In
this chapter, matched filtering and timing recovery are highlighted.

In this chapter, the concept of timing recovery will be broken down into five
primary sections. A brief overview of transmit filters will be first discussed, which is
necessary to understand how we algorithmically perform timing recovery. Then we
will move on to a simple model to demonstrate timing error, which will include Pluto
SDR as well for realistic data. Finally, several recovery techniques will be discussed
that adaptively handle correction of timing problems. Debugging methodology will
be provided to understand how to tune these techniques for your own datasets. In
regard to the algorithms discussed, an analytic analysis or derivations will not be
provided explicitly. However, these algorithms will instead be treated as tools used
to build a receiver component by component, where only a top-level understanding
is necessary. Alternative sources will be referenced for deeper analysis, but in this
work we will focus on implementations and specifically implementations with SDRs.
Our goal here is to motivate the construction of a receiver initially from existing
works, and readers can explore further literature if they wish to extract more
performance from their implementation.

6.1 Matched Filtering

In digital communications theory when matched filtering is discussed it is typically
called pulse-shaping at the transmitter and matched filtering at the receiver for

191

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 192 — #2

192 Timing Synchronization

Figure 6.1 Receiver block diagram.

reference. The goal of these techniques is threefold: first, to make the signal suitable
to be transmitted through the communication channel by limiting its effective
bandwidth, second, increase the SNR of the received waveform, and third, to
reduce intersymbol interference (ISI) from multipath channels and nonlinearities.
Pulse-shaping was discussed in Section 2.7.5, but we will revisit the topic here from
a slightly different approach that focuses on more practical aspects of these filters.

By filtering a symbol, sharp phase and frequency transitions are reduced
resulting in a more compact and spectrally efficient signal. Figure 6.2 provides
a simple example of a DBPSK signal’s frequency representation before and after
filtering with a transmit filter. As we can see the effective bandwidth of the signal
is reduced, primarily from the upsampling/interpolation that is applied at the
transmitter. Since time and frequency are inversely related we get this reduction
in bandwidth. These filter stage implementations will typically upsample and
downsample signals, which reduce their effective bandwidth. However, upsampling
inherently increases the so-called surface area of a symbol, making it easier to
determine, since we will have multiple copies of it at the receiver. Therefore, we
are trading recoverability for bandwidth since data will be produced at the same
rate from the transmitter but will not utilize the entire bandwidth available. These
operations of rate transitions (upsampling/downsampling) are performed during
the matched filtering stages since it is efficient to utilize a single filter to perform
both operations.

The filter used to generate this figure was a square-root raised cosine (SRRC)
filter, which is a common filter used in communication systems. We provided the
raised cosine (RC) filter in Section 2.7.5, but the more common SRRC has the
impulse response:

h(t) =




1√
Ts

(
1 − β + 4

β

π

)
, t = 0

β√
2Ts

[(
1 + 2

π

)
sin

(
π

4β

)
+
(

1 − 2
π

)
cos

(
π

4β

)]
, t = ± Ts

4β

1√
Ts

sin
[
π

t
Ts

(1 − β)

]
+ 4β

t
Ts

cos
[
π

t
Ts

(1 + β)

]

π
t

Ts

[
1 −

(
4β

t
Ts

)2
] , otherwise

(6.1)

where Ts is the symbol period and β ∈ [0, 1
]

is the roll-off factor. In practice these
filters will be arranged in two ways as outlined in Figure 6.3. First we can place
a single RC filter at the transmitter or place a SRRC at both the transmitter and
receiver. Both options produce Nyquist filter arrangements of signals to reduce or
eliminate ISI. Details on how to select β and Ts will be discussed later in Section 8.2.
However, we examine β through use of an eye diagram in Figure 6.4, and we can
easily see the time domain effects for very different roll-offs of β = [0.3, 0.99]. For

Analog Devices perpetual eBook license – Artech House copyrighted material. 

-----------. I 

~~: Matched :J Timing : 

~~ _ filter _____ : ~ _ ~~~~~e-~ __ : 

Carrier 
recovery 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 193 — #3

6.1 Matched Filtering 193

Figure 6.2 Frequency spectrum of PSK signal before and after pulse-shaping filter.

Figure 6.3 Arrangements of transmit filters with respect to the transmitter and receiver nodes for
raised cosine and root-raised cosine filters.

Figure 6.4 Eye diagrams of in-phase portion of QPSK signal after being passed through SRRC filters
with different β values. (a) β = 0.3, and (b) β = 0.99.

these results the signal was passed through a SRRC filter at the transmitter, AWGN
channel with an SNR of 27 dB, and SRRC filter at the receiver. A high SNR was
used to keep the eyes open and remove noise as the limiting factor for eventual
decisions. At the decisions times 200 and 400 the symbols are well defined in both
cases but with β = 0.99 the transitions are less noisy. However, with a β = 0.99 the
frequency domain outer bands contain more energy as seen in Figure 2.52, which
may be undesirable.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

20 

2 10 
~ 
Cl 
V, 
c.. 

0 

-10 

-20 ~------~-------~------~-------~ 
-1 -0.5 

Transmitter 

r 
~ 
L 

~ 
"' ..c 
a. c 

;::, 
Q) 

"O 
:::, 

Signal 
generation 

Signal 
generation 

0.5 

0 

·°E -o.5 
Cl 

"' 2 -1 

100 

...... - ... 7 

200 

RC filter 

SRRC filter 

300 
Time 

(a) 

J 

400 500 

0 

Frequency (Hz) 

0.5 

x10 6 

Receiver 

r ...-------. 1 
Channel 1----~Signal recovery 

Channel SRRC filter Signal recovery 

L ~ 

-1.5 ~-~--~--~--~--~-~ 
600 0 1 00 200 300 400 500 600 

Time 
(b) 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 194 — #4

194 Timing Synchronization

Alternatively, we can examine the impulse response with respect to β in
Figure 6.5, which compares the RC and SRRC responses. You will notice that unlike
the RC filter, the impulse response is not zero at the intervals of Ts. However, the
composite response of the SRRC filters at the transmitter and receiver will have
zeros at intervals of Ts like the RC filter. The SRRC is used since it is a Nyquist type
filter, which produces zero ISI when sampled correctly [1] as discussed in Chapter 2.
We can demonstrate the effect of ISI by introducing a simple nonlinearity into the
channel and consult the resulting eye diagrams that were introduced in Section 2.4.1.
Nonlinearities cause amplitude and phase distortions, which can happen when we
clip or operate at the limits of our transmit amplifiers. For more details on the model
used, consult [2], but other models exists such as in [3]. In Figure 6.6 we observe the
effects of ISI as the eye becomes compressed and correct sampling becomes difficult
to determine. We will revisit ISI effects again when equalization is discussed in
Chapter 9.

As mentioned previously, rate conversion will typically occur in these transmit
or receive filters. Therefore, a polyphase filter can be used where the taps of the
SRRC filter are used within the individual arms of the polyphase filter. This is
a very efficient implementation since the taps will be applied at the lower rates,

Figure 6.5 Impulse response comparison between raised-cosine and square-root raised-cosine
filters. (a) RC impulse response, and (b) SRRC impulse response.

Figure 6.6 Eye diagrams of QPSK signal affected by nonlinearity causing ISI, which is reduced by
SRRC matched filtering. (a) Original signal at transmitter, (b) passed through nonlinearity without
pulse-shaping, and (c) SRRC filters used at transmitter and receiver with nonlinearity.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.25 

0.2 

0.15 
QJ 

"O 

.-e 0.1 a. 
E 
< 0.05 

0 

-0.05 

QJ 

"O 

-10 

0.5 

.-e 0 
a. 
~ 

-0.5 

-5 0 
t/T5 

(a) 

-1 ~---------~ 
-0.5 0 0.5 

Time 

(a) 

0.25 
- beta=0.1 
- beta=0.3 0.2 
- beta=0.5 
- beta=0.7 
- beta=0.9 0.15 

QJ 

"O 

.-e 0.1 a. 
E 
< 0.05 

0 

-0.05 
5 10 -10 

0.5 

-0.5 

-1 ~---------~ 
-0.5 0 

Time 

(b) 

0.5 

-5 

QJ 

"O 

0.5 

0 

t/T5 

(b) 

- beta=0.1 
- beta=0.3 
- beta=0.5 
- beta=0.7 
- beta=0.9 

5 10 

E oi.,---a'------'11~-~ 
a. 
~ 

-0.5 

-1 ~---------~ 
-0.5 0 

Time 

(c) 

0.5 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 195 — #5

6.2 Timing Error 195

before interpolation or after decimation within the polyphase design, reducing the
number of multiplies required.

The final aspect of the matched filters we want to discuss and provide insight
into is SNR maximization. This argument logically comes out of the concept of
correlation. Since the pulsed-shaped/filtered signal is correlated with the pulse-
shaped filter and not the noise, matched filtering will have the effect of SNR
maximizing the signal, creating peaks at central positions of receive pulses. We
demonstrate this effect in Figure 6.7, where we present data transmitted with and
without pulse-shaping under AWGN. In the middle plot of Figure 6.7(b) we observe
a signal closely related to the originally transmitted sequence, even under high noise.
However, without pulse-shaping even visually the evaluation of the transmitted
pulse becomes difficult. We even observe demodulation errors in this third plot of
Figure 6.7(c) without any timing offset introduced.

6.2 Timing Error

Timing error between transmitter and receiver is a simple concept to understand, but
can be difficult to visualize and debug in a communication system. In the most basic
sense the purpose of symbol timing synchronization is to align the clocking signals
or sampling instances of two disjointed communicating devices. In Figure 6.8(a) we
consider a simple example where we overlap the clocking signals of the transmit and
receiver nodes and the input signal to be sampled. The sampling occurs at the rising
clock edges, and the optimal timing is the transmitter’s clock. A small delay τ , less
than a single clock cycle, is introduced at the receiver. This is known as a fractional
delay since it is less than a sample. Due to this delay the signal is sampled at the
wrong positions and the eventual demodulated signal is incorrect. Figure 6.8(b)
shows a comparison of the correct and receiver’s demodulated symbols with an
obvious error occurring at the second transition.

Mathematically we can model this offset received signal r as

r(t) =
∑

n

x(n)h(t − τ(t) − nTs) + v(t), (6.2)

where x is the transmitted symbol, h is the pulse shape of the transmit filter, τ is
the fractional offset, Ts is the sampling period, n is the sample index, and v is the
additive channel noise. After reception the r is passed through the receive matched
filter and the relation of the source symbols will be

y(t) =
∑

n

x(n)hA(t − τ(t) − nTs) + vh(t), (6.3)

where hA = h(t)∗h̄(−t) is the autocorrelation of the transmit filter and its conjugate
used on the source data x, vh is the shaped noise, and y is the output symbols. This
demonstrated our notion of matched filtering and correlation. You will notice that
the delay τ is indexed as well, since this delay will change since the oscillator at the
transmitter and receiver will not have identical frequencies. Therefore, over time this
timing difference will drift. However, changes in τ from symbol to symbol should
be small relative to the sample rate of the device in a practical RF communication
system.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 196 — #6

196 Timing Synchronization

Figure 6.7 Comparison of pulse-shaped and nonpulse-shaped received signals after an AWGN
channel. An obvious advantage is visible in the receiver signal when using matched filtering. (a)
Transmitted SRRC filtered signal, (b) received SRRC filtered signal, and (c) received signal without
SRRC filtering at the receiver.

As discussed in Section 6.1 we will interpolate the signal to be transmitted
at the transmit filter stage before actually sending the signal. Although this
reduces the throughput of our system it provides the receiver more data to
perform decisions without having to oversample the signal itself. In MATLAB we
will use comm.RaisedCosineTransmitFilter, which first uses a polyphase
interpolator to upsample the signal and applies the necessary RC or SRRC taps.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

1.5 

Q) 0.5 
-0 
:::J 

.-!: 0 c.. 
~-0.5 

-1 

-1.5 

1.5 

Q) 0.5 
-0 
:::J 

.-!: 
c.. 0 

~-0.5 

-1 

-1.5 

1.5 

w 0.5 
-0 

.-e 0 
c.. 
~-0.5 

-1 

-1.5 

0 5 

0 5 

c~ ~ ( I) ~ ~ ~ 

) < c~ 

0 5 

--Received data with noise 
---e--- Transmitted SRRC 

10 15 20 

Time (ms) 

(a) 

- Transmitted data 
--Rev filter output 
----0 Demodulated 

10 15 20 

Time (ms) 

I) 

10 

(b) 

< ~ c~ II ( ( ~ 

II ~ \ 
II ~ J ~ \\ 

- Transmitted data 
--Received data with noise 
----0 Demodulated 

15 

Time (ms) 
(c) 

20 

25 

25 

25 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 197 — #7

6.2 Timing Error 197

Figure 6.8 Comparison of different clock timings associated with a analog waveform and the
resulting sampled and demodulated output. (a) Transmitter and receiver clocking signals with analog
waveform to be sampled, and (b) demodulator outputs of receiver and transmitter according to their
sampling times.

The upsampling factor N, also known as sample per symbol, will be chosen based
on the recovery algorithms used and the desired data rate of the system. In general
increasing N can improve the recovery process at the receiver to a point, but again
this will reduce our useful bandwidth, forcing hardware to run at higher rates to
achieve the same throughput.

Next if we consider timing error from the perspective of the constellation
diagram we will observe clustering or scattering of the symbols. In Figure 6.9(a),
we provide a simulated timing offsets (τ ) of 0.2N and 0.5N, where N is the samples
per symbol. An offset of 0.5N is the worst case because we are exactly between two
symbols. In Figure 6.9(b) we provide a QPSK single transmitted through loopback
of a single Pluto SDR. We can clearly observe a similar clustering and some rotation
from the transmit and receive chains lack of phase synchronization. This clustering
happens because the receiver is actually sampling the transitions between samples.
For example, if symbols y(n) and y(n + 1) are [1 + i] and [−1 − i], respectively.
Then if they are sampled at time n + 0.5, the resulting point will be close to zero.

Q
In the case of the Pluto SDR constellation plot in Figure 6.10(b)
why does the constellation appear rotated? It may be helpful to
refer to Chapter 5.

At the receiver the unknown delay τ must be estimated to provide correct
demodulation downstream. A crude but simple way we can illustrate a correction
for the offset is to fractionally resample the signal with use of a polyphase filter.
We will utilize the dsp.VariableFractionalDelay in the script below, which
implements a polyphase filter for a given delay provided. We can use this with Pluto
SDR to demonstrate different delays we should provide to correct for the offset. At
the correct value of τ̂ , where τ̂ + τ = kTs and k = Z≥0, the constellation will have
four distinct points.

In Figure 6.10, four example delays are used as estimates to correct for the
timing missmatch during loopback on a single Pluto SDR. These represent four
instances from the above MATLAB script.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

, ..... rl ... rl .. rl ... fl .. rl .. J""I ... J""I .. J"'"i .... f"i.. .. .l 

20 40 60 

I □ 

,- ..... ' 

80 100 

Clock cycles 

(a) 

120 140 160 0 

i i 
j i ........ J • : 

50 100 

Clock cycles 

(b) 

150 200 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 198 — #8

198 Timing Synchronization

Figure 6.9 Comparison of simulation versus hardware timing offset. (a) Simulation-only example
of several timing offsets with a QPSK received signal, and (b) hardware example created with a QPSK
signal transmitted through Pluto SDR using a loopback cable.

Code 6.1 Loopback Pluto Example: plutoLoopback.m

1 % User tunable (samplesPerSymbol>=decimation)
2 samplesPerSymbol = 12; decimation = 4;
3 % Set up radio
4 tx = sdrtx(’Pluto’,’Gain’,-20);
5 rx = sdrrx(’Pluto’,’SamplesPerFrame’,1e6,’OutputDataType’,’double’);
6 % Create binary data
7 data = randi([0 1],2ˆ15,1);
8 % Create a QPSK modulator System object and modulate data
9 qpskMod = comm.QPSKModulator(’BitInput’,true); modData = qpskMod(data);
10 % Set up filters
11 rctFilt = comm.RaisedCosineTransmitFilter( ...
12 ’OutputSamplesPerSymbol’, samplesPerSymbol);
13 rcrFilt = comm.RaisedCosineReceiveFilter( ...
14 ’InputSamplesPerSymbol’, samplesPerSymbol, ...
15 ’DecimationFactor’, decimation);
16 % Pass data through radio
17 tx.transmitRepeat(rctFilt(modData)); data = rcrFilt(rx());
18 % Set up visualization and delay objects
19 VFD = dsp.VariableFractionalDelay; cd = comm.ConstellationDiagram;
20 % Process received data for timing offset
21 remainingSPS = samplesPerSymbol/decimation;
22 % Grab end of data where AGC has converged
23 data = data(end-remainingSPS*1000+1:end);
24 for index = 0:300
25 % Delay signal
26 tau_hat = index/50;delayedsig = VFD(data, tau_hat);
27 % Linear interpolation
28 o = sum(reshape(delayedsig,remainingSPS,...
29 length(delayedsig)/remainingSPS).’,2)./remainingSPS;
30 % Visualize constellation
31 cd(o); pause(0.1);
32 end

6.3 Symbol Timing Compensation

There are many ways to perform correction for symbol timing mismatches between
transmitters and receivers. However, in this chapter we will examine three digital

Analog Devices perpetual eBook license – Artech House copyrighted material. 

1.5 1000 

'e,o 9:,0 '15,0 J~ ~ • ~ • '\'ei - 500 

~ 0.5 ~ • .a <&o • => .., 
l': ~.-~--- ... ~ l': 

"C 0 "C 0 
"' • ool!I "' • => ~ => 
O' O' 

-0.5 
00 'i,~ ca, 
o!B a ~ 

-500 • -1 ~,, CD C'b ~ It 0 oo"' 0 
0 ClDo 

-1.5 -1000 
-1.5 -1.0 -0.5 0 0.5 1.0 1.5 -1000 -500 0 500 1000 

In-phase In-phase 
(a) (b) 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 199 — #9

6.3 Symbol Timing Compensation 199

Figure 6.10 Resulting constellations of Pluto SDR loopback data after different fractional delays τ̂ .
(a) τ̂ = 0.1, (b) τ̂ = 0.5, (c) τ̂ = 1, and (d) τ̂ = 1.5.

Q

Using the above MATLAB code verify the timing offset observed.
Is this a fixed offset? Change the frequency of both transmitter
and receiver to 900 MHz, then explain the observation. Change
she sampling rate of both the transmitter and receiver to 2 MHz,
then explain your observation.

PLL strategies that will also share the same methodology as in Chapter 7 for our
carrier recovery implementations. This type of timing recovery was chosen because it
can be integrated with our future recovery solutions, can be robust, and is not overly
complex algorithmicly. A basic PLL structure will be introduced first, which will be
used to derive our feedback timing correction design. This will frame the discussion
around Figure 6.11, where we will replace the individual blocks leading to our
eventual design in Figure 6.12. During this process we will provide an overview
conceptually how timing is synchronized and then move into each individual block,
explaining their design. The specific detectors discussed will be Zero-Crossing,
Müller/Mueller, and Gardner. However, more can be found in the literature from
Mengali [4] and Oerder [5] among others. Rice [6] provides a more indepth analysis

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.6 

0.4 

~ 0.2 
::J .... 
I:! 0 

"C 
(ti 
::J 

CJ -0.2 

-0.4 --~rt~~---
-0.6 '--~---·-··._~----~-' 

0.6 

0.4 

~ 0.2 
::J .... 
I:! 0 

"C 
(ti 

8'-0.2 

-0.4 

-0.6 

□ 

-0.5 

-0.5 

0 
In-Phase 

(a) 

0 
In-Phase 

(c) 

0.5 

..... 

'-t1f,~:, 

0.5 

~ 
::J .... 

0.5 

I:! 0 
"C 
(ti 
::J 
CJ 

-0.5 

0.6 

0.4 

~ 0.2 
::J .... 
I:! 0 

"C 
(ti 

O' -0.2 

-0.4 

-0.6 

.;_;_.;•·-; 
: .. 
·,;: 

'-'--------~------~-' 
-0.5 

-0.5 

0 
In-Phase 

(b) 

0 
In-Phase 

(d) 

0.5 

0.5 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 200 — #10

200 Timing Synchronization

Figure 6.11 Basic PLL structure with four main component blocks.

Figure 6.12 Basic structure of PLL for timing recovery for both decision direction and blind timing
recovery. There are five major blocks that measure, control, and correct for the timing error in the
received signal y.

of these techniques and covers purely analog designs as well as hybrid analog and
digital designs. Here we will focus on MATLAB implementations and algorithmic
structural features.

6.3.1 Phase-Locked Loops
The timing correction we will be using is a feedback or closed-loop method based
on PLL theory. The structure of this algorithm is provided in Figure 6.11 derived
from [6, Chapter 7], which essentially locks when an error signal is driven to zero.
There are many different designs for PLLs and implementation strategies, but here
we will outline four basic components that we will interchange here for timing
correction and in the following chapter on carrier recovery. This all-digital PLL-
based algorithm shown here works by first measuring some offset, such as timing
error or phase error, of the received sample in the error detector (ED), which we call
the error signal e. The ED is designed based on the structure of the desired receive
constellation/symbols or the nature of the sequence itself. Next, the loop filter helps
govern the dynamics of the overall PLL. The loop filter can determine operational
ranges, lock time, and dampness/responsiveness of the PLL. Next, we have the
correction generator. The correction generator is responsible for generation of the
correction signal for the input, which again will be fed back into the system. Finally
is the corrector itself, which modifies the input signal based on input from the
correction generator. Working together, these blocks should eventually minimize e
over time and contually adapt to future changes from the environment or the system
itself.

The correction generator, error detector, and corrector are specific to the
purpose of the PLL structure, such as timing recovery or carrier recovery. However,

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Matched 
filter 

Correction --~ 
generator 

Controller 

Loop filter 14--~ Error detector 

I\ 

y(_nT + T) 

g(n) 
Loop filter 

e(n) 
TED 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 201 — #11

6.3 Symbol Timing Compensation 201

the loop filter can be shared among the designs with modification to its numerical
configuration. The loop filter in all PLL designs is the most challenging aspect,
but provides the most control over the adaption of the system. Here we will use a
proportional-plus-integrator (PI) filter as our loop filter, which maintains a simple
transfer function:

F(s) = g1 + g2

s
, (6.4)

where g1 and g2 are selectable gains. PI filters produce second-order PLLs and only
consist of a single pole in their transfer function; therefore, they are relatively easy
to analyze. Since we are dealing with discrete time signals a z-domain representation
is preferable:

F(z) = G1 + G2

1 − z−1 , (6.5)

where G1 �= g1 and G2 �= g2.1 The fractional portion of (6.5) can be represented
nicely by a biquad filter.2 For the calculation of the gain values (G1, G2) utilize the
following equations based on a preferred damping factor ζ and loop bandwidth
BLoop:

θ = BLoop

M(ζ + 0.25/ζ )
� = 1 + 2ζθ + θ2 (6.6)

G1 = 4ζθ/�

M
G2 = 4θ2/�

M
(6.7)

where M is the samples per symbol associated with the input signal. Note that BLoop
is a normalized frequency and can range BLoop ∈ [0, 1]. If you are interested in how
these are derived, see [6, Appendix C]. For the selection of ζ :

ζ =




< 1, Underdamp

= 1, Critically Damped

> 1, Overdamped,

(6.8)

which will determine the responsiveness and stability of the PLL.

6.3.2 Feedback Timing Correction
The timing synchronization PLL used in all three algorithms consists of four main
blocks: interpolator, timing ED (TED), loop filter, and an interpolator controller.
Their interaction and flow is presented in Figure 6.14. These operations first estimate
an unknown offset error, scale the error proportionally, and apply an update for
future symbols to be corrected. To provide necessary perspective on the timing error,
let us considered the eye diagram presented in Figure 6.13. This eye diagram has
been upsampled by twenty times so we can examine the transitions more closely,
which we notice are smooth unlike Figure 6.6. In the optimal case, we chose to
sample our input signal at the dark gray instances at the widest openings of the
eye. However, there will be an unknown fractional delay τ that shifts this sampling
period. This shifted sampling position is presented by the light gray selections.
To help work around this issue, our receive signal is typically not decimated fully,

1. A simple way to translate between (6.4) and (6.5) is to utilize a bilinear transform.
2. See dsp.BiquadFilter for a simple realization of a biquad filter.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 202 — #12

202 Timing Synchronization

Figure 6.13 Eye diagram of received signal marking positions where received samples may exist.
This figure is highly oversampled to show many positions, but a received sample could lie anywhere
on the eye.

providing the receiver with multiple samples per symbol (this is not always the case).
Therefore, if we are straddling the optimal sampling position instead as in the black
markers, we can simply interpolate across these points to get our desired period.
This interpolation has the effect of causing a fractional delay to our sampling,
essentially shifting to a new position in our eye diagram. Since τ is unknown we
must weight this interpolation correctly so we do not overshoot or undershoot the
desired correction. This is similar to the idea presented at the end of Section 6.2.
Finally, controlling the instances in time when an output is produced or sampled
from the input data is the function of the interpolator control block, which will be at
the symbol rate. This correction loop, when implemented properly, that will cause
the eye diagram to open for input signals with clock timing missmatches. However,
a constellation diagram may also be useful tool for evaluating timing correction as
presented in Figures 6.4 and 6.9.

We will initially discuss the specifics of the blocks in Figure 6.12 through the
perspective of the zero-crossing (ZC) method, since it is the most straightforward to
understand. Then we will provide extensions to the alternative methods. ZC, as the
name suggests, will produce an error signal e(n) of zero when one of the sampling
positions is at the zero intersection. ZC requires two samples per symbol or more,
resulting in the other sampling position occurring at or near the optimal position.
The TED for ZC [4] is evaluated as

e(n) =Re(y((n − 1/2)Ts + τ))[sgn{Re(y((n − 1)Ts + τ))} − sgn{Re(y(nTs + τ))}]
+ Im(y((n − 1/2)Ts + τ))[sgn{Im(y((n − 1)Ts + τ))}
− sgn{Im(y(nTs + τ))}], (6.9)

where Re and Im extract the real and imaginary components of a sample, and sgn
process the sign (−1 or 1) for the sample. In (6.9) it is important to note that these

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Eye diagram 
1.5 

'a, 
0.5 "' "' ..c 

c.. 
c:: 
C, 

QJ 
-0 

0 
::::, 
+-
·1: 
Cl 

"' ~ -0.5 

-1 

-1.5 
0 10 20 30 40 50 60 

Time 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 203 — #13

6.3 Symbol Timing Compensation 203

indexes are with respect to samples, not symbols, and to be specifc y(nTs + τ) is
simply the latest output of the interpolator filter. Looking at (6.9) it first provides
a direction for the error with respect to the sgn operation, and the shift required to
compensate is determined by the midpoints. The in-phase and quadrature portions
operate independently, which is desirable.

Once the error is calculated it is passed to the loop filter, which we can entirely
borrow from Section 6.3.1. The same principles apply here, with a near identical
formulation for our equations we have provided in a slightly more compact form.

G1 = −4ζθ

GDN�
G2 = −4θ2

GDN�
(6.10)

Here BLoop is the normalized loop bandwidth, ζ is our damping factor, N is our
samples per symbol, and GD is our detector gain. The new variable GD provides
an additional step size scaling to our correction. Again the loop filter’s purpose is
to maintain stability of the correction rate. This filter can be implemented with a
simple linear equation:

y(t) = G1x(t) + G2
∑
n=0

y(n), (6.11)

or with a biquad filter.
The next block to consider is the Interpolation Controller, which is responsible

to providing the necessary signaling to the interpolator. With respect to our original
PLL structure in Figure 6.11 the interpolation controller takes the place of the
correction generator. Since the interpolator is responsible for fractionally delaying
the signal, this controller must provide this information and generally the starting
interpolant sample. By starting interpolant sample we are referring to the sample
on the left side of the straddle, as shown by the second black sampling position
from the left in Figure 6.13. The interpolation controller implemented here will
utilize a counter-based mechanism to effectively trigger at the appropriate symbol
positions. At these trigger positions the interpolator is signaled and updated, as well
as an output symbol is produced from the system.

The main idea behind a counter-based controller is to maintain a specific
triggering gap between updates to the interpolator, with an update period on
average equal to symbol rate N of the input stream. In Figure 6.14 a logical flowchart
of the interpolation controller is provided to better understand the complex flow.
If we consider the case when the timing is optimal and the output of the loop filter
g(n) is zero, we would want to produce a trigger every N samples. Therefore, it is
logical that the weighting or decrement for the counter would be

d(n) = g(n) + 1
N

. (6.12)

resulting in a maximum value of 1 under modulo-1 subtraction of the counter c(n),
where wraps of the modulus occur every N subtractions. This modulus counter
update is defined as

c(n + 1) = (c(n) − d(n)) mod 1. (6.13)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 204 — #14

204 Timing Synchronization

Figure 6.14 Timing recovery triggering logic used to maintain accurate interpolation of input signal.

We determine a trigger condition, which is checked before the counter is
updated, based on when these modulus wraps occur. We can easily check for this
condition before the update, such as

Trigger =
{

c(n) < d(n) True

Otherwise False
. (6.14)

This triggering signal is the method used to define the start of a new symbol;
therefore, it can also be used to make sure we are estimating error over the correct
samples. When the trigger occurs we will update µ(n) our estimated gap between
the interpolant point and the optimal sampling position. This update is a function
of the new counter step d(n) and our current count c(n):

µ(k) = c(n)/d(n). (6.15)

This µ will be passed to our interpolator to update the delay it applies.
We want to avoid performing timing estimates that span over multiple symbols,

which would provide incorrect error signals and incorrect updates for our system.
We can avoid this by adding conditions into the TED block. We provide additional
structure to the TED block in Figure 6.15, along with additional logic to help
identify how we can effectively utilize our trigger signals. Based on this TED
structure, only when a trigger occurs the output error e can be nonzero. Looking
downstream in Figure 6.14 from the TED, since we are using a PI loop filter only
nonzero inputs can update the output, and as a result modify the period of the
triggering associated d. When the system enters steady state, where the PLL has
locked, the TED output can be nonzero every N samples.

The final piece of the timing recovery we have not yet discussed is the
interpolator itself. With respect to our original PLL structure in Figure 6.11 the
interpolator takes the place of the corrector. Interpolation here is simply a linear

Analog Devices perpetual eBook license – Artech House copyrighted material. 

A 

y(n7) y(nT + T) 
----...i lnterpolator 1--------------------~--

1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ., 

I ~-~--~ ~----~ I 

: Enable : 
: Trigger : 
: ~----~ ~--~-~ : 
: ~-~--~ : 
I I 
I I 
I I 
I I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

No~----< 

Yes 

d(n) 

L _________________________________________ I 

Interpolation controller 

TED 

e(n) 

p(n) 
Loop filter 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 205 — #15

6.3 Symbol Timing Compensation 205

Figure 6.15 An internal view of the timing error detector to outline the error and triggering control
signals relation to operations of other blocks in Figure 6.14.

combination of the current and past inputs y, which in essence can be thought of
as a filter. However, to create a FIR filter with any arbitrary delay τ ∈ [

0, ..., Ts
]

cannot be realized [7]. Realizations for ideal interpolation IIR filters do exist, but the
computation of their taps are impractical in real systems [8]. Therefore, we will use
an adaptive implementation of a FIR lowpass filter called a piecewise polynomial
filter (PPF) [6]. The PPF can only provide estimations of offsets to a polynomial
degree. Alternative implementations exists such as polyphase-filterbank designs, but
depending on the required resolution the necessary phases become large. However,
they can be straightforward to implement [9].

The PPF are useful since we can easily control the form of interpolations by
determining the order of the filter, which at most is equivalent to the order of
the polynomial used to estimate the underlying received signal. Here we will use
a second order, or quadratic, interpolation requiring a four-tap filter. The general
form of the interpolator’s output is given by

y(kTs + µ(k)Ts) =
2∑

n=1

h(n)y((k − n)Ts), (6.16)

where hk are the filter coefficients at time instance k determined by [10]:

h =[αµ(k)(µ(k) − 1),

− αµ(k)2 − (1 − α)µ(k) + 1,

− αµ(k)2 + (1 + α)µ(k),

αµ(k)(µ(k) − 1)],

(6.17)

where α = 0.5. µ(k) is related to the fractional delay, which is provided by the
interpolator control block, which relates the symbol period Ts to the estimated
offset. Therefore, we can estimate the true delay τ as

τ̂ ∼ µ(k)Ts. (6.18)

Without any offset (µ = 0), the interpolator acts as a two-sample delay or
single-symbol delay for the ZC implementation. We can extend the PPF to utilize

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I\ 

y(n T + T) 
Trigger? e(n) = 0 

e(n) 

Yes 

Calculated (n) ,__ ______ ~ 
From y(n7) 

,~---~ 
L- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

TED 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 206 — #16

206 Timing Synchronization

more samples creating cubic and greater interpolations, but their implementations
become more complex. The underlying waveform should be considered when
determining the implementation of the interpolator as well as the required degrees
of freedom to accurately capture the required shape.

This design using four samples in a quadratic form can be considered irregular,
since the degree of taps does not reach three. However, odd length realizations (using
an odd number of samples) are not desirable since we are trying to find values in-
between the provided samples. We also do not want a two-sample implementation
due to the curvature of the eye in Figure 6.13.

In MATLAB we can realize this interpolator with a few lines of code that are
dependent on the input data y and the last output of the interpolator controller µ

provided in Code 6.2.

Code 6.2 Interpolator: interpFilter.m

1 % Define interpolator coefficients
2 alpha = 0.5;
3 InterpFilterCoeff = ...
4 [ 0, 0, 1, 0; % Constant
5 -alpha, 1+alpha, -(1-alpha), -alpha; % Linear
6 alpha, -alpha, -alpha, alpha]; % Quadratic
7 % Filter input data
8 ySeq = [y(i); InterpFilterState]; % Update delay line
9 % Produce filter output

10 filtOut = sum((InterpFilterCoeff * ySeq) .* [1; mu; muˆ2]);
11 InterpFilterState = ySeq(1:3); % Save filter input data

From this output filtOut we can drive our TED using the ZC equation (6.9)
to create error signals for the loop filter and interpolator controller. Based on
Figure 6.14 we know that this TED calculation will be based on a triggered signal
from the interpolator controller. Additional historical triggers are also checked
which prevent driving the output of the timing loop faster than the symbol rate.
This logic and TED measurement is captured in Code 6.3.

Additional logic is added to the TED from lines 13 to 22, which manage
symbol stuffing. Symbol stuffing is basically forcing an additional trigger from the
synchronizer routine. This is necessary when clock deviations force the interpolator
to minimally straddle the symbol of interest. To compensate we must insert an
additional output symbol. Note that at the output of the system, the sample rate
will equal the symbol rate, essentially downsampling our signal when N > 1.

Following the TED is the loop filter, which has already been discussed
in Section 6.3.1. Since the filter is quite simple it can be implemented in a
straightforward way without filter objects. However, using a biquad filter object
provides more compact code as shown Code 6.4.

Finally, we can evaluate the filtered error at the interpolator control block. In
steady state this block should produce a trigger every N input samples. This trigger
signal can be considered a valid output signal, which will concide with output
data from the whole algorithm. In the coding context here, when Trigger is true
at time n the output of the interpolation filter at input n + 1 should be processed

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 207 — #17

6.3 Symbol Timing Compensation 207

Code 6.3 ZC TED: zcTED.m

1 % ZC-TED calculation occurs on a strobe

2 if Trigger && all(˜TriggerHistory(2:end))

3 % Calculate the midsample point for odd or even samples per symbol

4 t1 = TEDBuffer(end/2 + 1 - rem(N,2));

5 t2 = TEDBuffer(end/2 + 1);

6 midSample = (t1+t2)/2;

7 e = real(midSample)*(sign(real(TEDBuffer(1)))-sign(real(filtOut))) ...

8 imag(midSample)*(sign(imag(TEDBuffer(1)))-sign(imag(filtOut)));

9 else

10 e = 0;

11 end

12 % Update TED buffer to manage symbol stuffs

13 switch sum([TriggerHistory(2:end), Trigger])

14 case 0

15 % No update required

16 case 1

17 % Shift TED buffer regularly if ONE trigger across N samples

18 TEDBuffer = [TEDBuffer(2:end), filtOut];

19 otherwise % > 1

20 % Stuff a missing sample if TWO triggers across N samples

21 TEDBuffer = [TEDBuffer(3:end), 0, filtOut];

22 end

Code 6.4 Loop Filter: loopFilter.m

1 % Loop filter
2 loopFiltOut = LoopPreviousInput + LoopFilterState;
3 g = e*ProportionalGain + loopFiltOut; % Filter error signal
4 LoopFilterState = loopFiltOut;
5 LoopPreviousInput = e*IntegratorGain;
6 % Loop filter (alternative with filter objects)
7 lf = dsp.BiquadFilter(’SOSMatrix’,tf2sos([1 0],[1 -1])); % Create filter
8 g = lf(IntegratorGain*e) + ProportionalGain*e; % Filter error signal

downstream. The interpolation controller itself will utilize the filtered error signal
g and will update the internal counter as data is processed in Code 6.5.

Code 6.5 Interpolator Control Logic: interpControl.m

1 % Interpolation Controller with modulo-1 counter
2 d = g + 1/N;
3 TriggerHistory = [TriggerHistory(2:end), Trigger];
4 Trigger = (Counter < d); % Check if a trigger condition
5 if Trigger % Update mu if a trigger
6 mu = Counter / d;
7 end
8 Counter = mod(Counter - d, 1); % Update counter

The overall design of the timing synchronizer can be complex and
implementations do operate at different relative rates. Therefore, we have provided
Table 6.1 as a guide to a recommended implementation. These rates align with

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 208 — #18

208 Timing Synchronization

Table 6.1 Operational Rates of Timing
Recovery Blocks

Block Operational rate
Interpolator Sample rate
TED Symbol rate
Loop filter Symbol rate
Interpolator controller Sample rate

the trigger implementation outlined in Figure 6.14. This system will result in one
sample per symbol (N) when output samples of the interpolator are aligned with
the triggers.

Q Starting with script TimingError, which models a timing offset,
implement ZC timing correction.

6.4 Alternative Error Detectors and System Requirements

Within the discussed PLL framework alternative TEDs can be used if the application
or system arrangement is different. For example, the discussed method of ZC cannot
operate under carrier phase or frequency offsets. Therefore, such a nonideality
would require compensation first before application of ZC, which is not true for
other methods. Besides carrier offsets, a requirement of the ZC method is an
upsample factor N of at least two, which may not be possible for certain systems
due to bandwidth and data rate constraints.

6.4.1 Gardner
The second TED we will considered is called Gardner [11], which is very similar to
ZC. The error signal is determined by

e(n) = Re(y((n − 1/2)Ts + τ))
[
Re(y((n − 1)Ts + τ)) − Re(y(nTs + τ))

]+
Im(y((n − 1/2)Ts + τ))

[
Im(y((n − 1)Ts + τ)) − Im(y(nTs + τ))

]
.

(6.19)

This method also requires two samples per symbol and differs only in the
quantization of the error direction from ZC. One useful aspect of Gardner is that it
does not require carrier phase correction and works especially well with BPSK and
QPSK signals. However, since Gardner is not a decision-directed method, for best
performance the excess bandwidth of the transmit filters should be β ∈ (0.4, 1

)
.

Q
Implement the Gardner TED inside your existing timing error
detector. Introduce a small phase shift into the received signal of
π/4. Compare ZC and Gardner in these cases.

6.4.2 Müller and Mueller
Next is the Müller and Mueller (MM) method named after Kurt Mueller and
Markus Müller [12]. This can be considered the most efficient method since it does

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I □ 

I □ 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 209 — #19

6.5 Putting the Pieces Together 209

not require upsampling of the source data, operating at one sample per symbol. The
error signal is determined by [6]

e(k) = Re(y((k)Ts + τ)) × sgn{Re(y((k − 1)Ts + τ))}
− Re(y((k − 1)Ts + τ)) × sgn{Re(y((k)Ts + τ))}
+ Im(y((k)Ts + τ)) × sgn{Im(y((k − 1)Ts + τ))}
− Im(y((k − 1)Ts + τ)) × sgn{Im(y((k)Ts + τ))}.

(6.20)

MM also operates best when the matched filtering used minimizes the excess
bandwidth, meaning β is small. It is important to note when the excess bandwidth of
the receiver or transmitter filters is high the decisions produced by the sgn operation
can be invalid. Therefore, this trade-off must be considered during implementation.
However, even though MM is technically most efficient performance can be
questionable at N = 1 due to the lack of information available per symbol.

Q
Add phase and frequency offsets to the input signal and compare
the performance of ZC, Gardner, and MM estimation methods.
Do this for fixed fractional delays Ts

2 , Ts
4 ,Ts

5 in the channel and plot
the error output of the TEDs for Gardner and ZC.

6.5 Putting the Pieces Together

Throughout this chapter we have outlined the structure and logic behind a
PLL-based timing recovery algorithm and the associated MATLAB code. In the
remaining sections we will discuss putting the algorithmic components together
and provide some intuition on what happens during evaluation. Here we will also
address parameterization and the relation to system dynamics.

The system-level scripts have shown a constant theme throughout where data is
modulated, transmit filtered, passed through a channel with timing offset, filtered
again, then is timing recovered. Many rate changes can happen in this series of
steps. To help understand these relations better we can map things out as in
Figure 6.16, which takes into account these stages. Here the modulator produces
symbols equal to the sample rate. Once passing through the transmit filter we
acquire our upsampling factor N, which increases our samples per symbol to N. At
the receiver we can perform decimation in the receive filter by a factor NF where
NF ≤ N. Finally, we will perform timing recovery across the remaining samples
and remove the fractional offset τ , returning to the original rate of one sample
per symbol. The rate pattern outlined in Figure 6.16 is identical to that of the first
MATLAB script in Code 6.1. That script can be modified to produce a slightly
dynamic timing offset, which we provide below:

From Code 6.6 we can evaluate the receive filtered signal with a variable
offset over time. Figure 6.17(a) provides the direct output of rxFilt when
samplesPerSymbol is equal to decimation, where we can observe the
constellation of the signal collapsing into constellations over time similar to
Figure 6.9. This is essentially when no timing recovery is being used. Next,

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 210 — #20

210 Timing Synchronization

Figure 6.16 Relative rates of transmit and receive chains with respect to the sample rate at different
stages. Here τ ∗ represents a timing shift not an increase in the data rate. This is a slight abuse of
notation.

Code 6.6 Transmit Filter Data: srrcFilterData.m

1 % User tunable (samplesPerSymbol>=decimation)
2 samplesPerSymbol = 4; decimation = 2;
3 % Create a QPSK modulator System object and modulate data
4 qpskMod = comm.QPSKModulator(’BitInput’,true);
5 % Set up filters
6 rctFilt = comm.RaisedCosineTransmitFilter( ...
7 ’OutputSamplesPerSymbol’, samplesPerSymbol);
8 rcrFilt = comm.RaisedCosineReceiveFilter( ...
9 ’InputSamplesPerSymbol’, samplesPerSymbol, ...

10 ’DecimationFactor’, decimation);
11 % Set up delay object
12 VFD = dsp.VariableFractionalDelay;
13 % Delay data with slowly changing delay
14 rxFilt = [];
15 for index = 1:1e3
16 % Generate, modulate, and tx filter data
17 data = randi([0 1],100,1);
18 modFiltData = rctFilt(qpskMod(data));
19 % Delay signal
20 tau_hat = index/30;
21 delayedsig = VFD(modFiltData, tau_hat);
22 rxSig = awgn(delayedsig,25); % Add noise
23 rxFilt = [rxFilt;rcrFilt(rxSig)]; % Rx filter
24 end

taking the lessons from this chapter and utilizing the implementation of timing
recovery proposed, we can adapt to this changing fractional delay. Figure 6.17(b)
demonstrates the recovery for the ZC technique when N

NF
= 2. Here we can observe

clear division between the level for the real component of the signal, meaning our
output constellation is collapsing to a correct QPSK signal. In Figure 6.17(c) we
increase BLoop from 0.001 to 0.01, which causes the system to react faster. However,
for BLoop = 0.001 once converged the residual symbols have less noise than for
BLoop = 0.01.

Q Regenerate Figure 6.17 and utilize alternative ζ = {0.5,
√

2,
10, 20}. Comment on the dynamic of the recovery algorithm.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Data 
Modulator 

Ts NT5 
1------- Transmit filter >--------1.i Channel w/offset 

----------< Timing recovery -------1 Receive filter -------~ 
~ Nr+ ~ N~+ ~ 

~-----~N, s ~----~ 

I □ 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 211 — #21

6.5 Putting the Pieces Together 211

Figure 6.17 Comparison of a signal that requires timing recovery, and outputs of two
parameterization of ZC timing recovery after application. (a) Receive signal without timing recovery,
(b) receive signal with ZC timing recovery for parameterization {N, ζ , BLoop, GD} = {2, 1, 0.001, 2.7},
and (c) receive signal with ZC timing recovery for parameterization {N, ζ , BLoop, GD} =
{2, 1, 0.01, 2.7}.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

1.5 

~ 0.5 
"ii'i 
~ 
QJ 

0 -a 
.. ~ 
c.. 
E -0.5 <( 

-1 

-1.5 
0 

1.5 

~ 0.5 
"ii'i 
~ 
QJ 

-a 0 
.-e 
c.. 
~ -0.5 

-1 

-1.5 
0 

1.5 I 

! 
~ 

0.5 I "ii'i 
~ 
QJ 

-a 
0 :, 

:!:: 
c.. 
E 

-0.5 ! <( 

I 
-1 f, 

i 
-1.5 

0 

2,000 

2,000 

2,000 

4,000 

4,000 

Samples 

(a) 

Samples 

(b) 

4,000 
Samples 

(c) 

6,000 8,000 10,000 

6,000 8,000 10,000 

1 

j 
6,000 8,000 10,000 



Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 212 — #22

212 Timing Synchronization

Q
Regenerate Figure 6.17, but utilize Pluto SDR in loopback as
the channel. Tune the recovery algorithm (N, ζ , BLoop, GD) and
measure the best conference you can achieve.

6.6 Chapter Summary

Timing recovery is a fundamental tool for successful transmission between nodes
with independent oscillators. In this chapter, a model for timing offset was
introduced mathematically, in simulation, and demonstrated with Pluto SDR. To
combat this offset, a PLL-based timing recovery methodology was introduced that
included several timing error detectors. This included an review and extension to
matched filtering introduced in Chapter 6. MATLAB code was provided for the
different components of the timing recovery algorithms, and a considerable amount
of time was spent examining their configuration and interactions. Finally, once
all the components were investigated, portions of the design’s parameterization
were explored. In subsequent chapters, the implementations developed here will
be utilized to created a full receiver design which can recover signals transmitted
between separate Pluto SDR devices.

References

[1] Proakis, J., and M. Salehi, Digital Communications, Fifth Edition, Boston: McGraw-Hill,
2007.

[2] Saleh, A. A. M., “Frequency-Independent and Frequency-Dependent Nonlinear Models of
TWT Amplifiers,” IEEE Transactions on Communications, Vol. 29, No. 11, November
1981, pp. 1715–1720.

[3] Boumaiza, S., T. Liu, and F. M. Ghannouchi, “On the Wireless Transmitters Linear and
Nonlionear Distortions Detection and Pre-correction,” in 2006 Canadian Conference on
Electrical and Computer Engineering, May 2006, pp. 1510–1513.

[4] Mengali, U., Synchronization Techniques for Digital Receivers, Applications of
Communications Theory, New York: Springer, 2013.

[5] Oerder, M., and H. Meyr, “Digital Filter and Square Timing Recovery,” IEEE Transactions
on Communications, Vol. 36, No. 5, May 1988, pp. 605–612.

[6] Rice, M., Digital Communications: A Discrete-Time Approach, Third Edition,
Pearson/Prentice Hall, 2009.

[7] Laakso, T. I., V. Valimaki, M. Karjalainen, and U. K. Laine, “Splitting the Unit Delay
[FIR/All Pass Filters Design],” IEEE Signal Processing Magazine, Vol. 13, No. 1, January
1996, pp. 30–60.

[8] Thiran, J. P., “Recursive Digital Filters with Maximally Flat Group Delay,” IEEE
Transactions on Circuit Theory, Vol. 18, No. 6, November 1971, pp. 659–664.

[9] Rice, M., and F. Harris, “Polyphase Filterbanks for Symbol Timing Synchronization in
Sampled Data Receivers,” in MILCOM 2002, Proceedings, Vol. 2, October 2002, pp.
982–986.

[10] Erup, L., F. M. Gardner, and R. A. Harris, “Interpolation in Digital Modems. ii.
Implementation and Performance,” IEEE Transactions on Communications, Vol. 41,
No. 6, June 1993, pp. 998–1008.

[11] Gardner, F., “A BPSK/QPSK Timing-Error Detector for Sampled Receivers,” IEEE
Transactions on Communications, Vol. 34, No. 5, May 1986, pp. 423–429.

[12] Mueller, K., and M. Muller, “Timing Recovery in Digital Synchronous Data Receivers,”
IEEE Transactions on Communications, Vol. 24, No. 5, May 1976, pp. 516–531.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I □ 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 213 — #1

C H A P T E R 7

Carrier Synchronization

This chapter will introduce the concept of carrier frequency offset between
transmitting and receiving nodes. Specifically, a simplified error model will be
discussed along with two recovery methods that can operate jointly or independently
based on their implementation. Carrier recovery complements timing recovery,
which was implemented in the previous Chapter 6, and is necessary for maintaining
wireless links between radios with independent oscillators.

Throughout this chapter we will assume that timing mismatches between the
transmitting and receiving radios have already been corrected. However, this is
not a requirement in all cases, specifically in the initial implementation provided
here, but will become a necessary condition for optimal performance of the final
implementation provided. For the sake of simplicity we will also ignore timing
effects in our simulations except when discussing Pluto SDR itself, since obviously
timing correction cannot be overlooked in that case. With regard to our full receiver
diagram outline in Figure 7.1, we are now considering the carrier recovery and CFO
blocks.

7.1 Carrier Offsets

The receiving and transmitting nodes are generally two distinct and spatially
separate units. Therefore, relative frequency offsets will exist between their LOs due
to natural effects such as impurities, electrical noise, and temperature differences,
among others. Since these differences can also be relatively dynamic the LOs
will drift with respect to one another. These offsets can contain random phase
noise, frequency offset, frequency drift, and initial phase mismatches. However,
for simplicity we will only model this offset as a fixed value. This is a reasonable
assumption at the time scale of RF communications.

When considering commercial oscillators, the frequency offset is provided in
parts per million (PPM), which we can translate into a maximum carrier offset
for a given frequency. In the case of the Pluto SDR the internal LO is rated at 25
PPM [1] (2 PPM when calibrated) and we can use (7.1) to relate maximum carrier
offset �f to our operating carrier frequency fc.

fo,max = fc × PPM
106 (7.1)

The determination of fo,max is important because it provides our carrier recovery
design criteria. There is no point wasting resources on a capability to correct for
a frequencies beyond our operational range. However, scanning techniques can be
used in such cases but are beyond the scope of this book.

213

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 214 — #2

214 Carrier Synchronization

Figure 7.1 Receiver block diagram.

Mathematically we can model a corrupted source signal at baseband s(k) with
a carrier frequency offset of fo (or ωo) as

r(k) = s(k)ej(2π fokT+θ) + n(k) = s(k)ej(ωokT+θ) + n(k). (7.2)

where n(k) is a zero-mean Gaussian random process, T is the symbol period, θ is
the carrier phase, and ωo the angular frequency.

In the literature, carrier recovery is sometimes defined as carrier phase recovery
or carrier frequency recovery. These generally all have the same goal of providing
a stable constellation at the output of the synchronizer. However, it is important
to understand the relation of frequency and phase, which will make these naming
conventions clear. An angular frequency ω, or equivalently in frequency 2πf , is
purely a measure of a changing phase θ over time:

ω = dθ

dt
= 2π f . (7.3)

Hence, recovering the phase of the signal is essentially recovering that signal’s
frequency. Through this relation is the common method for estimating frequency of
a signal since it cannot be measured directly unlike phase. We can demonstrate this
technique with a simple MATLAB script shown in Code 7.1. There we generate a
simple continuous wave (CW) tone at a given frequency, measure the instantaneous
phase of the signal, and then take the difference of those measurements as our
frequency estimate. The instantaneous phase θ of any complex signal x(k) can be
measured as

θ = tan−1
(

Im(x(k))

Re(x(k))

)
, (7.4)

where Re and Im capture the real and imaginary components of the signal
respectively. In Code 7.1 we also provide a complex sinusoid generation through
a Hilbert transform with the function hilbert from our real signal. Hilbert
transforms are very useful for generating analytic or complex representations of
real signals. If you wish to learn more about Hilbert transforms, Oppenheim [2] is
a suggested reading based in signal processing theory.

In Figure 7.2 we provide the outputs from Code 7.1. In Figure 7.2(a) it first can
be observed that the Hilbert transform’s output is equal to the CW tone generated
from our sine (imag) and cosine (real) signal. In Figure 7.2(b) we can clearly see
that the estimation technique based on phase difference correctly estimates the
frequency of the signal in question. In this script we also utilized the function
unwrap to prevent our phase estimates from becoming bounded between ±π . This
estimation is a straightforward application of the relation from (7.3). Alternatively,
it can be useful to examine a frequency offset, but usually only large offsets, in the
frequency domain itself. This is useful since time domain signals alone, especially
when containing modulated data and noise, can be difficult to interpret for such
an offset. In Figure 7.3, PSDs of an original and offset signal are shown, which

Analog Devices perpetual eBook license – Artech House copyrighted material. 

CFC 
Matched 
filter 

Timing 
recovery 

' Carrier 
, recovery , 

Frame sync Equalization 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 215 — #3

7.1 Carrier Offsets 215

Code 7.1 freqEstimate.m

1 % Sinusoid parameters

2 fs = 1e3; fc = 30; N = 1e3;

3 t = 0:1/fs:(N-1)/fs;

4 % Create CW Tone

5 r = cos(2*pi*fc*t); i = sin(2*pi*fc*t);

6 % Alternatively we can use a hilbert transform from our real signal

7 y = hilbert(r);

8 % Estimate frequency from phase

9 phaseEstHib = unwrap(angle(y))*fs/(2*pi); freqEstHib = diff(phaseEstHib);

10 phaseEstCW = unwrap(atan2(i,r))*fs/(2*pi); freqEstCW = diff(phaseEstCW);

11 tDiff = t(1:end-1);

Q

From the MATLAB Code 7.1 examine the frequency range of
this estimation technique with respect to the sampling rate fs
and the frequency of the tone fc. (Ignore the output of the
Hilbert transform for this exercise.) What is roughly the maximum
frequency that can be correctly estimated and what happens when
the frequency offset exceeds this point?

Figure 7.2 Outputs of MATLAB scripts for a simple frequency estimation technique compared with
the true offset. (a) CW tones generated from sine/cosine and Hilbert transform, and (b) frequency
estimates of CW tones.

clearly demonstrates this perspective. Here the signal maintains a 10-kHz offset
with respect to the original signal, which is well within the 25-PPM specification of
communicating Pluto SDR above 200 MHz.

Moving complex signals in frequency is a simple application of (7.2), which
was how Figure 7.3(b) was generated. The example MATLAB script in Code 7.2

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 
(I) 

"C 

-~ 0 
c.. 
E 
<I'. 

'N 
I 

-1 

0 0.01 0.02 0.03 

Time (seconds) 
(a) 

--- Real (Hilbert) 

--a-- lmag (Hilbert) 

* X 

0.04 0.05 0.06 

~ 30 ..., ~IHIIHIHIIJ--<ilr___..llllr'<IHIIHIIIHIIJ-~IH!IHi!~~:!!!!t:~~~~~~~-!H!p' 
Ill 

~ 20 
iJJ 

~ 10 
C 
(I) 
::::, 

--- From Hilbert 

0 From Sine/Cosine 

♦ True 

[ o~---~---~---~----~---~---~ 
L.L 0 0.005 0.01 0.015 0.02 0.025 0.03 

Time (seconds) 

(b) 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 216 — #4

216 Carrier Synchronization

demonstrated how to shift a complex signal using an exponential function.
Alternatively, sinusoids can be used directly if desired. In the script provided it
is important to upsample or oversample the signal first, as performed by the SRRC
filter in Code 7.2. This makes the frequency shift obvious since the main signal
energy is limited to a fraction of the bandwidth.

Code 7.2 freqShiftFFT.m

1 % General system details
2 fs = 1e6; samplesPerSymbol = 1; frameSize = 2ˆ8;
3 modulationOrder = 2; filterOversample = 4; filterSymbolSpan = 8;
4 % Impairments
5 frequencyOffsetHz = 1e5;
6 % Generate symbols
7 data = randi([0 samplesPerSymbol], frameSize, 1);
8 mod = comm.BPSKModulator(); modulatedData = mod(data);
9 % Add TX Filter

10 TxFlt = comm.RaisedCosineTransmitFilter(’OutputSamplesPerSymbol’,...
11 filterOversample, ’FilterSpanInSymbols’, filterSymbolSpan);
12 filteredData = TxFlt(modulatedData);
13 % Shift signal in frequency
14 t = 0:1/fs:(frameSize*filterOversample-1)/fs;
15 freqShift = exp(1i.*2*pi*frequencyOffsetHz*t.’);
16 offsetData = filteredData.*freqShift;

7.2 Frequency Offset Compensation

There are many different ways to design a wireless receiver, using many different
recovery techniques and arrangement of algorithms. In this section we will consider

Figure 7.3 Comparison of frequency domain signals with and without frequency offsets. (a) PSD
of BPSK signal without frequency offset, and (b) PSD of BPSK signal with 10-kHz offset.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

20 

,-... 
cc 
2, 

0 
0 
V) 

c.. 

-20 
-5 -4 -3 -2 -1 0 2 3 4 5 

Frequency (Hz) x10 5 
(a) 

20 
,-... 
cc 
2, 
0 
V) 

0 
c.. 

-20 
-5 -4 -3 -2 -1 0 2 3 4 5 

Frequency (Hz) 
x10 5 

(b) 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 217 — #5

7.2 Frequency Offset Compensation 217

Q
Change filterOversample in Code 7.2 above and observe the
spectrum. Explain what you observe. Next with the original script
increase the frequency offset in units of 0.1Fs, where Fs is the
sample rate, from 0.1Fs to 1.0Fs. Explain the observed effect.

frequency offset first and then proceed to manage the remaining synchronization
tasks. As discussed in Section 10.3, the oscillator of Pluto SDR is rated at 25
PPM. Transmitting signals in an unlicensed band, such as 2.4 GHz, can produce
a maximum offset of 120 kHz between the radios. Since this is quite a large
range we will develop a two-stage frequency compensation technique separated
into coarse and fine frequency correction. This design is favorable, since it can
reduce convergence or locking time for estimation of the relative carrier.

7.2.1 Coarse Frequency Correction
There are two primary categories of coarse frequency correction in the literature:
data-aided (DA) and blind correction. DA techniques utilize correlation type
structures that use knowledge of the received signal, usually in the form of a
preamble, to estimate the carrier offset fo. Although DA methods can provide
accurate estimates, their performance is generally limited by the length of the
preambles [3], and as the preamble length is increased this decreases system
throughput.

Alternatively, blind or nondata-aided (NDA) methods can operate over the
entire duration of the signal. Therefore, it can be argued in a realistic system NDA
can outperform DA algorithms. These coarse techniques are typically implemented
in an open-loop methodology, for ease of use. Here we will both outline and
implement a NDA FFT-based technique for coarse compensation. The concept
applied here is straightforward, and based on our initial inspection provided in
Figure 7.3, we can provide a rough estimate on the symbols offsets. However,
directly taking the peak from the FFT will not be very accurate, especially if the
signal is not symmetrical in frequency. To compensate for this fact, we will remove
the modulation components of the signal itself by raising the signal to its modulation
order M. From our model in (7.2), ignoring noise, we can observe the following:

rM(k) = sM(k)ej(2π fokT+θ)M. (7.5)

This will shift the offset to M times its original location and make s(t) purely real
or purely complex. Therefore, the sM(t) term can be ignored and only the remaining
exponential or tone will remain. To estimate the position of this tone we will take
the FFT of rM(t) and relate the bin with the most energy to the location of this tone.
Figure 7.4 is an example frequency plot of rM(t) for a BPSK signal generated from
the MATLAB Code 7.2 offset by 10 kHz. The peak is clearly visible at twice this
frequency as expected. Formally this frequency estimation can be written in a single
equation as [4]

f̂o = 1
2 T K

arg
∣∣K−1∑
k=0

rM(k)e−j2πkT/K∣∣ (7.6)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 218 — #6

218 Carrier Synchronization

Figure 7.4 Comparison of frequency domain signals with and without frequency offsets. (a) PSD
of squared BPSK signal without frequency offset, and (b) PSD of squared BPSK signal with 10-kHz
offset.

where K is the FFT length. The estimation in (7.6) is defined as coarse since the
resulting f̂o can only be one of K values produced by the FFT. However, we can
extend this accuracy by interpolating across a fixed set of FFT bins over multiple
estimates if desired. The frequency resolution of each FFT bin for the signal is simply

fr = 1
M T K

. (7.7)

Therefore, we can increase the performance of our estimator by increasing the
FFT size or by decreasing the sample rate of the system. However, do not reduce
the sample below the bandwidth of your signal of interest.

Q

What is the limitation of this method? (What happens when the
M becomes larger?) Finally, add AWGN to the receive signal at
different SNR value and examine when the peak become difficult
to determine. Provide a plot of peak estimated MSE versus SNR
for this analysis.

Implementing this method in MATLAB is straightforward and for efficiency
K should alway be the base two number for efficiency of the FFT. In Code 7.3
we produce an estimate for each K samples of data, and compensate for the
arrangement of frequencies from the fft function. When using this technique we
should also consider other aspects of the system or impacts this operation can have.
From the perspective of downstream algorithms, they will observe a frequency

Analog Devices perpetual eBook license – Artech House copyrighted material. 

20 
,-... 
c:a 
"C 10 ....., 

N 

0 
0 V'l 

c.. 

-10 
-5 -4 -3 -2 -1 0 2 3 4 5 

Frequency (Hz) xl0 5 

(a) 

20 
,-... 
c:a 
~ 10 

N 

0 
V'l 0 Cl. 

-10 
-5 -4 -3 -2 -1 0 2 3 4 5 

Frequency (Hz) xl0 5 

(b) 

□ 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 219 — #7

7.2 Frequency Offset Compensation 219

Code 7.3 fftFreqEst.m

1 %% Estimation of error
2 fftOrder = 2ˆ10; k = 1;
3 frequencyRange = linspace(-sampleRateHz/2,sampleRateHz/2,fftOrder);
4 % Precalculate constants
5 offsetEstimates = zeros(floor(length(noisyData)/fftOrder),1);
6 indexToHz = sampleRateHz/(modulationOrder*fftOrder);
7 for est=1:length(offsetEstimates)
8 % Increment indexes
9 timeIndex = (k:k+fftOrder-1).’;

10 k = k + fftOrder;
11 % Remove modulation effects
12 sigNoMod = offsetData(timeIndex).ˆmodulationOrder;
13 % Take FFT and ABS
14 freqHist = abs(fft(sigNoMod));
15 % Determine most likely offset
16 [˜,maxInd] = max(freqHist);
17 offsetInd = maxInd - 1;
18 if maxInd>=fftOrder/2 % Compensate for spectrum shift
19 offsetInd = offsetInd - fftOrder;
20 end
21 % Convert to Hz from normalized frequency index
22 offsetEstimates(est) = offsetInd * indexToHz;
23 end

correction every K samples. Ideally f̂o remains constant, but this is unlikely if
the offset is close to an FFT bin boundary. Resulting is frequency jumps in the
signal ±fr from previous signals. Unfortunately these abrupt changes can disrupt
feedback algorithm downstream, which are ill-equipped to deal to sudden shift in
frequency or phase of the signal they are estimating/correcting. To combat this we
have two main strategies. First, the estimates can be averaged over time with a filter,
smoothing out the changes over time. The second option would be to only apply
this correction at the start of a frame. Since the offset should be relatively stationary
across a reasonably sized frame, a single measurement should be accurate over that
duration of time. This correction is also considered coarse since it can only be
accurate to within fr, which only enforces this type of correction interval.

With that said a weakness of this FFT-based technique is that it requires
a significant amount of data for a reasonable estimate. This technique will
also produce unpure tones when oversampled at the transmitter with transmit
filters. However, other techniques such as from Luise [5] are designed for burst-
type applications where less data relative to the FFT method above is required.
Unfortunately, the Luise method is a biased estimator unlike the FFT method.

7.2.2 Fine Frequency Correction
After coarse frequency correction (CFC) there will still be offset based on the
configured resolution chosen fr. Fine frequency correction (FFC), also called carrier
phase correction, should produce a stable constellation for eventual demodulation.
Essentially this will drive the remaining frequency offset of the received signal to
zero. We can describe this correction as producing a stable constellation due to how
fine frequency offset effects are typically examined with a constellation diagram. If a

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 220 — #8

220 Carrier Synchronization

Q

Using loopback with Pluto SDR and Code 7.3, measure the
frequency estimate’s mean squared error as a function of the
difference between the center frequencies (fo,max) of the transmitter
and receiver. Use BSPK signal here and examine f� from 0 − 100
kHz at 1-MHz baseband sampling rate.
Repeat this, but fix the transmitter to a gain of −30 and take
estimates with the receiver in manual gain mode at 10, 30, and 50.

discrete digitally modulated signal exhibits frequency offset, this will cause rotation
over time as examined in a constellation diagram. In Figure 7.5 we demonstrate
this effect where each number relates a sample’s relative occurrence in time, which
provides this perspective of rotation. The signal itself is BPSK, causing it to jump
across the origin with different source symbols. If a positive frequency offset is
applied the rotation will be counterclockwise and clockwise with a negative offset.
The rate of the rotation is equal to the frequency offset, which is where our notion
of ω (angular frequency) comes from, as previously defined in (7.3).

This offset can also be observed with Pluto SDR in a similar way. In Figure 7.6
we transmitted a BPSK signal in loopback with 1-kHz difference between transmit
and receive LOs. We observe a similar rotation as in Figure 7.5 in Figure 7.6(b). In
order to correctly visualize this effect we needed to perform timing correction, which
was borrowed from Chapter 6. Without timing correction the signal is difficult
to interpret from the constellation plot as observed in Figure 7.6(a). Since timing
correction was performed in this case before the frequency was corrected, this
required use of the Gardner technique as detailed in Section 6.4.1. Unlike CFC,

Figure 7.5 Rotating constellation of BPSK source signal with frequency offset.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 

1.5 

I 
0 Offset data 

I * Reference constellation 
~ , 

0 8 
0 3 

0.5 
Q) 0 10 .... 

0 2 ::, ..... 
"' .... 

"O 0 * 0 1 * "' ::, 
CJ 

-0.5 
0 9 

0 4 
-1 0 6 

-1.5 
-1 0 

In-phase 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 221 — #9

7.2 Frequency Offset Compensation 221

Figure 7.6 BPSK signal transmit through Pluto SDR in loopback with 1-kHz offset at 1 MHz. (a)
BPSK signal before timing correction, and (b) BPSK signal after timing correction.

which uses a feedforward technique, for FFC we will utilize a feedback or closed-
loop method based PLL theory as examined in Chapter 4. The structure of this
algorithm is provided in Figure 6.11 derived from [6, Chapter 7], which relates
back our original outline in Figure 6.11.

This all-digital PLL-based algorithm works by first measuring the phase offset
of a received sample in the phase error detector (PED), which we call the error
signal e(n). The PED is designed based on the structure of the desired receive
constellation/symbols. Next, the loop filter helps govern the dynamics of the overall
PLL. The loop filter can determine operational frequency (sometimes called pull-
in range), lock time, and responsiveness of the PLL, as well as smoothing out the
error signal. Finally, we have the direct digital synthesizer (DDS), whose name is
a remnant of analog PLL designs with voltage-controlled oscillators (VCOs). The
DDS is responsible for generation of the correction signal for the input, which
again will be fed back into the system. In the case of the FFC design, this PLL
should eventually produce an output signal with desired offset equal to zero.

Starting with the PED, the goal of this block is simply to measure the phase or
radial offset of the input complex data from a desired reference constellation. By
reference and by extension e(n), we are actually referring to the distance from the
constellation bases. In the case of QAM, PSK, and PAM these will always be the
real and imaginary axes. However, you may need to extend this perspective with
regard to FSK or other modulation schemes. The primary reasoning behind this
idea is that it will remove the scaling aspect in a specific dimension, and instead
consider the ratio of energy or amplitude in a specific basis. To better understand
this concept let us consider QPSK, which has the following PED equation:

e(n) = sign(Re(y(n))) × Im(y(n)) − sign(Im(y(n))) × Re(y(n)). (7.8)

In (7.8) e(n) is essentially measuring the difference between the real and
imaginary portions of y(n), and will only be zero when Re(y(n)) = Im(y(n)). You
will notice that this will force the output constellation only to a specific orientation,

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.5 
Q) .... 
:::J ..... 
<ll 0 .... 

"'C 
<ll 
:::J a 

-0.5 

-1 

-1 

*•* al\ 
* 

-0.5 

* 
0 

In-phase 

(a) 

* * 

* ** 
*** * 

0.5 

* 
* * l 

* ** 

~ 
:::J ..... 

0.5 

~ 0 
"'C 
<ll 
:::J a 

-0.5 

-1 

-1 -0.5 0 
In-phase 

(b) 

0.5 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 222 — #10

222 Carrier Synchronization

but not a specific norm value. However, if y(n) requires a different orientation this
can be accomplished after passing through the synchronizer with a simple multiply
with the desired phase shift of φPOST as

ySHIFT(n) = y(n)ej∗φPOST . (7.9)

Note that ySHIFT(n) should not be fed into the PED.
In the case of other modulation schemes the PED error estimation will change

based on the desired signal arrangement. BPSK or PAM for example will have the
following error estimation:

e(n) = sign(Re(y(n))) × Im(y(n)). (7.10)

This PED error function again has the same goal of providing the error signal
only for the orientation of y(n). For (7.10) e(n) will only be zero when y(n) is purely
real.

The reasoning behind (7.8) and (7.10) is straightforward. On the other hand,
the loop filter in all PLL designs is the most challenging aspect, but it provides the
most control over the adaptation of the system. Again here we will use a PI filter
as our loop filter, which was detailed in Section 6.3.1. The last piece to this FFC
synchronizer is the DDS, which is just an integrator. Since the loop filter produces
a control signal, which is equivalent to the frequency of the input signal, it becomes
necessary to extract the phase of this signal instead. The transfer functions used for
the integrator here are

D(s) = G3
1
s

→ D(z) = G3
z−1

1 − z−1 . (7.11)

Note that we have added an additional delay of a single sample in the discrete
domain, and since we are producing a correction signal G3 = −1. Again this
integrator can be implemented with a biquad filter.

In this arrangement of the PLL shown in Figure 7.7, the system should produce
an output y(n), which has minimal phase and frequency offsets. Going around the
loop again in Figure 7.7, the PED will first produce an error equal to the phase
offset associated with the observed corrected1 symbol y(n), then the loop filter will
relate this observed error and weight it against all previous errors. Finally, the DDS
will convert the weighted error/control signal f (n) to a phase φ(n), which we use
to correct the next input sample x(n + 1). In the case of frequency offsets, φ will
continuously change since is it a phase value, not a frequency value. However, if
the input signal is too dynamic or the gains of the filters are not set appropriately,
the PLL will not be able to keep up with the changing phase (frequency) of x.

For the calculation of the gain values (G1, G2) of the loop filter, utilize the
following equations based on a preferred damping factor ζ and loop bandwidth
BLoop:

θ = BLoop

M(ζ + 0.25/ζ )
� = 1 + 2ζθ + θ2 (7.12)

1. We define this as a corrected symbol since it has passed through the rotator and we will not apply additional
phase shifts to this sample. This is also the output of the PLL.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 223 — #11

7.2 Frequency Offset Compensation 223

Figure 7.7 FFC structure based on PLL design for feedback corrections.

G1 = 4ζθ/�

M K
G2 = (4/M)θ2/�

M K
(7.13)

where M is the number of sample per symbol and K is the detector gain. For
QPSK and rectangular QAM K = 2, but for PAM and PSK K = 1. Note that
BLoop is a normalized frequency. If you are interested in how these are derived,
consult [6, Appendix C] for a full detailed analysis. For the selection of ζ refer back
to Section 6.3.1, which has the same definition here. The selection of BLoop should
be related to the maximum estimated normalized frequency locking range �f ,lock
range desired:

�f ,pull ∼ 2π
√

2ζBLoop. (7.14)

Note that this value is an estimate based off a linearized model of the PLL.
Therefore inconsistencies may exist in the simulated versions. However, this PLL
design should perform well even under strong noise conditions when configured
correctly. Unlike the CFC correction this FFC will generally not have the same
operational range. In your designs, it may be useful to start with a damping factor
of ζ = 1 and a loop bandwidth of BLoop = 0.01. From experience, using an
overdamped system here is preferable since it directly increases the pull-in range.
However, it will take the loop longer to converge.

Q
Starting from Code 7.4 implement a carrier recovery algorithm
for BPSK. Tune this implementation for a normalized frequency
offset of 0.001 and 0.004. Evaluate these implementations over a
range of SNR for the MSE of their frequency estimates.

We now have all the necessary pieces to implement the FFC synchronizer,
for which we provide a full reference implementation in Code 7.4. However, it
is important to discuss some of the design considerations. First, we have stated
the output of the FFC synchronizer can have a target of a specific orientation of
the output constellation, which is solely determined by the PED. However, the
synchronizer may not always be able to achieve this target constellation orientation,
meaning the constellation may appear slightly rotated or appear at multiples of
the expected position. This will result from signals with larger carrier offsets
than the FFC was configured to handle or most notably when the system is
configured in an underdamped way. Alternatively, if the received signal has poor

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 

Direct digital 
synthesizer f(n) 

Loop filter 
e(n) 

Phase error 
detector 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 224 — #12

224 Carrier Synchronization

SNR this will also degrade the effective pull-in-range of the synchronize of cause a
nondesirable lock position. This is illustrated in Code 7.4, where two different ζ

configurations are used. The system is also driven close to the estimated maximum
offset for the configuration. In general these estimates will be conservative and
will require empirical testing for a specific modulation scheme, SNR, and loop
filter configuration. However, in this case if we examine the converged signals in
Figure 7.8 we notice an interesting set of outcomes. In Figure 7.8(b) the constellation
actually converges to a false minimum. This is a result of the dynamics of the PLL,
which is in an underdamped state. Forcing the system to be more rigid will provide
the correct result as in Figure 7.8(a). However, if ζ is too large the synchronize will
not converge or can take a very long time to do so.

Q

Introduce timing offset into the model for Code 7.4. For the
recovery process take your implementation from Chapter 4 for
timing recovery and place this into the system. Evaluate these
implementations over a range of SNR for the MSE of their
frequency estimates.

When implementing and testing your own system it can be useful to actually
measure the frequency estimation of the synchronizer itself. Since we know that the
output of the DDS φ is the instantaneous phase correction needed for the next
symbol, we can simply apply (7.3) with similar computations as in Code 7.1.
From the angular frequency estimates we can translate this to a more tangible
frequency estimate in hertz as in (7.3). From inspecting the derivative of Phase
(φ) for Code 7.4 we can examine the convergence of the estimate for an offset of
20 Hz with fs = 1000 Hz. In Figure 7.9 we plot fest where there is an obvious
convergence around the correct value. However, since the signal contains noise and
there is inherent noise to the PLL, the estimate will not be static. This is useful in
a real system since the offsets between transmitter and receiver LOs will always be
dynamic with respect to one another.

7.2.3 Performance Analysis
To evaluate the synchronization performance a number of variables can be
considered. These include but are not limited to lock time, effective pull-in range,
and converged error vector magnitude (EVM). These metrics should be balanced
in a way that meets the needs for a specific design since they will clash with one
another. For example, it can be simple to design a system with a fast lock time,
but it will probably have limited pull-in range. This is a direct relation to (7.14)
and a secondary measurement from [6, Appendix C], which defines the normalized
frequency lock delay:

t�,Max ∼ 32ζ 2

BLoop
. (7.15)

We can demonstrate this trade-off between ζ and BLoop if we focus on the error
signal directly from the PED. Modifying the code from 7.4 by fixing the normalized
carrier offset to 0.01, ζ = 1.3, and selecting two different values for BLoop we

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 225 — #13

7.2 Frequency Offset Compensation 225

Figure 7.8 Converged QPSK signals after carrier recovery with different damping factors, both
(a) overdamped (ζ = 1.3), and (b) underdamped (ζ = 0.9).

Figure 7.9 Estimations over time and eventual convergence of implemented FFC for 20-Hz offset.

Q

Based off your existing simulation solutions that recover signals
with both timing and carrier offset, introduce Pluto SDR
as the channel mechanism. It may be useful to start with
Code 6.1 and 7.4. Evaluate your implementation in loopback with
increasing frequency difference between transmit and receive LOs.

can observe e(n) in Figure 7.10. In both configurations of BLoop the normalized
offset is less than �f ,pull. In the case for BLoop = 0.24, the system converges to a
solution within a few tens of samples, while the BLoop = 0.03 case is an order of
magnitude slower. However, the variance of the converged error signal σ 2

e is three
times smaller for the case when BLoop = 0.03. This error will appear as phase noise
on y(n), which will affect the demodulation correctness of the signal.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.8 -~ 0.6 .. . :..' 

~ 
0.4 

:::J 
0.2 ..... 

~ 
"C 
Ill 0 
:::J 
Cf -0.2 

-0.4 

-0.6 :•· -0.8 

-0.5 0 
In-Phase 

(a) 

25 

20 

15 
N 

::c 
10 ..... 

(lJ 

tE 
0 5 

0 

-5 

-10 
0 

□ 

·♦ 
0.5 

(lJ .... 
:::J 
+-' 

~ 0 
"C 
Ill 
:::J 
Cf 

-0.5 

. .-♦. ,, .. ·· -1 

0.5 

2 
Estimate 

~ 

-1 -0.5 

3 

.. =-

0 

In-Phase 

(b) 

4 

x10 4 

.... 
·* 
;;;· 

.'.i y;,· :• 
.... 

0.5 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 226 — #14

226 Carrier Synchronization

Figure 7.10 Error signal from QPSK PED for different loop bandwidth for time. (a) BLoop = 0.24
with σ 2

e = 0.0103 after convergence, and (b) BLoop = 0.03 with σ 2
e = 0.0031 after convergence.

7.2.4 Error Vector Magnitude Measurements
Evaluating the EVM for y(n) will provide a measure of this phase noise in the
recovered signal. EVM is a very useful measurement to understand the algorithmic
performance in the system. EVM measures the residual error of the constellation
with respect to a reference position. To calculate EVM in percent RMS we can use
the following equation:

EVMRMS = 100 ×
√√√√N−1∑

k=0

econst(k)

N−1∑
k=0

(Re(ȳ(k))2 + Im(ȳ(k))2), (7.16)

where

econst(k) = (Re(y(k)) − Re(ȳ(k)))2 + (Im(y(k)) − Im(ȳ(k)))2 (7.17)

and ȳ(k) is the reference symbol for y(k). EVM is a measure on the dispersiveness
of the received signal. Therefore, the lower the EVM values the better. In some
situations it can be useful to calculate EVM in decibels, which can be converted

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.5 
.... 
e 
Q) 0 
0 
LU 
c.. 

-0.5 

-1 
~---~---~---~----~--~ 

0 200 

0.5 
.... 
e 
Q) 0 
0 
LU 
c.. 

-0.5 

-1 

0 200 

400 

400 

Time 
(a) 

Time 
(b) 

600 

600 

800 1000 

800 1000 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 227 — #15

7.2 Frequency Offset Compensation 227

Code 7.4 badlock.m

1 %% General system details

2 sampleRateHz = 1e6; samplesPerSymbol = 1; frameSize = 2ˆ10;

3 numFrames = 10; nSamples = numFrames*frameSize;

4 DampingFactors = [0.9,1.3]; NormalizedLoopBandwidth = 0.09;

5 %% Generate symbols

6 order = 4; data = pskmod(randi([0 order-1], nSamples, 1),order,0); % QPSK

7 %% Configure LF and PI

8 LoopFilter = dsp.IIRFilter(’Structure’, ’Direct form II transposed’, ...

9 ’Numerator’, [1 0], ’Denominator’, [1 -1]);

10 Integrator = dsp.IIRFilter(’Structure’, ’Direct form II transposed’, ...

11 ’Numerator’, [0 1], ’Denominator’, [1 -1]);

12 for DampingFactor = DampingFactors

13 %% Calculate range estimates

14 NormalizedPullInRange = min(1, 2*pi*sqrt(2)*DampingFactor*...

15 NormalizedLoopBandwidth);

16 MaxFrequencyLockDelay = (4*NormalizedPullInRangeˆ2)/...

17 (NormalizedLoopBandwidth)ˆ3;

18 MaxPhaseLockDelay = 1.3/(NormalizedLoopBandwidth);

19 %% Impairments

20 frequencyOffsetHz = sampleRateHz*(NormalizedPullInRange);

21 snr = 25; noisyData = awgn(data,snr);% Add noise

22 % Add frequency offset to baseband signal

23 freqShift=exp(1i.*2*pi*frequencyOffsetHz./sampleRateHz*(1:nSamples)).’;

24 offsetData = noisyData.*freqShift;

25 %% Calculate coefficients for FFC

26 PhaseRecoveryLoopBandwidth = NormalizedLoopBandwidth*samplesPerSymbol;

27 PhaseRecoveryGain = samplesPerSymbol;

28 PhaseErrorDetectorGain = log2(order); DigitalSynthesizerGain = -1;

29 theta = PhaseRecoveryLoopBandwidth/...

30 ((DampingFactor + 0.25/DampingFactor)*samplesPerSymbol);

31 delta = 1 + 2*DampingFactor*theta + theta*theta;

32 % G1

33 ProportionalGain = (4*DampingFactor*theta/delta)/...

34 (PhaseErrorDetectorGain*PhaseRecoveryGain);

35 % G3

36 IntegratorGain = (4/samplesPerSymbol*theta*theta/delta)/...

37 (PhaseErrorDetectorGain*PhaseRecoveryGain);

38 %% Correct carrier offset

39 output = zeros(size(offsetData));

40 Phase = 0; previousSample = complex(0);

41 LoopFilter.release();Integrator.release();

42 for k = 1:length(offsetData)-1

43 % Complex phase shift

44 output(k) = offsetData(k+1)*exp(1i*Phase);

45 % PED

46 phErr = sign(real(previousSample)).*imag(previousSample)...

47 - sign(imag(previousSample)).*real(previousSample);

48 % Loop Filter

49 loopFiltOut = step(LoopFilter,phErr*IntegratorGain);

50 % Direct Digital Synthesizer

51 DDSOut = step(Integrator,phErr*ProportionalGain + loopFiltOut);

52 Phase = DigitalSynthesizerGain * DDSOut;

53 previousSample = output(k);

54 end

55 scatterplot(output(end-1024:end-10));title(’’);

56 end

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 228 — #16

228 Carrier Synchronization

from (7.16) as

EVMdB = 20 log10

(EVMRMS

100

)
. (7.18)

Calculating EVM in decibels is very common in OFDM standards due to high-order
constellations that can be transmitting, which require a significant EVM margin
to recover. For convience, the Communications System Toolbox include a system
object called comm.EVM to provide these calculations for us.

Q
Starting with Code 7.4, evaluate the EVM of converged signals
with regard to ζ and BLoop. Select values of ζ in underdamped,
overdamped, and critically damped configurations.

7.3 Phase Ambiguity

The last topic to consider for carrier synchronization is phase ambiguity. Phase
ambiguity arises from the fact that the FFC synchronizer outlined here is blind to
the true orientation of the transmitted signal. For a given symmetrical modulation
scheme there can be a number of convergent orientations, which can be related
to the modulation order. For example, PAM will have two possible orientations,
QPSK and rectangular QAM will have four, while MPSK with have M possible
orientations. However, there are a number of solutions to compensate for this
problem, which includes code words, use of an equalizer with training data, and
differential encoding. There are different use cases for each implementation.

7.3.1 Code Words
The use of code words is a common practice for resolution of phase ambiguity,
which relies on a known sequence in the received data. This is typically just the
preamble itself, which will exist in each frame and is known at the receiver. This
strategy can be used before or after demodulation if desired. If performed post
demodulation, the output bits must be remapped onto their true positions. This
process is best explained through an example. Consider the source words w and
associated QPSK symbols s:

w = [1, 0, 3] s = [(−1, 1i) (1, 1i) (−1, −1i)]. (7.19)

The possible received symbols would be

s1 = [(−1, 1i) (1, 1i) (−1, −1i)]
s2 = [(−1, −1i) (−1, 1i) (1, −1i)]
s3 = [(1, −1i) (−1, −1i) (1, 1i)]
s4 = [(1, 1i) (1, −1i) (−1, 1i)].

(7.20)

Demodulating each code word symbol and comparing with the expected result
would provide the necessary mapping to correctly demodulate the remaining data
symbols. For an implementation it would be useful to demodulate all the preamble

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I □ 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 229 — #17

7.4 Chapter Summary 229

symbols and take the most common orientation mapping, since relying on a single
symbol can be error-prone.

Alternatively, the phase offset θp from the correct orientation can be measured
directly where p is the received preamble symbols, pr is the reference or true
preamble symbols, and the correction required is simply

θp = tan−1
(∑

n

Im(p(n)∗ × pr(n))

Re(p(n)∗ × pr(n))

)
, (7.21)

assuming p(n) has a desirable orientation. Then the remaining signal y would be
corrected as

yc = y e−jθp . (7.22)

7.3.2 Differential Encoding
The second option to deal with phase ambiquity is to differentially encode the source
bits themselves. The goal here is to make the true data dependent on the difference
between successive bits, not on the received bits themselves. To encode the source
data we apply the following at the transmitter:

bt(n) = bt(n − 1) ⊕ b(n), (7.23)

where bt are the transmitted encoded bits, b are the uncoded bits, and ⊕ is a modulo
two addition. To decode the signal we basically perform (7.23) in reverse as

b(n) = bt(n) ⊕ bt(n − 1). (7.24)

Usually in this scheme the first bit is ignored since it is only based on itself, not
the difference between two consecutive bits. Engineers may point to this as wasteful,
but this reduces any complex mathematics associated with measuring offsets with
symbols and only requires bit-level operations. This can also reduces the bit error
rate of a received signal due to propagation of bit errors.

7.3.3 Equalizers
The third popular option is to rely on an equalizer to correct this ambiguity for the
system. Using training data the equalizer can learn and correct for this phase shift,
which in essence is just a complex multiplication. Equalizers will be discussed in
detail in Chapter 9. However, this is a small task for an equalizer implementation
if channel correct or synchronization are not performed by the equalizer as well.

7.4 Chapter Summary

In this chapter we have discussed and provided a model of carrier offset and how
it relates to receiver operations. From this model we have provided two schemes
for compensating for carrier offset including coarse and fine recovery algorithms.
However, other implementations do exist that can jointly perform timing and carrier
recovery [6] if desired. We have examined how these algorithms can be used at the
system level, as well as how individual performance can be evaluated. These include
characterization of their parameterization as well as metric on the recovered data.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 230 — #18

230 Carrier Synchronization

In summary, carrier offset compensation is a necessary synchronization technique
when transmitting data between two disjoint nodes with independent LOs.

References

[1] Analog Devices, Inc., ADALM-PLUTO SDR Active Learning Module,
http://www.analog.com/media/en/news-marketing-collateral/product-highlight/ADALM-
PLUTO-Product-Highlight.pdf.

[2] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Prentice Hall, 1989.
[3] Morelli, M., and U. Mengali, “Feedforward Frequency Estimation for PSK: A Tutorial

Review,” European Transactions on Telecommunications, Vol. 9, No. 2, 1998,
pp. 103–116.

[4] Wang, Y., K. Shi, and E. Serpedin,“Non-Data-Aided Feedforward Carrier Frequency
Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,”
EURASIP Journal on Advances in Signal Processing, (2004) 2004: 856139,
https://doi.org/10.1155/S1110865704403175.

[5] Luise, M. and R. Reggiannini, “Carrier Frequency Recovery in All-Digital Modems for
Burst-Mode Transmissions,” IEEE Transactions on Communications, Vol. 43, No. 2,
1995, pp. 1169–1178.

[6] Rice, M., Digital Communications: A Discrete-Time Approach, Third Edition,
Pearson/Prentice Hall, 2009.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 231 — #1

C H A P T E R 8

Frame Synchronization and
Channel Coding

In this chapter we will cover the topics of frame synchronization and channel coding.
First, frame synchronization will be discussed to complete our full reception of data
from the transmitter. As in Chapter 7, which required timing recovery to realize, for
frame synchronization to be accomplished, it requires that the signal has been timing
and frequency corrected. However, once frame synchronization has been completed
we can fully decode data over our wireless link. Once this has been accomplished,
we can move on toward channel coding, where we will discuss popular coding
techniques and some of the implementation details from the perspective of a system
integrator.

With regard to our receiver outline in Figure 8.1, this chapter will address the
second-to-last block, Frame Sync, which is highlighted.

8.1 O Frame, Where Art Thou?

In previous chapters we have discussed frequency correction, timing compensation,
and matched filtering. The final aspect of synchronization is frame synchronization.
At this point it is assumed that the available samples represent single symbols
and are corrected for timing, frequency, and phase offsets. However, since in a
realistic system the start of a frame will still be unknown, we need to perform an
additional correction or estimation. We demonstrate this issue visually in Figure 8.2,
which contains a sample synchronized frame with an unknown offset of p samples.
Mathematically, this is simply an unknown delay in our signal y:

u[n] = y[n − p], (8.1)

where p ∈ Z. Once we have an estimate p̂ we can extract data from the desired
frame, demodulated to bits, and perform any additional channel decoding or
source decode originally applied to the signal. There are various way to accomplish
this estimation but the implemented outline in this chapter is based around
cross-correlation.

Depending on the receiver structure and waveform it may be possible to perform
frame synchronization after demodulation, where we mark the start of a frame
with a specific sequence of bits. However, this cannot be used if symbols are
required downstream for an equalizer or if the preamble contains configuration
parameters for downstream modulation. This is the case in IEEE 802.11 [1], where
the preamble can have a different modulation than the payload. Alternatively, if the
system is packet-based and does not continuously transmit data it can be difficult

231

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 232 — #2

232 Frame Synchronization and Channel Coding

Figure 8.1 Receiver block diagram.

Figure 8.2 Example received frame in AWGN with an unknown sample offset.

to distinguish noise from actual received signal. However, if only bits are consult
the relative gain of the signal is removed, which is information that is useful when
determining if signal is present.

8.2 Frame Synchronization

The common method of determining the start of a given frame is with the use of
markers, even in wired networking. However, in the case of wireless signals, this
problem becomes more difficult, as made visible in Figure 8.2, which actually uses
a marker. Due to the high degree of noise content in the signal, specifically designed
preamble sequences are appended to frames before modulation. Such sequences are
typically known exactly at the receiver and have certain qualities that make frame
estimation accurate. In Figure 8.3 we outline a typical frame ordering containing
preamble, header, and payload data. Header and payloads are unknown are the
receiver, but will maintain some structure so they can be decoded correctly.

Before we discuss the typical sequences utilized we will introduce a technique
for estimation of the start of a known sequence starting at an unknown sample in
time. Let us consider a set of N different binary sequences bn, where n ∈ [1, ..., N

]
,

each of length L. Given an additional binary sequence d, we want to determine
how similar d is to the existing N sequences. The use of a cross correlation would
provide us the appropriate estimate, which we perform as

Cd,b(k) =
∑
m

d∗(m)bn(m + k), (8.2)

which is identical to a convolution without a time reversal on the second term.
When d = bn for a given n, Cd,b will be maximized compared with the other n − 1

Analog Devices perpetual eBook license – Artech House copyrighted material. 

4 

3 

-2 

-3 

-4 

CFC 

0.2 

Matched 
filter 

0.4 0 .6 

Timing 
recovery 

0.8 

Carrier 
recovery 

1 1.2 

Time (s) 

I 
I 

, Frame sync 

1.4 1.6 

Equalization 

1.8 2 

x1Q -3 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 233 — #3

8.2 Frame Synchronization 233

Figure 8.3 Common frame structure of wireless packet with preamble followed by header and
payload data.

sequences, and produce a peak at Lth index at least. We can use this concept to help
build our frame start estimator, which as discussed will contain a known sequence
called the preamble.

Common sequences utilized in preambles for narrowband communications are
Barker codes [2]. Barker codes are utilized since they have unique autocorrelation
properties that have minimal or ideal off-peak correlation. Specifically, such codes
or sequences a(i) have autocorrelation functions defined as

c(k) =
N−k∑
i=1

a(i)a(i + k), (8.3)

such that

|c(v)| ≤ 1, 1 ≤ v < N. (8.4)

However, only nine sequences are known N ∈ [1, 2, 3, 4, 5, 7, 11, 13
]
, provided

in Table 8.1. We provide a visualization of these autocorrelations in Figure 8.5 for
a select set of lengths. As the sequence becomes longer the central peak becomes
more pronounced. For communication systems we typically append multiple such
codes together to produce longer sequences for better performance, as well as for
other identifications.

Using these codes we have implemented a small example to show how a Barker
sequence a(k) can be used to locate sequences in a larger set of data r(k), which
we have provided in Code 8.1. In this example we insert a Barker code within
a larger random sequence at an unknown position p, similar to our original error
model in Section 8.1, shown as Figure 8.4(a). A cross correlation is performed using
MATLAB’s xcorr function, provided in Figure 8.4(b). The cross correlation will
be of length 2Lr − 1, where Lr is the length of r. Since xcorr will pad zeros to a
so its length is equal to Lr [3], this will result in at least Lr − La zeros to appear in
the correlation where La is the original length of a. From Figure 8.5, we know that
the peak will appear at La samples from the start of the sequence. Taking this into
account we can directly determine at what offset position of our desired sequence:

p̂ = argmax
k

Cra(k) − Lr, (8.5)

which is what we observe from our estimates in Figure 8.4(a).
The xcorr function is a useful tool in MATLAB and will actually utilize the

fft function for large sequences for performance. Since we know from Chapter 2
that convolution is just a multiplication in the frequency domain, and from above
the relation of correlation and convolution, this strategy is obvious for xcorr.
However, the process actually inflates the data processed since the sequences must
be of equal length for correlation. We can observe inflation from the zeros in

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I Pceamble I Heade, I Payload 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 234 — #4

234 Frame Synchronization and Channel Coding

Table 8.1 Barker Codes from comm.BarkerCode
N Code
2 −1, +1
3 −1, −1, +1
4 −1, −1, +1, −1
5 −1, −1, −1, +1, −1
7 −1, −1, −1, +1, +1, −1, +1
11 −1, −1, −1, +1, +1, +1, −1, +1, +1, −1, +1
13 −1, −1, −1, −1, −1, +1, +1, −1, −1, +1, −1, +1, −1

Figure 8.4 Example of using cross correlation to find a sequence with a larger sequence of data.
(a) Random bit sequence with Barker code embedded at delay p, and (b) crosscorrelation of Barker
code with random sequence containing code.

Figure 8.4(b). A more efficient implementation would be to utilize a filter. The
output y of an FIR filter with taps bi can be written as

y[n] =
N∑

i=0

bi u[n − i], (8.6)

where u is our received signal that contains the sequence of interest. Equation (8.6)
is almost identical to (8.2) except for a time reversal. Therefore, to use an FIR filter

Analog Devices perpetual eBook license – Artech House copyrighted material. 

----0 True start 
2 -------llf Estimated start 

0 

-1 

-2 

-3 
0 50 100 150 200 250 300 350 

Samples 
(a) 

30 

Zeros lag ----0 True peak position 

20 -------llf Estimated peak position 

10 

0 

-10 

-20 
0 100 200 300 400 500 600 700 

Samples 

(b) 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 235 — #5

8.2 Frame Synchronization 235

Code 8.1 Barker Sequence Example: barkerBits13.m

1 % Show Barker Autocorrelations search example

2 sequenceLength = 13;

3 hBCode = comm.BarkerCode(’Length’,7,’SamplesPerFrame’, sequenceLength);

4 seq = hBCode(); gapLen = 100; gapLenEnd = 200;

5 gen = @(Len) 2*randi([0 1],Len,1)-1;

6 y = [gen(gapLen); seq; gen(gapLenEnd)];

7 corr = xcorr(y,seq);

8 L = length(corr);

9 [v,i] = max(corr);

10 % Estimation of peak position

11 % The correlation sequence should be 2*L-1, where L is the length of the

12 % longest of the two sequences

13 %

14 % The first N-M will be zeros, where N is the length of the long sequence

15 % and N is the length of the shorter sequence

16 %

17 % The peak itself will occur at zero lag, or when they are directly

as a cross correlator we could simply replace bi with the sequence of interest, but
in reverse order. This implementation would not require padding of the sequence
of interest d, and can be efficiently implemented in hardware.

Q Based on Code 8.1, reimplement the sequence search with an FIR
filter.

8.2.1 Signal Detection
Now that we have a method for estimating the start of a frame, let us consider a
slightly simpler problem. Can we determine that a frame exists in the correlation?
This can be useful if wish to handle data in smaller pieces rather than working with
complete frames, or possibly a mechanism for determining if a channel is occupied.
When we consider signal detection, we typically define this feature as a power
sensitivity or the minimum received power at the receiver to be detected. However,
this sensitivity will be based on some source waveform and cannot be generalized in
most cases. Therefore, such a value should never be given on its own, unless given
with respect to some standard transmission. Even when considering formal methods
of detection theory, such as Neyman-Pearson or even Bayesian, you must have some
knowledge or reference to the source signal [4]. The receiver sensitivity requirement
for IEEE 802.11ac specifically is defined as the minimum received signal power to
maintain a packet error rate of 10%, for a give modulation and coding scheme [1].

In a formal mathematic context, this process devolves into a simple binary
hypothesis test:

H0 : no signals,

H1 : signals exist, (8.7)

where H0 is usually referred to as a null hypothesis and H1 is usually called an
alternative hypothesis.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I □ 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 236 — #6

236 Frame Synchronization and Channel Coding

Figure 8.5 Comparison of autocorrelations of Barker sequences of different lengths. (a) N = 5,
(b) N = 7, (c) N = 11, and (d) N = 13.

For a null hypothesis, since there are no primary signals present, the received
signal is just the noise in the RF environment. On the other hand, for the alternative
hypothesis, the received signal would be the superposition of the noise and the
primary signals. Thus, the two hypotheses in (8.14) can be represented as

H0 : r[n] = n[n],
H1 : r[n] = x[n] + n[n], (8.8)

where r[n] is the received signal, n[k] is the noise in the RF environment, and x[n]
is the signal we are trying to detect. Based on the observation r, we need to decide
among two possible statistical situations describing the observation, which can be

Analog Devices perpetual eBook license – Artech House copyrighted material. 

20 

L. 
L. 

0 10 u 
0 .... 
::J 
<( 

0 
0 5 10 15 20 25 

Samples 
(a) 

20 

L. 
L. 

0 10 u 
0 .... 
::J 
<( 

0 
0 5 10 15 20 25 

Samples 
(b) 

20 
L. 
L. 

0 
u 
0 10 .... 
::J 
<( 

0 
0 5 10 15 20 25 

Samples 
(c) 

20 

L. 

0 10 u 
0 .... 
::J 
<( 

0 
0 5 10 15 20 25 

Samples 
(d) 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 237 — #7

8.2 Frame Synchronization 237

expressed as

δ(x) =
{

1 x ∈ �1,
0 x ∈ �c

1.
(8.9)

When the observation x falls inside the region �1, we will choose H1. However,
if the observation falls outside the region �1, we will choose H0. Therefore, (8.9)
is known as decision rule, which is a function that maps an observation to an
appropriate hypothesis [5]. In the context of packet detection, thresholding is
actually the implementation of a decision rule.

Regardless of the precise signal model or detector used, sensing errors are
inevitable due to additive noise, limited observations, and the inherent randomness
of the observed data [6]. In testing H0 versus H1 in (8.14), there are two types of
errors that can be made; namely, H0 can be falsely rejected or H1 can be falsely
rejected [5]. In the first hypothesis, there are actually no signals in the channel, but
the testing detects an occupied channel, so this type of error is called a false alarm
or Type I error. In the second hypothesis, there actually exist signals in the channel,
but the testing detects only a vacant channel. Thus, we refer to this type of error
as a missed detection or Type II error. Consequently, a false alarm may lead to a
potentially poor data recovery, while a missed detection ignores an entire frame of
data requiring retransmission [6].

Given these two types of errors, the performance of a detector can be
characterized by two parameters; namely, the probability of false alarm (PF), and
the probability of missed detection (PM) [7], which correspond to Type I and Type
II errors, respectively, and thus can be defined as

PF = P{Decide H1|H0}, (8.10)

and
PM = P{Decide H0|H1}. (8.11)

Note that based on PM, another frequently used parameter is the probability of
detection, which can be derived as follows:

PD = 1 − PM = P{Decide H1|H1}, (8.12)

which characterizes the detector’s ability to identify the primary signals in the
channel, so PD is usually referred to as the power of the detector.

As for detectors, we would like their probability of false alarm to be as low as
possible, and at the same time, their probability of detection as high as possible.
However, in a real-world situation, this is not achievable, because these two
parameters are constraining each other. To show their relationship, a plot called
receiver operating characteristic is usually employed [8], as shown in Figure 8.6,
where its x-axis is the probability of false alarm and its y-axis is the probability of
detection. From this plot, we observe that as PD increases, the PF is also increasing.
Such an optimal point that reaches the highest PD and the lowest PF does not exist.
Therefore, the detection problem is also a trade-off, which depends on how the
Type I and Type II errors should be balanced.

When we consider the implementation consequences of detecting a signal, our
design become more complicated than for example from Code 8.1. In the most
basic sense detection becomes a thresholding problem for our correlator. Therefore,

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 238 — #8

238 Frame Synchronization and Channel Coding

Figure 8.6 A typical receiver operating characteristic, where the x-axis is the probability of false
alarm (PF), and the y-axis is the probability of detection (PD).

the objective becomes determining a reference or criteria for validating a peak,
which can be radically different over time depending on channel noise and the
automatic gain control of the Pluto SDR. However, even in simulations appropriate
thresholding becomes nontrivial, which we can demonstrate with Figure 8.7(a)
and 8.7(b). In these figures the peak appears larger relative to the rest of the
correlation in the case where no frame exists in the receive signal compared to
the condition when a frame exists. Therefore, for an implementation that performs
well it should handle such conditions and operate regardless of the input scaling.

A common technique to aid with this thresholding process is to self-normalize
the received signal. If we look back at Figure 8.7, we will notice that the magnitude
can be quite different, which makes thresholding even more difficult. If we self-
normalize the signal we can force it into a range closely between ∈ [0, 1]. A simple
way to accomplish this operation is to scale our cross-correlation metric Cy,x by
the mean energy of the input signal x. To do this in an efficient way we can again
utilize filtering to accomplish this task by implementing a moving average filter.
Mathematically, this moving averaging would be modeled as another sum:

uma[n] =
N∑

i=0

u[n − i], (8.13)

where N is the length of the preamble or sequence of interest. A useful aspect of
(8.6) and (8.13) is that these are simple FIR filter implementations, making them
simple to implement in hardware. In fact (8.13) requires no multiplication like the
CIC filter discussed in Section 2.6.4. This aspect is import since in many systems
this frame synchronize may also be used as packet detection mechanism at the front
of the receiver, requiring it to run at the fastest rate of the input data without
decimation. Combining our correlator from (8.6) and scaler from (8.13) we can

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0.9 

0.8 

0..0 
0.7 

C 
0 

'.µ 
u 0.6 QJ ..... 
QJ 

"Cl 
0.5 ..... 

0 

g 
ii 

0.4 

"' ..0 0.3 e 
CL 

0.2 

0.1 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Probability of false alarm PF 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 239 — #9

8.2 Frame Synchronization 239

Figure 8.7 Example of false peaks in a cross-correlation sequence search. (a) Correlation without
signal present, and (b) Correlation with signal present.

write our detector as

H0 :
y[n]

uma[n] < T no signals,

H1 :
y[n]

uma[n] ≥ T signals exist, (8.14)

where T is our threshold value.
In MATLAB code lst:findSignalStartTemplate we have provided

a template that nicely compensates for the transmit filter delay in the system,
providing the true delay of a given packet at the receiver.

Q
From the code provided in 8.2, implement a preamble start
estimator using xcorr and the filter function. Evaluation the
estimation accuracy over SNRs ∈ [0, 12] dB in single dB steps.

8.2.2 Alternative Sequences
Besides Barker sequences, there are other sequences that have similar properties
of minimal cross correlation except at specific instances. Two popular options are
Zadoff-Chu sequences and Golay complementary sequences, which are currently
both part of existing wireless standards.

Zadoff-Chu sequences, named after authors Solomon Zadoff and David
Chu [9], are used for LTE synchronization and channel sounding operations. They
are useful since they have a constant amplitude, zero circular autocorrelation,
and very low correlation between different sequences. This properly of limited
correlation between themselves is useful in a multiaccess environment where many
users can transmit signals. Mathematically, the sequence numbers are generated as

sn = exp
(

− j
π k n (n + 1 + 2q)

L

)
, (8.15)

where L is the sequence length, n the sequence index, q and integer, and k, which
is coprime with L. Unlike Barker sequences, which are purely integers 1 or −1,
Zadoff-Chu sequences are complex valued.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

25~--~--~-------~---_-_-_-_---:__-_-_-_-~~ 
----0 Correlation ----0 Correlation 

14 ----0 Peak ----0 Peak 

20 
12 

QJ 

] 15 

·1: 
Cl 

"' ::i: 10 

50 100 150 200 250 300 50 100 150 200 250 300 
Samples Samples 

(a) (b) 

I □ 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 240 — #10

240 Frame Synchronization and Channel Coding

Code 8.2 Loopback Pluto Example: findSignalStartTemplate.m

1 %% General system details

2 sampleRateHz = 1e6; samplesPerSymbol = 8; numFrames = 1e2;

3 modulationOrder = 2; filterSymbolSpan = 4;

4 barkerLength = 26; % Must be even

5 %% Impairments

6 snr = 15;

7 %% Generate symbols and Preamble

8 bits = randi([0 3], modulationOrder*1e3,1);

9 hBCode = comm.BarkerCode(’Length’,7,’SamplesPerFrame’, barkerLength/2);

10 barker = hBCode()>0; frame=[barker;barker;bits];frameSize = length(frame);

11 % Modulate

12 modD = comm.DBPSKModulator(); bMod = clone(modD);

13 modulatedData = modD(frame);

14 %% Add TX/RX Filters

15 TxFlt = comm.RaisedCosineTransmitFilter(...

16 ’OutputSamplesPerSymbol’, samplesPerSymbol,...

17 ’FilterSpanInSymbols’, filterSymbolSpan);

18 RxFlt = comm.RaisedCosineReceiveFilter(...

19 ’InputSamplesPerSymbol’, samplesPerSymbol,...

20 ’FilterSpanInSymbols’, filterSymbolSpan,...

21 ’DecimationFactor’, samplesPerSymbol);

22 RxFltRef = clone(RxFlt);

23 %% Setup visualization object(s)

24 hts1 = dsp.TimeScope(’SampleRate’, sampleRateHz,’TimeSpan’, ...

25 frameSize*2/sampleRateHz);

26 hAP = dsp.ArrayPlot;hAP.YLimits = [-3 35];

27 %% Demodulator

28 demod = comm.DBPSKDemodulator;

29 %% Model of error

30 BER = zeros(numFrames,1);PER = zeros(numFrames,1);

31 for k=1:numFrames

32 % Insert random delay and append zeros

33 delay = randi([0 frameSize-1-TxFlt.FilterSpanInSymbols]);

34 delayedSignal = [zeros(delay,1); modulatedData;...

35 zeros(frameSize-delay,1)];

36 % Filter signal

37 filteredTXDataDelayed = TxFlt(delayedSignal);

38 % Pass through channel

39 noisyData = awgn(filteredTXDataDelayed,snr,’measured’)

40 % Filter signal

41 filteredData = RxFlt(noisyData);

42 % Visualize Correlation

43 hts1(filteredData);pause(0.1);

44 % Remove offset and filter delay

45 frameStart = delay + RxFlt.FilterSpanInSymbols + 1;

46 frameHatNoPreamble = filteredData(frameStart:frameStart+frameSize-1);

47 % Demodulate and check

48 dataHat = demod(frameHatNoPreamble);

49 demod.release(); % Reset reference

50 BER(k) = mean(dataHat-frame);PER(k) = BER(k)>0;

51 end

52 % Result

53 fprintf(’PER %2.2fn’,mean(PER));

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 241 — #11

8.3 Putting the Pieces Together 241

The second sequence of interest are Golay complementary sequences, which
are currently used in IEEE 802.11ad. Again they are used for channel estimation
and synchronization within the preamble of IEEE 802.11ad packets. Golay
complementary sequences are sequences of bipolar symbols with minimal
autocorrelation properties. Therefore, they have a very similar to concept to Barker
codes. However, as the name suggests these sequences come in complementary pairs
that are typically denoted as Gan and Gbn, where n is the sequence length. IEEE
802.11ad uses pairs Ga32, Ga64, and Gb64. Using these sequences with BPSK is
exceptional since performing the autocorrelations under even severe phase rotation
is high. Another important aspect with Golay or specifically Ga and Gb sequence
pairs is that their autocorrelation can be performed in parallel in hardware. This
is very useful for a standard like 802.11ad, which is targeting transfer rates of 7
Gbits/s [10]. Building on this concept of minimal autocorrelation pairs and parallel
processing of sequences, the preamble in IEEE 802.11ad can be used to provide
signaling information to the receiver just based on its autocorrelation properties.
This means that depending on the packet type a correlator bank can be used to
identify that specific structure, conditioning the processing receiver to a specific
decoder path for that type of packet.

8.3 Putting the Pieces Together

At this point we have all the necessary pieces to build a wireless receiver that can
handle carrier offsets, timing mismatches, and random packet delay. With all these
components in our tool belt, now it is a good time to talk about the system as a whole
and determine the arrangement of components based on system requirements. This
discussion on algorithm arrangements will be based on what we have learned from
the previous chapters.

Starting at the front of the receiver we need to first accomplish two goals: carrier
offset removal and timing synchronization with the received signal. In the system
proposed so far we have first implemented timing recovery in the receive chain, but
this requires usage of a TED, which is insensitive to phase rotation. Based on the
options provided in Chapter 4, this would require a technique such as Gardner or
a polyphase type implementation from Harris [11]. It is possible to utilize the FFC
implementation described in Chapter 7 before timing recovery, but there can be
residual phase noise left in the system. The receiver would be arranged similar to
Figure 8.8. However, it is definitely useful to place a CFO before all processing,
even before matched filtering, to reduce the work of other recovery algorithm in
the receive chain. With that said, inserting CFO after a matched filter can make the
estimates more accurate from CFO since the received signal will be SNR maximized.
You must consider the trade-off in all these situations.

In Figure 8.9 we have outlined a possible receiver flow that contains the relative
sample rates Rn between the recovery stages. The blocks with dashed outlines, the

Figure 8.8 Example receiver processing flow to recover transmitted frames where frequency
recovery is considered first.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Matched 
filter 

CFO 
Carrier 
recovery 

Timing 
recovery 

Frame 
sync 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 242 — #12

242 Frame Synchronization and Channel Coding

Figure 8.9 Complete receiver processing flow to recover transmitted frames. The relative sample
rates are defined by Rn.

matched filter and CFO, can be optional if a RRC filter is used at the transmitter
or the carrier offset is not severe. We specifically place the CFO before matched
filtering since the matched filter can reduce the bandwidth CFO can utilize. With
regard to the rates Rm ≥ Rk where m < k, meaning that the system will never
upsample downstream or run at faster rates. Overall, downsampling will only occur
in two possible stages: matched filtering and timing recovery. It is not required to
do so in either stage but they can have specific benefits. For example, decimating
at the matched filter stage will provide useful averaging, making symbols easier
to distinguish. From a hardware perspective decimating reduces the sample rate
and the constrains on downstream processing, lowering the bounds on clock rates
for intensive operations in our downstream loops. When considering our timing
recovery algorithms we already know from Chapter 6 that we can have specific
requirements on Rn for the TED utilized. Providing the timing recovery loop with
more samples per symbol can provide better performance as well.

In Figure 8.9 between the carrier recovery and frame sync block we have
partitioned the system into two domains, blind and conditional. This is to define
which processing blocks are dependent on the actual data transmitted and those
blocks which are essentially blind to this fact. We can utilize this aspect of the
design to introduce training data into our system that can be used to help the
system converge to lock states in the recovery loops before actual data needs to be
recovered. In this type of configuration we could prepend random bits that would
be modulated and filtered as actual data of the transmitter to be sent. This extra
or training data could just be prepended to the start of each frame or continuously
transmitted in between data frames to keep the receiver locked. This would remove
convergence delays in our system. In hardware we could simply connect a linear-
feedback shift register (LFSR) to our modulator, which is a convenient mechanism of
generating random bits. In MATLAB this is represented by the comm.PNSequence
System object. Once converged it may not be necessary to continuously transmit
training data, which would increase the throughput of the system.

When implementing a system with Pluto SDR or even in simulation it can be
helpful to introduce training information into your system. In this configuration our
frame sync block from Figure 8.9 would act as a gateway to downstream processing,
only allowing data to pass through once a preamble or marker was detected.

8.3.1 Full Recovery with Pluto SDR
Throughout the last three chapters we have introduced templates of code and
provided guidance on how to implement scenarios with Pluto SDR. However,
when considering full frame recovery and actually demodulation of data we need

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Timing 
recovery 

Carrier 
recovery 

Frame 
sync 

Blind ' Conditional 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 243 — #13

8.3 Putting the Pieces Together 243

to reenforce some implementation details. Since the receiver is a complex system
requiring many processing components, real-time operation should not be an initial
goal. Once your receiver algorithms are working you can extend them to work in
real-time if desired. Therefore, for your implementations you should focus on coding
templates Code 5.3, 5.4, and 5.5. Performing processing in between calls to Pluto
SDR similar to Code 5.6 will likely result in overflows and missed data, making it
difficult to recover full frames of data.

A second important tool to utilize is the transmitRepeat method of Pluto
SDR as in code example 5.7. This will deterministically transmit data continuously.
With regard to this data at the receiver, since the delay will be random from
the transmitter, you should always collect at least 2L samples where L is the
length of the desired frame. Setting Pluto SDR’s SamplesPerFrame property
to 2L will guarantee at least one full packet received when the transmitter is in
transmitRepeatmode. This was unnecessary in Chapters 4 and 7 since we could
lose data to an overflow and this would have little impact on our tests. However,
this is paramount when checking for full frames. Here is a simple example to follow
in Code 8.3. In this example we actually step the receive several times to remove
possible stale data in its IIO buffers.

Code 8.3 Capture Repeated Frame: captureExample.m

1 % Transmit frame repeatedly
2 tx = sdrtx(’Pluto’);
3 tx = sdrtx(’Pluto’,’SamplesPerFrame’,length(frame)*2);
4 tx.transmitRepeat(frame);
5 for k=1:4,rx();end; % Remove stale data from buffers
6 rxBuffer = rx();

Q

Using the template from Code 8.3 and the synchronization blocks
developed in Chapters 4, 7, and in this chapter, begin to estimate
the start of packets. First, utilizing transmitRepeat collect L×
N samples of data where N = 1, 2, 3, 4, 5. Your packet detector
should be able to locate at least L × (N − 1) of data for each
iteration of N. Evaluate the performance of your system for this
growing number of packets. Collect 1,000 packets and determine
your probability of detection (try to collect 10 packets at a time
and repeat this process).

A useful tool when evaluating complete recovered frames is a cyclic redundancy
check (CRC) that provides a binary value if a packet contains errors or not.
Conveniently, MATLAB’s Communication Systems Toolbox contains a system
object with this functionality called comm.CRCGenerator and its mirrored
detector comm.CRCDetector. They can be called in the following way in
Code 8.4 where we utilize the polynomial z3 + 1 in both objects.

A CRC works by appending a sequence of length Lc, called a checksum, to
the end of the our data. Lc will be equal to the order of the polynomial, which is

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 244 — #14

244 Frame Synchronization and Channel Coding

Code 8.4 Loopback Pluto Example: crcExample.m

1 x = logical([1 0 1 1 0 1 0 1 1 1 0 1]’);

2 crcGen = comm.CRCGenerator(’zˆ3 + 1’);

3 crcDet = comm.CRCDetector(’zˆ3 + 1’);

4 codeword = crcGen(x);

5 codewordWithError = codeword; codewordWithError(1) = ˜codewordWithError(1);

6 [tx, err] = crcDet(codeword);

7 [tx1, err1] = crcDet(codewordWithError);

three in the case of Code 8.4. This polynomial determines how bits are combined
(XORed) together to produce the checksum. The larger the value Lc the lower the
probability of Type I or Type II errors, as outlined in Section 8.2.1. However, this
is also dependent on the length of the data related to the checksum. In practice, the
data related to a checksum size will be orders of magnitude greater than Lc. With
regard to our frame synchronization testing we can utilize CRCs in transmitted
frames to easily check if we have recovered all our transmitted bits.

Q

Again, using the template from Code 8.3, and the synchronization
blocks developed in Chapters 4, 7, and in this chapter, begin to
estimate the start of packets. This appends CRC to each frame
before transmission. At the receiver demodulate the recovered
symbols, check the CRC values for 1,000 packets. Repeat this
process but calculate the bit error rate for each frame recovered.
Skip lost frames.

8.4 Channel Coding

Now that we can successfully recover data across the wireless link, we can discuss
techniques of making this process more robust. Channel coding is an obvious option
and is ubiquitous in any digital communications standard.

8.4.1 Repetition Coding
One of key building blocks of any communication system is the forward error
correction (FEC), where redundant data is added to the transmitted stream to make
it more robust to channel errors. There are many types of FEC techniques, such
as the repetition coding approach, where each transmitted bit is repeated multiple
times. In this section, we will explore together one technique for combating the
introduction of errors to data transmissions by implementing a simple repetition
coder (repetition factor R = 4). So what does it mean by a repetition coder with
repetition factor R = 4? A simple definition is that if a “0” symbol is to be
transmitted, this “0” symbol will be repeated four times by the repetition coder,
such that the output would be “0000.”

Let us first start by double-clicking on the repetition coder block, which
will result in a MATLAB function block editor opening, in which we can write

Analog Devices perpetual eBook license – Artech House copyrighted material. 

□ 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 245 — #15

8.4 Channel Coding 245

customized MATLAB code. As mentioned previously, setting break points is a great
way for understanding and debugging M-files. For more information about break
points and how they can be used to debug and evaluate the code, please refer to
Appendix B.

i
The repmat function in MATLAB can be used to realize a simplistic
repetition coding scheme. For example, to repeat a vector u for 4
times, the following expression can obtain this result:
y=repmat(u,4,1);

Q What are the trade-offs to consider when choosing between a high
or a low repetition factor?

8.4.2 Interleaving
A repetition code is one of several useful tools for a communication systems engineer
in order to enhance a robust data transmission. However, it is sometimes not
enough, since it does not address the issue when a large quantity of data is corrupted
in contiguous blocks. For instance, if a transmitter sends the data stream “101101,”
a repetition coder with a repetition factor of 4 will yield

111100001111111100001111,

where each input bit is repeated four times. While this encoding scheme may appear
robust to error, it is still possible during a data transmission that a significant noise
burst occurs over many consecutive bits, corrupting numerous binary digits in the
transmission, and yields the following outcome:

111100 − − − − − − − −1100001111,

where some of the original data is completely irretrievable.

Q
Why is it that even with repetition coding, our data transmission
can still be severely affected? What could be done to make it even
more robust?

Interleaving is an approach where binary data is reordered such that the
correlation existing between the individual bits within a specific sequence is
significantly reduced. Since errors usually occur across a consecutive series of
bits, interleaving a bit sequence prior to transmission and deinterleaving the
intercepted sequence at the receiver allows for the dispersion of bit errors across the
entire sequence, thus minimizing its impact on the transmitted message. A simple
interleaver will mix up the repeated bits to make the redundancy in the data even
more robust to error. It reorders the duplicated bits among each other to ensure that
at least one redundant copy of each will arrive even if a series of bits are lost. For

Analog Devices perpetual eBook license – Artech House copyrighted material. 

0 

I □ 

I □ 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 246 — #16

246 Frame Synchronization and Channel Coding

example, if we use an interleaving step of 4, it means we reorder the vector by index
[1, 5, 9, ..., 2, 6, 10, ...]. As a result, running “111100001111111100001111”
through such an interleaver will yield the following output:

101101101101101101101101.

The interleaving step can be any of the factoring numbers of the data length.
However, different mixing algorithms will change the effectiveness of the
interleaver.

i
The reshape function in MATLAB can be used to realize the
interleaving.

Once we have implemented the interleaver, let us combine the repetition coder
and the interleaver into a single FEC subsystem. Although the simple interleaving
technique introduced above is sufficient for our implementation, there are various
other forms of interleaving, that we will investigate in the next two sections.

8.4.2.1 Block Interleaving
The first approach to interleaving is to employ a block interleaver, as shown in
Figure 8.10. Block interleaving is one method for reordering a bit sequence, where
N × M bits fill an N column by M row matrix on a column basis, and then each
resulting row is concatenated with each other in serial and outputted from the
interleave block. At the transmitter side, the block interleaver is loaded column by
column with N codewords, each of length M bits. These N codewords are then
transmitted row by row until the interleaver is emptied. Then the interleaver is
loaded again and the cycle repeats. The main drawback of block interleavers is the
delay introduced with each column-by-column fill of the interleaver [12].

8.4.2.2 Convolutional Interleaving
Another approach to interleaving is to employ a convolutional interleaver [13], as
shown in Figure 8.11. At the transmitter, the bit sequence is shifted into a bank of
N registers, each possessing an increasing amount of buffer memory. The bits in
the bank of registers are then recombined via a commutator and transmitted across
the channel. At the receiver, the reverse process is performed in order to recover
the original sequence. Compared with block interleavers, convolutional interleavers
reduce memory requirements by about one-half [14]. However, the delay problem
associated with the initial fill still exists.

8.4.3 Encoding
Besides interleaving multiple copies of data, we can instead encode the data
into alternative sequences that introduce redundancy. A unique property of many
encoding schemes is the ability to introduce redundancy without increases in data
size without integer order. For example, in the case of repetitive coding that
duplicates every bit with R = 2, this number is usually inverted in FEC discussions
as a rate of 1

2 , a convolutional encoding scheme can introduce rates closer to 1.
This makes them more efficient and provides more effective throughput. In this

Analog Devices perpetual eBook license – Artech House copyrighted material. 

lo 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 247 — #17

8.4 Channel Coding 247

out

out

out

out

in inin in

M

N

Figure 8.10 Schematic of a block interleaver.

Figure 8.11 Schematic of a convolutional interleaver. (From [13].)

section we will discuss several common channel encoding schemes, with some basic
information on how they function. In general, channel encoding is a mathematically
complex area in information theory. Instead of diving into the theoretical designs
of these scheme, we will compare their relative performance as well as some
implementation details and drawbacks.

Similar to interleavers, encoders can typically be categorized into two basic
types: block encoders and convolutional type encoders. Block encoders work on
specific predefined groups or blocks of bits. Alternatively, convolutional encoders
work on streams of data of indeterminate size but can be made to work on blocks
of data if necessary.

The first coding scheme we will discuss is Reed-Solomon (RS) codes, which are
linear-block-code developed in the 1960s. RS codes work by inserting symbols into
a given frame or block of data, which are then used to correct symbol errors that
occur. If we define M as the length of a given frame, sometimes called the message
length, and define E as the encoded frame then we can correct up to �E−M

2 � symbols.
RS are interesting since they can even provide information on how many errors were
found and corrected as part of their implementation. However, RS encoders can
be specific on what inputs they can process, which is why we have so far only

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I I 

~---------------------------------------------------------------------------------------------------------------------------1 

~ 

---"'-~~~--------------...........,.------"-----,.-----" 

l ·1 l T 

1----------~ 1----------~ 

I o----------{, : I ~ : 
I I ~ I 
II ~O : I ~ I 
I ~ I I ~ I 
I I : I 

~-~ I ~ ~-~ I ~ 
From I Channel I To 
encoder I~-~ 

I 

~: 
I 

l~I 
I ~ I 
'--- - - - - - - - - - _I 

Interleaver 

1 ~d_e_co_d_er~ 

~i 
I 

I ,,__ ____ ---<, I 

I I 
'-------------1 

De-interleaver 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 248 — #18

248 Frame Synchronization and Channel Coding

considered symbols not bits. The symbols you can encode with a RS can be integers
between [0, 2N − 1], where N is the exponent of our finite Galois field GF(2N). A
Galois field is a field, a set which certain mathematical operations are defined, which
has a finite number of objects. Due to this definition there will be some restrictions
on E and N, but they are beyond the scope of this book. This set is how RS takes
advantage of during decoding, which will reduce solutions spaces based on received
data and selection of M, E and N.

With regard to implementation, it can be argued that RS codes are useful in
bursty error situations where a swath of symbols close to each other are corrupted.
When considering transmitted bits, each symbol will represent B bits, and since RS
operate on symbols it can correct B bits of data in a group. Therefore, a bursty
error corrupting B + 1 bits in a group can corrupt at most 2 symbols.

A similar code to RS is Bose Chaudhuri Hocquenghem (BCH) codes, which also
relies on the concept of Galois fields. BCH codes are better at correcting errors that
do not occur in groups, unlike RS. To reduce this probability of grouped data it can
be useful to shuffle or scramble bits before and after transmission to reduce error
locality, which is better for BCH when errors are sparse. However, this is a poor
thing to do with RS to some extent. BCH codes can also correct more errors for the
same amount of parity bits, but in general BCH codes require more computational
power to decode than RS.

The final popular block code to consider are low-density parity check (LDPC)
codes, which have even begun to replace the dominant Turbo codes, which we will
consider next. LDPC codes have been around since the 1960s, but due to their
complexity have only been considered for hardware implementation in the last
decade. Developed by Robert Gallager, LDPC codes can approach the theoretical
Shannon limit [15] for certain redundancy rates unlike RS and BCH. However, the
computation required to use LDPC is considerable higher. Nonetheless, they exist
in some modes of 802.11n and DVB-S2 standards.

When utilizing LDPC the implementor must select a parity matrix which the
encoder and decoder will utilize, and the characteristics of this matrix will determine
performance of the code. Strong performing codes will typically come in large block
lengths like 648, 1296, and 1944 IEEE 802.11n/ac. This means that, you need to
encode a significant amount of bits compared to the other codes to utilize LPDC
efficiently in many cases.

Besides block codes, an alternative or stream-based coding implementation
is convolutional codes. These codes convolutionally encode data, meaning
redundancy is introduced by the succession of information passed through the
encoder/decoder, essentially creating dependency on consecutive symbols or bits.
A convolutional encoder is best understood by an example. Let us consider an
encoding scheme with R = 2 with a recursive encoder, with three registers.
Figure 8.12 provides a possible structure for such an encoder, which outputs two
bits for every bit pushed into the system. You will notice that the current output is at
least dependent on the last three inputs, similar to the memory of an FIR or IIR filter.

Figure 8.12 can be interpreted as two equations, provided in (8.16).

yn,1 = (xn + xn−2 + xn−3) + xn−1 + xn−3
yn,2 = xn−2 + xn−3

(8.16)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 249 — #19

8.4 Channel Coding 249

−− −

Figure 8.12 Example R = 2 convolutional encoder utilized in 3GPP LTE.

The decoder itself will utilize this dependency in the data to help remove errors
that can occur. The most popular algorithm to accomplish this task is called the
Viterbi algorithm [15], sometimes called a trellis algorithm or decoder. The concept
of the Viterbi/trellis decoder is to trace back through previous decisions made and
utilize them to best determine the most likely current bit or sample. This is what
naturally leads to Figure 8.13 and hence the name trellis. In Figure 8.13, the left-most
position represents the most recently receiver symbols or bits. The lines connecting
the dots represent possible previous symbols, where the thick gray line represents
the more probable symbols based on previous decisions made. The depth of this
trellis is called the traceback length, and the deeper this trace becomes the better
the recovery of bits will be. However, this process tends to plateau at a traceback
around 34 symbols, and the deeper the traceback the increased time required to
decode a specific symbol. This traceback limitation can be seen in Figure 8.14,
where we examine a variety of traceback lengths across EbN0 for a 16-QAM
signal.

In the early 1990s turbo codes were introduced, which are part of the
convolutional code family [16]. Turbo codes have been heavily utilized by both
third and fourth generation cellular standards as their primary FEC scheme. Like
LDPC, turbo code can operate near the Shannon limit for performance but are
less computationally intensive than LDPC with less correction performance. Turbo
inherently utilizes the Viterbi algorithm internally for decoding with some additional
interleaving, as well as using a set of decoders, and performs likelihood estimation
between them. This is an extreme simplification of how turbo decoders actually
work, and analysis of their operation is a very difficult topic area. However, they
are a very powerful coding technique as long as you have the resources on your
hardware to implement the decoder at the necessary speeds.

When utilizing FEC one should always consider the trade-offs with regard to
computational complexity, performance required, and coding overhead allowed
for the link. This is important since heavy coding may not be required in a clear
transmission channel where additional throughput could be gained at a better
coding rate closer to one. Therefore, modern standards like LTE and IEEE 802.11,
will utilize adaptive modulation and coding schemes (MCSs), which reduce coding
redundancy and increase modulation order, providing much higher throughput
across a link. IEEE 802.11 itself has 32 MCS states or indexes, for which we have
provided the first four entries in Table 8.2, for perspective on how code rates and
modulation are used to trade off redundancy and data rate.

MATLAB itself provides all of the coding techniques we have described so far.
However, some of the advanced codes are more complex to utilize, especially in

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Out 1 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 250 — #20

250 Frame Synchronization and Channel Coding

Figure 8.13 Viterbi/trellis decoder lattice diagram.

2 4 6 8 10 12 14

EbN0

10−4

10−3

10−2

10−1

10 0

BE
R

TBL: 5
TBL: 15
TBL: 20
TBL: 30
TBL: 35
TBL: 40

Figure 8.14 BER results of Viterbi decoder for 16-QAM with increasing traceback length.

different modes. For example, due to how turbo decoders work they require channel
estimates to correctly determine the noise variance of the channel. Therefore, in
a give receiver design this information must be provided for effective decoding.
LDPC, as we have discussed before, requires parity matrices in their design. By
default MATLAB provides the parity matrix for DVB, which requires 32,000 bits
per block, which is rather unreasonable for many applications. Designing a smaller
matrix can be complex, and this is rather outside the scope of MATLAB’s provided

Analog Devices perpetual eBook license – Artech House copyrighted material. 

s, = 00 

S2 = 01 

S3 = 10 

S4 = 11 

Input bits 

Output bits 

II 
m 

II 
ml 

t = 1 

m 
ml 

[] 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 251 — #21

8.5 Chapter Summary 251

Table 8.2 Shortended Modulation and Coding Schemes List for
IEEE 802.11∗
MCS Index Streams Modulation R Data Rate (Mbits/s)
0 1 BPSK 2 6.5
1 1 QPSK 2 13
2 1 16-QAM 4/3 19.5
3 1 16-QAM 2 26

∗ From [1]

tools. Nonetheless, RS, BCH, and general Viterbi decoding are extremely easy to
utilize out of the box and are simple to parameterize.

8.4.4 BER Calculator
After examing several techniques for protecting the reliability of a data transmission
subject to interference and noise, we now need an approach to measure how well
these techniques perform quantitatively. Referring back to Chapter 4, we saw that
BER is a commonly used metric for the evaluation and comparison of digital
communication systems. One straightforward way of calculating the BER is to
count the number of received bits of information and then determine which ones
are received in error. In other words, the ratio of bit errors to the total number of
bits received can provide us with an approximate BER calculation. Note that the
more bits that are received, the more accurate this link level metric becomes.

8.5 Chapter Summary

This chapter examined the concept of frame synchronization through correlation
techniques and covered some common channel coding techniques through
redundancy insertion. Given the last piece of the receiver with regard to
synchronization provided here, a full receiver can be implemented for frame
recovery. Possible arrangement for the receiver algorithms as discussed throughout
the book so far have been examined, focusing on requirements from the design.
Once full synchronization was covered, we moved on to techniques for making our
links more robust through encoding implementations, including a discussion on
their drawbacks and advantages with regard to implementation and use.

References

[1] IEEE Standard for Information Technology–Telecommunications and Information
Exchange between Systems Local and Metropolitan Area Networks–Specific Requirements–
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications–Amendment 4: Enhancementsfor Very High Throughput for Operation
in Bands below 6 GHz, IEEE Std 802.11ac-2013, (Amendment to IEEE Std 802.11-
2012, as amended by IEEE Std 802.11ae-2012, IEEE Std 802.11aa-2012, and IEEE Std
802.11ad-2012), December 2013, pp. 1–425.

[2] Barke, R. H., “Group Synchronizing of Binary Digital Sequences,” in Communication
Theory, London: Butterworth, 1953, pp. 273–287.

[3] The Math Works Inc., xcorr [online], 2017 https://www.mathworks.com/help/signal/ref/
xcorr.html.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 252 — #22

252 Frame Synchronization and Channel Coding

[4] Kay, S. M., Fundamentals of Statistical Signal Processing, Volume II: Detection Theory.
Upper Saddle River, NJ: Prentice Hall, 1998.

[5] Poor, H. V., An Introduction to Signal Detection and Estimation, New York: Springer,
2010.

[6] Zhao, Q., and A. Swami, “Spectrum Sensing and Identification” in Cognitive Radio
Communications and Networks: Principles and Practice, Burlington, MA: Academic Press,
2009.

[7] Kay, S. M., “Statistical Decision Theory I,” in Fundamentals of Statistical Signal Processing,
Volume II: Detection Theory, Upper Saddle River, NJ: Prentice Hall, 1998.

[8] Shanmugan, K. S., and A. M. Breipohl, “Signal Detection,” in Random Signals: Detection,
Estimation and Data Analysis, Wiley, 1988.

[9] Finger, A., Pseudo Random Signal Processing: Theory and Application, Hoboken, NJ:
Wiley, 2013.

[10] IEEE Standard for Information Technology–Telecommunications and Information
Exchange between Systems–Local and Metropolitan Area Networks–Specific Requirements-
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band,
IEEE Std 802.11ad-2012 (amendment to IEEEStd 802.11-2012, as amended by IEEE Std
802.11ae-2012 and IEEE Std 802.11aa-2012), December 2012,pp. 1-628.

[11] Harris, F. J., and M. Rice, “Multirate Digital Filters for Symbol Timing Synchronization
in Software Defined Radios,” IEEE Journal on Select Areas in Communications, Vol. 19,
October 2001, pp. 2346–2357.

[12] Jacobsmeyer, J. M., Introduction to Error-Control Coding, www.pericle.com/papers/
Error_Control_Tutorial.pdf.

[13] Forney, G. D., “Burst-Correcting Codes for the Classic Bursty Channel, in IEEE
Transactions on Communications, COM-19, 1971, pp. 772–781, 1971.

[14] Sklar, B., Digital Communications Fundamentals and Applications, Upper Saddle River,
NJ: Prentice Hall, 1988.

[15] Anderson, J., and S. Mohan, Source and Channel Coding: An Algorithmic Approach,
New York: Springer, 1991.

[16] Berrou, C., Error-Correction Coding Method with at Least Two Systematic Convolutional
Codingsin Parallel, Corresponding Iterative Decoding Method, Decoding Module and
Decoder, US Patent No. 5,446,747, 1995.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 253 — #1

C H A P T E R 9

Channel Estimation and Equalization

This chapter will introduce the concepts of channel estimation and channel
equalization. A simplified error model will be discussed along with several practical
strategies for added equalizers to a communication system. Specifically, we will
include designs for both decision direction- and training-based equalization.
Equalizers are a useful utility since they can be used to handle numerous sources
of distortion present in the environment as well as from the mismatches between
nodes themselves.

With regard to our receiver outline in Figure 9.1, this chapter will address the
last block, equalization, which is highlighted.

9.1 You Shall Not Multipath!

In the previous chapters, we focused on the synchronization between the transmitter
and the receiving nodes. By combining the previous chapters, frame recovery now
becomes possible and we have reached the threshold of successfully decoding
frames. However, under certain scenarios these implementations will not be enough.
Assuming that we have adequate SNR of the received signal, the remaining challenge
in the environment is the multipath and other additive interferers. Multipath,
which is introduced by the dispersive nature of the channel, is the effect of
scaled reflections of a transmitted signal traveling along different paths to reach
the receiver. Since these reflections travel along different paths they will observe
different attenuations and different delays from the perspective of the receiver.
Naturally, these impairments can be considered echoes of the transmitted signal
and can be easily modeled by a FIR filter.

The time between the first received signal and the final received echo is defined
as the delay spread of the channel [1]. In Figures 9.2 and 9.3, we present a physical
representation of multipath and the resulting time domain representation of the
line-of-sight (LOS) signal and two scatterers. This is a ray-tracing representation
of multipath, but in reality multipath is a continuum of reflections due to the
signal radiation characteristics. Ray-tracing is a discretization of that continuum
and is commonly used to model multipath since it is far simplier to understand and
mathematically model.

When the delay spread has a long duration with respect to the signal bandwidth,
multipath effects can cause significant distortion to the received signal and results
in intersymbol interference (ISI) as discussed in Chapter 6. The delay spread is
a function of the environment, and we must take this into consideration when
designing a system. For example, for outdoor environments where the multipath
distances are large, this will produce a large delay spread. Mathematically, we can

253

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 254 — #2

254 Channel Estimation and Equalization

CFC
Matched
filter

Timing
recovery

Carrier
recovery Frame sync Equalization

Figure 9.1 Receiver block diagram.

p1

p2

p3

Tx

Rx

Figure 9.2 Example of multipath in an indoor environment.

relate the distance D that a scatter must travel to the sample delay ts associated with
that distance as

ts = B × D
c

, (9.1)

where c is the speed of light. A Wi-Fi signal at 20 MHz would have to travel
approximately 15 extra meters to cause a single sample of delay. Therefore, Wi-Fi,
which is commonly used indoors, will have a small delay spread. However, since the
channel distances are short there can be a large number of high-powered scatterers.
Due to path loss, the signal power of the interferers and delay spread are usually
inversely related.

Mathematically, we can model a received multipath signal r as in impulse train
at random time offsets �n with associated gains αn of the transmitted signal x as

r(t) = µ(t) +
N∑

n=1

αnx(t − �n), (9.2)

where there are N−1 scatters and µ is additional interferers or noise. As long as µ is
uncorrelated with x and periodic or autoregressive, we can effectively filter it from
the signal space [2]. In the case when we do have multipath, this will be experienced
at the received as ISI. We can demonstrate such a condition in Figure 9.4 where we
view a QPSK signal r. In Figure 9.4, we observe the effects of symbol smearing over
time, which we view as symbol drift in the constellation diagram. Based on (9.2),
we can simply model multipath effects using an FIR filter.

9.2 Channel Estimation

Before we consider correcting effects of a given channel, we can alternatively
consider the estimation of an unknown channel. Channel estimation, as opposed to

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I 

~ 
I 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 255 — #3

9.2 Channel Estimation 255

Figure 9.3 Physical characteristics of a multipath propagation environment.

Figure 9.4 Effects of symbol smearing over time.

channel equalization, is a desirable place to start since we have a known solution
in the simulation to test against, unlike equalization, which may not produce a
unique solution depending on the channel and noise conditions. To perform channel
estimation, we will utilize the least mean squares (LMS) algorithm developed by
Widrow and Hoff [3]. LMS is a gradient descent or Newton method type algorithm,
and can be considered the standard adaptive filter algorithm for signal processing.
The LMS algorithm utilizes known information or symbols in the transmitted
sequences in order to estimate the corruption of the receive data, which we model
here as a FIR filter. We provide a model in Figure 9.5 of a common diagram for
channel estimation, which we will use to help derive our system implementation.
Alternative adaptive filter algorithms do exist, such as the recursive least squares
(RLS) algorithm, which can outperform LMS in many situations. However, RLS
can have stability concerns when designed improperly and is more computationally

Analog Devices perpetual eBook license – Artech House copyrighted material. 

CD 0.5 
"'O 
.a ·c 
en 

0 

ro 
~ -0.5 

-1 

200 

200 

0 

0 

Delay Spread 

0.2 

0.2 

400 

400 

600 

Samples 

600 

Samples 

0.4 

0.4 

800 

800 

0.6 
Seconds 

0.6 
Seconds 

1000 

1000 

0.8 

0.8 

1.5 

i" 0.5 

1200 
::, 

[ii 
'O 

"' a -0.5 

·1 

·1 .5 

·2 
1200 ·2 

--- Tx 

·1 

1.2 
x10 -3 

1.2 
x10 -3 

0 ISi 
0 Without IS i 

0 

In-phase 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 256 — #4

256 Channel Estimation and Equalization

h

ĥ

TX/Channel RX

x n( ) r n( )

y n( )

e n( )

ĥ

+

Figure 9.5 Adaptive FIR estimation of FIR channel h using training data.

complex due to a matrix inversion requirement. RLS is beyond the scope of this
chapter, but Haykin [4] is a good reference.

We illustrate the pieces of our channel estimation system in Figure 9.5, where
we have our unknown static channel h, which affects our training data x(t). The
goal of the system shown in Figure 9.5 is to match h and ĥ, which will drive our
error down to zero. In order to achieve this goal, the adaptive algorithm will require
an error signal e(n) and the original signal x(t). We will utilize LMS to estimate
an unknown channel filter h ∈{L×1}, whose estimate is defined as ĥ ∈{M×1} where
M ≥ L. For a transmitted signal x(t) passing through the channel filter h, h can be
estimated using the following recursive algorithm:

y(n) = ĥ
H

(n)x(n) (9.3)

e(n) = r(n) − y(n) (9.4)

ĥ(n + 1) = ĥ(n) + µ x(n)e∗(n) (9.5)

where
x(n) = [x(n), x(n − 1), ..., x(n − M − 1)]T . (9.6)

and µ is the governing stepsize, which provides control over convergence rate and
stability. Selection of the stepsize is implementation-specific but should be in the
range 0 < µ < 2

λmax
, where λmax is the maximum eigenvalue of the autocorrelation

of the true channel R = E[hhH]. Alternatively, since h is unknown, a looser and
safer bound is Mσ 2 where σ 2 is the variance of the r(n). For more information on
LMS stability analysis, the interested reader should consult Chapter 9 of Haykin [4].

The channel length L is an unknown for an individual environment, but through
measurements and the physical nature of the channel environment, estimates can be
made for reasonable lengths. This relates to the previous discussion on delay spread,
which is an alternative description of the channel length. Studies are commonly
performed by standards committees to provide guidance for receiver designers.

Equations (9.3) to (9.6) can be implemented in a simple recursion as in lines 8-
17 in Code 9.1 requiring 2L+1 multiplications and L+1 additions. If we examine
the mean-squared error (MSE) of ĥ over time for a L = M = 2 across a contour of
the solution space in Figure 9.6, we can observe the descent to the true solution LMS
will take. Figure 9.6 demonstrates this descent for four random starting positions
for the estimate ĥ. The use of contour plots is a common analysis tool in adaptive
filters theory to model behavior of estimation evolution. However, when M > 2 we

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 257 — #5

9.2 Channel Estimation 257

Code 9.1 LMS Channel Estimation: chanEst.m

1 h = [0.5; 1; -0.6]; % Channel to estimate
2 mu = 0.01; % Stepsize
3 trainingSamples = 1000;
4 x = sign(randn(trainingSamples,1)); % Generate BPSK data
5 r = filter(h,1,x); % Apply channel
6 L = length(h); h_hat = zeros(L,1);
7 %% Estimate channel
8 for n = L:trainingSamples
9 % Select part of training input

10 in = x(n:-1:n-L+1);
11 % Apply channel estimate to training data
12 y = h_hat’*in;
13 % Compute error
14 e = r(n)-y;
15 % Update taps
16 h_hat = h_hat + mu*conj(e)*in;
17 end

Figure 9.6 Contour of solution space for channel estimation when M = 2.

will use a MSE plot similar to Figure 9.7 since we cannot easily visualize all error
dimensions on a contour.

We can extend Code 9.1 further and actually visualize the shape of the channel
estimates as well to have better understanding of the accuracy of our designed
system. Examining the response, especially for rather aggressive channels, can be
very useful when determining parameterization of an equalizer design. In Code 9.2,
we provide an example on how to visualize the channel responses and their

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 258 — #6

258 Channel Estimation and Equalization

Samples
0                10               20                30               40               50

M
SE

10−10

10−8

10−6

10−4

10−2

100

102

ĥLM S Start 1
ĥLM S Start 2
ĥLM S Start 3
ĥLM S Start 4

Figure 9.7 MSE of channel estimates over received samples from different starting locations.

estimates. The function freqz is utilized here, which will calculate the digital filter
response using the fft function.

Code 9.2 Plot Responses: chanEst.m

20 %% Plot responses
21 Fs = 1e6; N = 64;
22 htrue=freqz(h,1,N,Fs,’whole’);
23 [hb,we]=freqz(h_hat,1,N,Fs,’whole’);
24 semilogy(we,abs(hb),’b’)
25 hold on;semilogy(we,abs(htrue),’bo’);hold off
26 grid on;xlabel(’Frequency (Hz)’);ylabel(’Magnitude’);
27 legend(’Channel Est’,’Channel Actual’,’Location’,’Best’);

The response and estimate provided in Figure 9.8 yields very accurate results.
However, as noise is introduced into the system and the channel becomes more
complex, this estimate will become worse. However, assuming the LMS algorithm
has converged the error should only be limited based on our chosen stepsize µ and
the noise of the channel.

9.3 Equalizers

Unlike channel estimation, an equalizer tries to undo the effects of the channel
and remove interference if possible. Similar to channel estimation, some knowledge
about the source data is necessary to train the equalizer at the receiver in order
to reduce the channel effects. Typically, this information is part of the preamble
sequence or header information of the frame since for logical operation we
will always transmit some unknown data, which we call the payload. We will
discuss several adaptive equalizer implementations here but many permutations
and alternatives do exist in the literature [5].

Analog Devices perpetual eBook license – Artech House copyrighted material. 

EJ 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 259 — #7

9.3 Equalizers 259

0                     2                     4                     6                     8                   10

Frequency (Hz) 10 5

0.9

1

1.1

1.2

1.3

1.4

M
ag

ni
tu

de

Channel est
Channel actual

Figure 9.8 Example channel and associated estimate using the LMS algorithm.

The equalizer approaches the filter evolution problem from a different
prespective than discussed in Section 9.2. Instead of evolving the filter to match the
channel h, a filter f is evolved to compensate for the channel itself and reproduce
the training data at the output of the filter accurately. This arrangement is provided
in Figure 9.9, which places the equalizer filter or forward filter in the received data
path. The known transmitted data is then used to adapt this filter. To solve for a
filter f ∈{K×1} using LMS that will equalize the effects of a given channel h, we need
to modify the recursion provided in (9.3) to (9.6) as

x̂(n) = fH(n)r(n) (9.7)

e(n) = x(n) − x̂(n) (9.8)

f(n + 1) = f(n) + µ e∗(n)r(n) (9.9)

where:
r(n) = [r(n), r(n − 1), ..., r(n − K − 1)]T . (9.10)

In this case, we are driving the received samples r(n) to match the transmitted
data x(n). If this algorithm converges, the resulting output of the combined filters
should just delay the signal:

x(n) ∗ h ∗ f = x̂(n − δ), (9.11)

where ∗ represents the convolution operation and δ the group delay of the cascaded
channel filter and equalizer. Therefore, the combined response of the equalizer and
channel should be flat. The updated code is provided in Code 9.3.

The delay δ offsets the training sequence further into the filter, which is useful
if the earliest filter taps do not produce the most gain. It can be argued this more
efficiently utilizes the equalizer’s additional tap advantage of the channel length.
Since this equalizer must be a causal, δ > 0 or else we would require knowledge of
future samples (noncausal). Also, this delay will affect the output delay, which we
must compensate for as well. To correctly evaluate the bit errors in the signal, use
Code 9.4.

When we have exact knowledge of the source symbols, LMS is an effective
algorithm to reach the Wiener solution for a given channel [4]. However, in many

Analog Devices perpetual eBook license – Artech House copyrighted material. 

X 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 260 — #8

260 Channel Estimation and Equalization

h f

+

TX/channel RX

x n( ) r n( )

e n( )

x̂ n( )
f

Figure 9.9 Adaptive FIR equalization of FIR channel h using known training data.

Code 9.3 Channel Equalization: chanEQ.m

1 h = [0.2; 1; 0.1; 0.02]; % Channel taps
2 mu = 0.001; % Stepsize
3 trainingSamples = 1e4;
4 x = sign(randn(trainingSamples,1)); % Generate BPSK data
5 r = filter(h,1,x); % Apply channel
6 K = length(h)+1; f = zeros(K,1);
7 delta = 3; % Reference tap
8 %% Equalize channel
9 index = 1;

10 [e,x_hat]=deal(zeros(trainingSamples-K+1,1));
11 for n = K:trainingSamples
12 % Select part of training input
13 in = r(n:-1:n-K+1);
14 % Apply channel estimate to training data
15 x_hat(index) = f’*in;
16 % Compute error
17 e = x(n-delta)-x_hat(index);
18 % Update taps
19 f = f + mu*conj(e)*in;
20 index = index + 1;
21 end

Code 9.4 Determine Bit Errors: chanEQ.m

22 % Slice
23 x_bar = sign(x_hat);
24 % Calculate bit errors
25 eqDelay = K-delta;
26 fprintf(’BER %2.4f n’,mean(x(eqDelay:end-eqDelay-1) ˜= x_bar));

cases it will not be possible to use training information and instead will require
blind equalization techniques. Blind equalization is required when the received
signal contains no known preamble or when equalizer updates want to be updated
during the payload portions of frames. Such an implementation is necessary when
channels have long filter lengths or require more data than provided in the preamble.
Alternatively, for highly dynamic channels where the coherence of the channel
is shorter than a frame, it may be necessary to update the equalizer to maintain
a desired BER. Here we will consider a decision-directed (DD) LMS equalizer,

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 261 — #9

9.3 Equalizers 261

although other implementations exist, such as the constant modulus (CM) equalizer,
sometimes called the dispersion-minimization (DM) algorithm [6].

The DD equalizer operates by making hard decisions on received data to
estimate the most likely symbol and updates the equalizer based on this estimate.
The updated equalizer structure is provided in Figure 9.10, which inserts a decision
block after the output of the equalizer. Therefore, the receiver has no knowledge
of x(n) from this design except for the modulation scheme. This results in an error
term in (9.12) to be updated in the case of DD to

e(n) = x̂(n) − x̄(n) (9.12)

where x̄(n) is the maximum likelihood estimate of the equalized received signal
x(n). For the case of BPSK and QPSK we have the following estimators:

x̄(n) =
{

sign(y(n)) if BPSK

sign(real(x(n))) + i × sign(imag(x(n))) if QPSK.
(9.13)

DD equalization can be effective when x(n) and x̂(n) are relatively close, but
when the difference is large DD equalizer can perform poorly. Alternatively, from
a perspective provided in Chapter 6, the eye of the eye diagram plot must be
open to some degree initially for the DD equalization to effectively invert the
channel effectively or in a reasonable amount of symbols. We provide an received
signal with ISI in Figure 9.11(a), the resultant signal after LMS equalization in
Figure 9.11(b), and the resultant signal after DD equalization in Figure 9.11(c).
The LMS implementation convergences within a few hundred samples, while the
DD equalizer take roughly 2,000 samples to open the eye with still a significant
amount of noise. LMS has an obvious advantage, but requires knowledge of the
exact source symbols unlike the DD method. Note that both equalizers utilize the
same µ, with the initialization of the equalizers being equal to

fLMS = fDD = [1, 0, ..., 0] ∈{K×1}, (9.14)

fDD cannot be initialized to all zeros.

9.3.1 Nonlinear Equalizers
So far we have only considered equalizers with forward filters, also known as linear
equalizers. However, it is also possible to implement filters with both feedback
and feedforward filters, which we call here decision feedback equalizers (DFEs).
The feedback filter in the DFE will produce outputs that are subtracted from the

h f

+ Decision

TX/Channel RX

x( )n r n( )

e n( )

x̂ n( )

x n( )

f

Figure 9.10 Adaptive FIR equalization of FIR channel h using known decision directed data.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 262 — #10

262 Channel Estimation and Equalization

(a)

(b)

(c)
Figure 9.11 Example of using cross correlation to find a sequence with a larger sequence of data.
(a) QPSK signal with ISI before equalization, (b) QPSK signal with ISI after LMS equalization, and
(c) QPSK signal with ISI after DD equalization.

output of the feedforward filter. This is outlined in Figure 9.12, which shows both
filters and their update paths. Since the feedback filter can only estimate the post-
cursors symbols, it needs to be used in combination with a feedforward filter. After
convergence, the feedback filter contains an estimate of the impulse response of the

Analog Devices perpetual eBook license – Artech House copyrighted material. 

6 

4 

2 
11) 

-0 
3 0 
t: 
Oil 
~ 

::E -2 

-4 

-6 
0 500 1000 1500 2000 2500 3000 3500 

Samples 

6 

4 

2 
11) 

-0 
3 0 
t: 
Oil 
~ 

::E -2 

-4 

-6 
0 500 1000 1500 2000 2500 3000 3500 

Samples 

6 

4 

2 
11) 

-0 _g 0 
t: 
Oil 
~ 

::E -2 

-4 

-6 
0 500 1000 1500 2000 2500 3000 3500 

Samples 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 263 — #11

9.4 Receiver Realization 263

h f

Decision

d

TX/Channel RX

x n( ) r n( ) x̂ n( )

x n( )
e n( )

f

d

+

+

Figure 9.12 Adaptive FIR equalization of FIR channel h using decision feedback equalizer.

channel convolved with of the feedforward filter. Since the feedback filter utilizes
this composite output, the DFE can compensate for severe amplitude distortion
without increasing the noise in the highly distorted channel.

We update our previous equalizer equations with the addition of a new filter
d ∈{P×1}. To solve for a filter d using LMS that will equalize the effects of a given
channel h, we need to modify the recursion provided in (9.3) to (9.6) as

x̂(n) = fH(n)r(n) − dH
(n)x̄(n) (9.15)

e(n) = x̄(n) − x̂(n) (9.16)

f(n + 1) = f(n) + µ e∗(n)r(n) (9.17)

d(n + 1) = d(n) + µ e∗(n)x̄(n) (9.18)

where
r(n) = [r(n), r(n − 1), ..., r(n − K − 1)]T , (9.19)

and
x̄(n) = [x̄(n), x̄(n − 1), ..., x̄(n − P − 1)]T . (9.20)

Here x̄(n) will either be the DD version of x(t) or x(t) itself when training data is
used. Again, we can update our MATLAB code to utilize this new feedback filter,
which is provided in Code 9.5.

Note that the DFE implementation can be more difficult to tune since it contain
two filters. The DFE implementation can also utilize different stepsizes per filter
update as well, which may make tuning more managable.

9.4 Receiver Realization

For an actual implementation of an equalizer into our receiver structure, we have
several design strategies that we can utilize depending on the system requirements.
A reasonable design perspective to consider is the required amount of training data
needed to equalize a given channel environment. There are three aspects here: the
channel length, the convergence of the equalizer, and the dynamics of the channel.
Training data is typically confined to the preamble sequence and the chosen length
will be chosen on the maximum value of L, which also determines the value of M.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 264 — #12

264 Channel Estimation and Equalization

Code 9.5 Determine Bit Errors: chanEQDFE.m

1 h = [0.2; 1; 0.1; 0.02]; % Channel taps
2 mu = 0.001; % Stepsize
3 trainingSamples = 1e4;
4 x = sign(randn(trainingSamples,1)); % Generate BPSK data
5 r = filter(h,1,x); % Apply channel
6 K = length(h)+2; f = zeros(K,1);
7 P = length(h)-1; d = zeros(P,1); x_bar_vec = zeros(P,1);
8 delta = 4; % Reference tap
9 %% Equalize channel

10 index = 1;
11 [e,x_hat]=deal(zeros(trainingSamples-K+1,1));
12 for n = K:trainingSamples
13 % Select part of training input
14 in = r(n:-1:n-K+1);
15 % Apply channel estimate to training data
16 x_hat(index) = f’*in - d’*x_bar_vec;
17 % Compute error
18 e = x(n-delta)-x_hat(index);
19 % Update taps
20 f = f + mu*conj(e)*in;
21 d = d - mu*conj(e)*x_bar_vec;
22 % Update feedback filter
23 x_bar_vec = [x(n-delta);x_bar_vec(1:end-1)];
24 index = index + 1;
25 end

When the channel is dynamic, meaning that it can change over small periods of
time when compared to the frame length, it becomes necessary to utilize multiple
equalizers. For example, we can utilize a LMS equalizer to initially open the eye
with the preamble sequence, then across the data we can utilize a DD equalizer to
maintain the open eye (see Figure 9.13). If a secondary equalizer was not used, then
the frame length would need to be shorted to meet the same BER requirements.
However, the preamble must be long enough to allow for the appropriate adaption
of the equalizer, which will be dependent on the values of M and L. For a larger
equalizer, more data is required for it to converge, thus leading to longer preambles.

We can update the source code in Code 9.3 for a case of BPSK to utilize both
LMS and DD with a few simple modifications. In Code 9.6, we simply add a
condition to switch between the different modes.

Preamble Payload

LMS equalization
with known
training data to
reach convergence

DD equalization on unknown data
to keep channel correction estimate
valid over all payload symbols

Full packet

Figure 9.13 Example packet structure and application of different equalizer algorithms.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 265 — #13

9.5 Chapter Summary 265

Code 9.6 Equalizer with DD and LMS Modes: chanEQLMSDD.m

1 for n = K+1:FrameLength
2 % Apply equalizer to received data
3 x_hat = f’*r(n:-1:n-K+1);
4 % Estimate error
5 if n<(PreambleLength-delta)
6 e = x(i-delta) - x_hat;
7 else
8 e = sign(y) - x_hat;
9 end

10 % Update equalizer
11 f = f + mu*conj(e)*r(n:-1:n-K+1);
12 end

Equalizers themselves are very useful utilities in the system beyond just
compensating for multipath in a system. They can also be used to compensate
for frequency offset, timing mismatches, and even frame synchronization errors.
However, the equalizer must be configured in a way to compensate for such
conditions. For example, when dealing with carrier offset, which can only be
relatively small compared with conditions in Chapter 7, µ should be increased
to deal with this condition. Since the equalizer is itself just a filter, compsenating for
frequency offset simply forms the equalizer’s taps in a complex gain equivalent to
the instantaneous phase associated with the carrier. However, this must be updated
continuously to compensate for such a condition, forcing a dual DD and training
data implementation.

When considering timing compensation it can be useful to implement a
fractional equalizer, which consumes multiple samples on the front feedforward
filter. This makes the equalizer multirate, but also similar to the timing
compensation designs in Chapter 6. In this configuration the equalizer will be able
to weigh or interpolate across symbols to accurately correct for delay in the received
signal. In addition to fractional timing offsets, by utilizing our delay variable δ we
can compensate for sample errors during frame synchronization. As long as the
desired sample, or start of frame sample, is within the feedforward filter we can
compensate for an incorrect initial estimate. For a feedforward filter of length L
and δ = �L

2 �, we should be able compensate for a sample offset of ±δ.

9.5 Chapter Summary

In this chapter we introduced the concept of channel estimation and equalization.
We have built several equalizer designs around the gradient descent algorithm LMS,
which is the dominant cost function in the field. We provided different strategies
for implementing equalizers when training data is available and when blind
operation is required. Finally, we provided a discussion on receiver implementation
strategies that combine multiple equalizer designs as well as different use cases for
nonidealities from the environment. For the interested reader, brief mathematical
derivations for the basic linear equalizer design, zero-forcing equalizer, and decision
feedback equalizer are available in Appendix C.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch09_new” — 2018/3/26 — 11:43 — page 266 — #14

266 Channel Estimation and Equalization

References

[1] Goldsmith, A., Wireless Communications, Cambridge, UK: Cambridge University Press,
2005.

[2] Johnson, C. R., Jr., W. A. Sethares, and A. G. Klein, Software Receiver Design: Build
Your Own Digital Communication System in Five Easy Steps, Cambridge, UK: Cambridge
University Press, 2011.

[3] Widrow, B., and M. E. Hoff, Neurocomputing: Foundations of Research, Adaptive
Switching Circuits, Cambridge, MA: MIT Press, 1988, pp. 123–134.

[4] Haykin, S., and S. S. Haykin, Adaptive Filter Theory, Pearson Education, 2014.
[5] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Wiley, 1999.
[6] Johnson, R., P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, Blind

Equalization Using the Constant Modulus Criterion: A Review, Proceedings of the IEEE,
Vol. 86, No. 10, 1998, pp. 1927–1950.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 267 — #1

C H A P T E R 10

Orthogonal Frequency Division
Multiplexing

Until now, we have studied several single-carrier modulation schemes where the
input binary bits are modulated by a carrier signal with a center frequency fc.
However, there are other approaches where data can be communicated across a
channel, including a technique referred to as multicarrier modulation. Instead of
having one center frequency, multicarrier modulation (MCM) multiplexes serial
input data into several parallel streams and transmits them over independent
subcarriers. These subcarriers can be individually modulated and manipulated,
allowing for their optimization with respect to the channel. The ability of MCM to
tailor its transmission parameters across the different subcarriers is especially useful
when combating frequency selective fading channel environments. Consequently,
most high data rate communication systems, including all digital subscriber line
(xDSL) modems [1–3], as well as most commercial communication standards,
including Wi-Fi [4, 5], Wi-MAX [6, 7] and LTE [8, 9], use some form of MCM at
the core of their implementations. In this chapter, we will explore one of the most
popular forms of MCM: orthogonal frequency division multiplexing (OFDM).

10.1 Rationale for MCM: Dispersive Channel Environments

From our high school physics courses, we learned about the fundamentals of
wave propagation and how they combine constructively and destructively (e.g.,
the ripple tank experiment). The exact same principles hold in high-speed data
transmission. For example, in a wireless communication system, the transmitter
emanates radiation in all directions (unless the antenna is directional, in which
case the energy is focused at a particular azimuth). In an open environment, like a
barren farm field, the energy would continue to propagate until some of it reaches
the receiver antenna. As for the rest of the energy, it continues on until it dissipates.

In an indoor environment, as depicted in Figure 10.1(c), the situation is
different. The line-of-sight component (if it exists), p1, arrives at the receiver antenna
first, just like in the open field case. However, the rest of the energy does not
simply dissipate. Rather, the energy is reflected by the walls and other objects in
the room. Some of these reflections, such as p2 and p3, will make their way to
the receiver antenna, although not with the same phase or amplitude. All these
received components are functions of several parameters, including their overall
distance between the transmitter and receiver antennas as well as the number of
reflections.

267

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 268 — #2

268 Orthogonal Frequency Division Multiplexing

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Time

A
m

p
lit

ud
e

0 1 2 3

−6

−4

−2

0

2

4

6

Frequency (rad/sec)

M
ag

ni
tu

de
 (

db
)

p1

p2

p3

Tx

Rx

(c)

(b)(a)

Figure 10.1 Example of a channel response due to dispersive propagation. Notice the three
distinctive propagate paths, p1, p2, and p3, that start at the transmitter Tx and are intercepted
at the receiver Rx. (a) Impulse response, (b) frequency response, and (c) the process by which
dispersive propagation arises.

At the receiver, these components are just copies of the same transmitted signal,
but with different arrival times, amplitudes, and phases. Therefore, one can view the
channel as an impulse response that is being convolved with the transmitted signal.
In the open field case, the channel impulse response (CIR) would be a delta, since no
other copies would be received by the receiver antenna. On the other hand, an indoor
environment would have a several copies intercepted at the receiver antenna, and
thus its CIR would be similar to the example in Figure 10.1(a). The corresponding
frequency response of the example CIR is shown in Figure 10.1(b).

When observing Figure 10.1(b) more closely for the case of an operating
environment with significant multipath characteristics, we can observe that the
spectrum of the CIR appears to vary across the frequency domain. This is very
problematic for any signal being transmitted across this type of channel since these
signals will experience nonuniform attenuation that varies across frequency, which
is relatively difficult to mitigate within the context of a single-carrier communication
system since they will require the design and implementation of complex equalizer
filters. On the other hand, MCM communication systems are well suited to handle
this type of distortion since their multiple sub carriers are designed to divide-and-
conquer the channel and treat each frequency-dependent attenuation individually,
thus resulting in an implementation that has relatively low complexity.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

D 

D 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 269 — #3

10.2 General OFDM Model 269

10.2 General OFDM Model

OFDM is an efficient form of MCM, which employs the DFT and inverse DFT
(IDFT) to modulate and demodulate multiple parallel data streams. As shown in
Figure 10.2, the general structure of an OFDM communication system consists of a
2N-point IDFT and a 2N-point DFT at the transmitter and the receiver. The OFDM
transceiver in Figure 10.2 operates as follows: A high-speed digital input, d[m], is
demultiplexed into N subcarriers using a commutator. The data on each subcarrier
is then modulated into an M-QAM symbol, which maps a group of log2(M) bits at
a time. For subcarrier k, we will rearrange ak[�] and bk[�] into real and imaginary
components such that the output of the modulator block is pk[�] = ak[�] + jbk[�].
In order for the output of the IDFT block to be real, given N subcarriers we must
use a 2N-point IDFT, where terminals k = 0 and k = N are don’t-care inputs. For
the subcarriers 1 ≤ k ≤ N − 1, the inputs are pk[�] = ak[�] + jbk[�], while for the
subcarriers N + 1 ≤ k ≤ 2N − 1, the inputs are pk[�] = a2N−k[�] + jb2N−k[�].

The IDFT is then performed, yielding

s[2�N + n] = 1
2N

2N−1∑
k=0

pk[�]ej(2πnk/2N), (10.1)

where this time 2N consecutive samples of s[n] constitute an OFDM symbol, which
is a sum of N different QAM symbols. This results in the data being modulated
on several subchannels, which is achieved by multiplying each data stream by a
sin(Nx)/ sin(x), several of which are shown in Figure 10.3.

The subcarriers are then multiplexed together using a commutator, forming
the signal s[n], and transmitted to the receiver. Once at the receiver, the signal is
demultiplexed into 2N subcarriers of data, ŝ[n], using a commutator and a 2N-point
DFT, defined as

p̄k[�] =
2N−1∑
n=0

ŝ[2�N + n]e−j(2πnk/2N), (10.2)

is applied to the inputs, yielding the estimates of pk[�], p̄k[�]. The output of the
equalizer, p̂k[�], is then passed through a demodulator and the result multiplexed
together using a commutator, yielding the reconstructed high-speed bit stream,
d̂[m].

10.2.1 Cyclic Extensions
With the CIR be modeled as a finite impulse response filter that is convolved with
a sampled version of the transmitted signal, this results in the CIR smearing past
samples onto current samples, which are smeared onto future samples. The effect
of this smearing causes distortion of the transmitted signal, thus increasing the
aggregate BER of the system and resulting in a loss in performance.

Although equalizers can be designed to undo the effects of the channel, there is
a trade-off between complexity and distortion minimization that is associated with
the choice of an equalizer. In particular, the distortion due to the smearing of a
previous OFDM symbol onto a successive symbol is a difficult problem. One simple
solution is to put a few dummy samples between the symbols in order to capture the

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 270 — #4

270 Orthogonal Frequency Division Multiplexing

IDFT2NMod

DFT2NDemod Equalizer

x m[ ]

C
P

x m[ ]^

s n[ ]
dk[ ]m pk[ ]l

dk[ ]m^ pk[ ]l pk[ ]l^
_

s n[ ]^

Channel
N 2 N

2N2NN

Figure 10.2 Overall schematic of an orthogonal frequency division multiplexing system, where the
DFT and IDFT are employed to modulate and demodulate the data streams.

0 2 4 6
0

2

4

6

8

Frequency (rad)

Fr
eq

ue
nc

y 
co

nt
en

t

Figure 10.3 Characteristics of orthogonal frequency division multiplexing: frequency response of
OFDM subcarriers.

intersymbol smearing effect. The most popular choice for these K dummy samples
are the last K samples of the current OFDM symbol. The dummy samples in this
case are known as a cyclic prefix (CP), as shown in Figure 10.4(a).

Therefore, when the OFDM symbols with cyclic prefixes are passed through the
channel, the smearing from the previous symbols are captured by the cyclic prefixes,
as shown in Figure 10.4(b). As a result, the symbols only experience smearing of
samples from within their own symbol. At the receiver, the cyclic prefix is removed,
as shown in Figure 10.4(c), and the OFDM symbols proceed with demodulation
and equalization.

Despite the usefulness of the cyclic prefix, there are several disadvantages. First,
the length of the cyclic prefix must be sufficient to capture the effects of the CIR. If
not, the cyclic prefix fail to prevent distortion introduced from other symbols. The
second disadvantage is the amount of overhead introduced by the cyclic prefix. By
adding more samples to buffer the symbols, we must send more information across
the channel to the receiver. This means to get the same throughput as a system
without the cyclic prefix, we must transmit at a higher data rate.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 271 — #5

10.3 Common OFDM Waveform Structure 271

SymbolM-1CP SymbolMCP SymbolM+1CP

}}}

n

SymbolM-1CP SymbolMCP SymbolM+1CP

n

h n[ ] h n[ ] h n[ ]

SymbolM-1

CP

SymbolM

CP

SymbolM+1

CP

n

(c)

(b)

(a)

Figure 10.4 The process of adding, smearing capturing, and removal of a cyclic prefix. (a) Adding
cyclic prefix to an OFDM symbol, (b) smearing by channel h(n) from previous symbol into cyclic
prefix, and (c) removal of cyclic prefix.

10.3 Common OFDM Waveform Structure

In Section 10.2, we discussed a general OFDM transmission model and the CP
used to limit ISI. Next we will examine a common structure within the OFDM
symbol itself used among many standards such as IEEE 802.11. First, the number
of subcarriers of an OFDM symbol Ns will typically be a base two number since
the FFT and IFFT, which are efficient implementations of the DFT and IDFT used
to modulate and demodulate the data are most efficient at these lengths. However,
in a typical implementation Ng guard carriers will be utilized that occupy the outer
frequency positions of the OFDM symbol. For example, in Figure 10.5, where
Ns = 64 and Ng = 14, the first seven subcarriers and the last seven subcarriers
are unoccupied. This is done to limit the out-of-band interference impacting the
surrounding signals occupying neighboring channels. Nonetheless, the downside
of using guard carriers is that it reduces the overall data rate of the transmission.
Note that this is the OFDM symbol before the CP is added, which is of length
Ncp. Furthermore, select subcarriers are chosen as training or pilot tones, which are
used by equalizers at the receiver to correct for phase and frequency offsets, along
with the channel effects. Similar to Figure 10.5, the selected subcarriers are often
uniformly selected across the symbol in order to provide characterization across the
entire OFDM symbol. These pilots tones will be known at the receiver.

Once OFDM modulation and CPs have been applied to the modulated symbols,
additional structure can be added to the frame prior to analog transmission.
These additions are based on the transmission type. For example, for continuously

Analog Devices perpetual eBook license – Artech House copyrighted material. 

~ ~ ~ 

---1 I I I I I I I I 1---

~ ~ ~ 
--- 1 

~I __ 1
1

~1 __ 1
1~-



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 272 — #6

272 Orthogonal Frequency Division Multiplexing

Subcarrier index
0 10 20 30 40 50 60

M
ag

ni
tu

de

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Guard carriers
Data carriers
Pilot carriers

Figure 10.5 OFDM symbol subcarrier layout with data and guard carriers.

transmitting systems, such as LTE or broadcast signals, small insertions are made
into the individual frames at a periodic rate in order to enable the synchronization
of the receivers. These training or synchronization symbols can be minimal since the
receiver can attempt to synchronize multiple times with the transmitter. However,
in burst-based systems, such as wireless local area networks (WLANs), there will be
large preamble structures that provide the receivers with more time to synchronize.
This additional time allows recovery of frames with high probability without the
need for retransmission. Retransmission can be expensive in terms of performance
costs with wireless systems that have carrier sense multiple access (CSMA)/collision
avoidance (CA) MAC schemes.

We will first examine the frame structure of WLAN since they are a common
implementation of an OFDM system. Digital video broadcast terrestrial (DVB-T2)
uses a similar structure to WLAN. However, the preamble data is modulated in a
different way than WLAN [10]. We have chosen to examine OFDM transmission
and reception from a standard’s perspective for two reasons. First, OFDM
implementations can be very unique based on their system design but generally
follow two patterns, which are discussed here. Second, the standards discussed in
this section are used extensively in industry and understanding how they work can
be invaluable since engineers will most likely interact with WLAN or LTE at some
point in their careers.

From Figure 10.6, we observe that the WLAN frame has a preamble that is
made of up four full OFDM symbols and will always remain the same regardless
of the mode or MCS link settings. The first section identified as the short portion
of the preamble, called the Legacy Short Training Field (LSTF) in the IEEE 802.11

Analog Devices perpetual eBook license – Artech House copyrighted material. 

; 

!~ .._ 
.._ 
.._ 
.._ 
.._ 
.._ Ti 
>

--

.. 
~
 

,. 
,. 

,. 
,. 

,. 

.. .. 
+

 
~
 

+
 

~
 

,. 
+-

,. 
+-

,. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 273 — #7

10.4 Packet Detection 273

Short

Preamble (SYNC)
2 OFDM symbols (10 short + 2 long)

Header
1 OFDM symbol

Payload
Variable number of OFDM symbols

Long Header Payload

Figure 10.6 WLAN 802.11a frame outlining preamble, header, and payload sections.

standard [11], contains ten repeated copies of a short sequence. The purpose of this
sequence is to allow the automatic gain control (AGC) of the receiver to stabilize
over the 8 µs it is given and to perform carrier frequency offset (CFO) estimation.
Generally, this is considered the packet detection phase of the receiver.

Once the packet has been detected and CFO corrected, the receiver will then
utilize the long field, called the Legacy Long Training Field (LLTF) in the IEEE
802.11 standard [11], containing two repeated sequences and a CP. This portion of
the preamble is designed to be used for channel estimation. Overall, an OFDM
receiver will first identify the start of the packet, correct for frequency offsets,
correct for channel effects, and remove residual phase distortions. This processing
may be considered somewhat backward compared with the previous chapters that
considered signal carrier transmissions.

Once the preambles have been utilized to correct the received frame, the header
symbol will be utilized to determine the length and MCS of the remaining payload.
Finally, pilot tones in the payload will be used to correct any remaining offsets and
channel distortions. A similar frame can be generated from Code 10.1.

To provide an alternative perspective regarding standards that utilize OFDM,
LTE is a great example to consider. Unlike WLANs, which focus all synchronization
within a few symbols of the preamble, LTE uses primary synchronization signals
(PSS) and secondary synchronization signals (SSS), as shown in Figure 10.7. The
receiver detects via cross correlation, and utilizes both the frame boundaries along
with the pilot tones sprinkled throughout the resource blocks (RBS) in order to
correct at the receiver. However, since the downlink signals are constant at small
intervals, if a PSS or SSS is missed it can be simply located on the next sequence
provided. Once synchronized, the receiver will continually decode information from
the base stations, unlike WLAN, which is more burst-based.

10.4 Packet Detection

The reasoning behind the structure of the LSTF in the preamble is based on the work
by Schmidl and Cox [12]. In their paper, they outlined a symbol timing recovery
stategy that relies on searching for a training symbol with two identical halves in the
time domain, which will remain identical after passing through the channel, except
that there will be a phase difference between them caused by the carrier frequency
offset. The two halves of the training symbol are made identical (after the IFFT)
by transmitting a pseudonoise (PN) sequence on the even frequencies while zeros
are used on the odd frequencies. This means that at each even frequency one of the
points of a source constellation (rotated BPSK for WLAN) is transmitted. Given
this structure we can accomplish two tasks: first, estimate the start of the preamble

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 274 — #8

274 Orthogonal Frequency Division Multiplexing

Code 10.1 Generate OFDM Packet: genOFDMPacket.m

1 NumFrames = 1;
2 %% Build OFDM Modulator
3 FFTLength = 64;
4 NumGuardBandCarriers = [6; 5];
5 NumDataCarriers = 48;
6 CyclicPrefixLength = 16;
7 PilotCarrierIndices = [12;26;40;54];
8 NumOFDMSymInPreamble = 5;
9 NumBitsPerCharacter = 7;

10 % Convert message to bits
11 msgInBits = repmat(randi([0 1], NumDataCarriers, 1),10, 1);
12 PayloadBits = msgInBits(:);
13 % Calculate number of OFDM symbols per frame
14 NumOFDMSymbols = ceil(length(PayloadBits)/NumDataCarriers);
15 % Calculate number of bits padded in each frame
16 NumPadBits = NumDataCarriers * NumOFDMSymbols - length(PayloadBits);
17 % Get preamble for each frame
18 Preamble = double(getOFDMPreambleAndPilot(’Preamble’, ...
19 FFTLength, NumGuardBandCarriers));
20 % Get pilot for each frame
21 Pilots = double(getOFDMPreambleAndPilot(’Pilot’, NumOFDMSymbols));
22 % BPSK modulator
23 BPSKMod = comm.BPSKModulator;
24 % OFDM modulator
25 DataOFDMMod = comm.OFDMModulator(...
26 ’FFTLength’ , FFTLength, ...
27 ’NumGuardBandCarriers’, NumGuardBandCarriers, ...
28 ’InsertDCNull’, true, ...
29 ’PilotInputPort’, true, ...
30 ’PilotCarrierIndices’, PilotCarrierIndices, ...
31 ’CyclicPrefixLength’, CyclicPrefixLength, ...
32 ’NumSymbols’, NumOFDMSymbols);
33
34 %% Modulate Data
35 symPostBPSK = BPSKMod.step([PayloadBits; randi([0 1], NumPadBits, 1)]);
36 % OFDM modulation for one frame
37 symPostOFDM = DataOFDMMod.step(reshape(symPostBPSK, ...
38 NumDataCarriers, NumOFDMSymbols), Pilots);
39 % Repeat the frame
40 y = repmat([Preamble; symPostOFDM], NumFrames, 1);

using correlation in the time domain due to the known repeating sequences, and
second, estimate the frequency base on the phase difference between the halves of
the training symbols. There are many extensions to [12], such as Minn [13] and [14],
but all maintain the principle of symmetric preambles across frequency and time.

Mathematically, the packet detector’s timing metric from [12] is expressed as

M(k) =
∑L−1

m=0 r∗(k + m)r(k + m + L)∑L−1
m=0 |r(k + m + L)|2 , (10.3)

where r is the received signal and L is the length of halve a training symbol. In
WLAN, the length is equal t0 16 samples or 0.8 µs long. Equation (10.3) takes
advantage of the the repeated sequences in time of length L present in the preamble.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 275 — #9

10.5 CFO Estimation 275

10 ms radio frame

6 RBS
S
S
S

P
S
S

S
S
S

P
S
S

Secondary synchronization signal
1 OFDM symbol

Primary synchronization signal
1 OFDM symbol

Figure 10.7 Simplified outline of LTE downlink frame with a focus on primary and secondary
synchronization signals.

In Code 10.2, a simple example is provided that performs the operation shown in
(10.3), which relies on our previous Code 10.1 to generate the necessary OFDM
packet based on WLAN 802.11a specifications. The resulting metric is plotted in
Figure 10.8, where we can observe an obvious plateau starting at the true position of
the preamble start for different AWGN SNR values. At low SNR the plateau from
the LSTF sequence becomes more difficult to observe, but still and be identified.
Nonetheless, the purpose of the metric M is to determine in a binary degree if a
packet was transmitted. The exact start of the preamble is not required, but still a
rough estimate where the LSTF is located in the data is only required during this
phase of the receiver.

In practice, this method becomes a threshold detection problem and we
must build the receive to deal with different conditions. Equation (10.3) is an
autocorrelation implementation since it utilizes only the received signal. This
implementation is useful since it self-normalizes the input, trying to force the output
to be between 0 and 1. This is not always possible, as observed in Figure 10.8, but
the preamble does extend above the payload data for the output M even at low
SNR. Therefore, it is important to select the correct value when thresholding the
metric M in order to determine if a packet exists in the signal space. This parameter
is actually tunable in some commercial hardware from Cisco Systems, which is
defined as receiver start of packet detection Threshold (Rx SOP) [15]. Conceptually,
changing this parameter will change change your wireless cell size and inversely the
received packet error rate.

10.5 CFO Estimation

One problem associated with OFDM is the effect of frequency offsets. When the
received symbols experience an offset greater than half the subcarrier bandwidth,
the signal becomes nonorthogonal, which breaks the recovery assumptions
associated with the signal. Therefore, before the OFDM signal is demodulated
(i.e., processed via FFT), frequency correction must be considered. As mentioned in
Section 10.4, the phase difference of sequence halves of the preamble are directly

Analog Devices perpetual eBook license – Artech House copyrighted material. 

~ r--_ 

~ --------------



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 276 — #10

276 Orthogonal Frequency Division Multiplexing

Code 10.2 Detect Packet Start: packetDetect.m

1 %% Generate OFDM Waveform
2 genOFDMPacket;
3 % Add random offset
4 offset = randi([0 1e2]);
5 y = [zeros(offset,1);y];
6
7 %% Schmidl and Cox: Coarse Packet Detection
8 L = 16; % Short sync field length
9 m = L; % Distance between fields

10 N = 300; % Autocorrelation samples
11 M = zeros(N,1);
12 SNR = [0,5,10];
13 for SNRindx = 1:length(SNR)
14 r = awgn(y,SNR(SNRindx),’measured’);
15 % Determine timing metric
16 for k=1:N
17 P = r(k:k+m)’ * r(k+L:k+m+L);
18 a = abs(y(k+L:k+m+L));
19 R = a’*a;
20 M(k) = abs(P)ˆ2/(Rˆ2);
21 end
22 % Plot
23 subplot(length(SNR),1,SNRindx);stem(M);
24 hold on; stem(offset+1,M(offset+1),’r*’); hold off;
25 grid on;xlabel(’k’);ylabel(’M’);
26 legend(’Autocorrelation’,’True Start’);
27 title([’SNR: ’,num2str(SNR(SNRindx)),’dB’]);
28 end

related to the frequency offset experience by receive waveform. This can be easily
proven given a frequency offset �f and the transmitted waveform s(t):

r(t) = s(t)ej2π�f t/fs (10.4)

Now utilizing the symbol halves in the LSTF, each of length L, we can write

p(k) =
L−1∑
m=0

r∗(k + m)r(k + m + L)

p(k) =
L−1∑
m=0

s(k + m)∗e−j2π�f (k+m)/fs s(k + m + L)ej2π�f (k+m+L)/fs

p(k) = ej2π�f (L)/fs
L−1∑
m=0

s(k + m)∗s(k + m + L)

p(k) = ej2π�f (L)/fs
L−1∑
m=0

|s(k + m)|2.

(10.5)

Therefore, we know the frequency offset is a direct result of the phase difference
between the preamble halves. For a frequency offset of �f , the phase difference φ

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 277 — #11

10.5 CFO Estimation 277

k
(a)

(b)

(c)

0 50 100 150 200 250 300

M

0

1

2

3

4
SNR: 0dB

Autocorrelation
True start

k
0 50 100 150 200 250 300

M

0

0.5

1

1.5

2
SNR: 5dB

Autocorrelation
True start

k
0 50 100 150 200 250 300

M

0

0.5

1

1.5
SNR: 10dB

Autocorrelation
True start

Figure 10.8 Timing metric M using in Schmidl and Cox algorithm at SNRs of 0, 5, and 10 dB.
These provide rough estimates for the start of a receive frame in AWGN.

between halves of the preamble symbols can be directly related by

φ = 2πL�f

fs
, (10.6)

where fs is the sample rate. Therefore, φ can be estimated as

φ̂ = tan−1
(�(P(k))

�(P(k))

)
, (10.7)

Analog Devices perpetual eBook license – Artech House copyrighted material. 

iT 
iT 

iT 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 278 — #12

278 Orthogonal Frequency Division Multiplexing

where

P(k) =
L−1∑
m=0

r∗(k + m)r(k + m + L), (10.8)

and k in (10.7) is the within the first nine symbols of the short preamble sequence.
Since φ can be at most π we can directly determine the largest offset:

�f ,max = fs
2LN

. (10.9)

In the case of WLAN 802.11a, �f ,max = 625 kHz. However, in the IEEE
standard a receiver must maintain a 20 PPM oscillator resulting in at most a 212-
kHz difference between transmitter and receiver at 5.3 GHz [11].

Code 10.3 implements this technique from (10.5) to (10.8) over varying
frequency offsets. The results are analyzed with respect to a normalized offsets.
This is common since frequency offset will be dependent on the sampling rate of
the system, which can be used to compensate for large offsets. Simply running a
radio at a faster rate will reduce the normalized offset for the recovery algorithms.

Code 10.3 Determine CFO: freqEstOFDM.m

1 %% Generate OFDM Waveform

2 genOFDMPacket;

3 % Add random offset

4 offset = randi([0 1e2]); y = [zeros(offset,1);y];

5 SNR = 20;

6 %% CFO Estimation

7 L = 16; % Short sync field length

8 m = L; % Distance between fields

9 N = 300; % Autocorrelation samples

10 Fs = 1e6; % Sample rate

11 % CFO estimation over multiple frequencies

12 subchannelSpacing = Fs/FFTLength;

13 CFOs = subchannelSpacing.*(0.01:0.01:0.5);

14 cfoError = zeros(size(CFOs));

15 for cfoIndx = 1:length(CFOs)

16 % Add noise

17 r = awgn(y,SNR,’measured’);

18 % Frequency offset data

19 pfOffset = comm.PhaseFrequencyOffset(’SampleRate’,Fs,...

20 ’FrequencyOffset’,CFOs(cfoIndx));

21 r = pfOffset(r);

22 % Determine frequency offsets

23 freqEst = zeros(N,1);

24 for k=1:N

25 P = r(k:k+m)’ * r(k+L:k+m+L);

26 freqEst(k) = Fs/L*(angle(P)/(2*pi));

27 end

28 % Select estimate at offset estimated position

29 freqEstimate = freqEst(offset);

30 % Calculate CFO error

31 cfoError(cfoIndx) = abs(freqEstimate-CFOs(cfoIndx))/subchannelSpacing;

32 end

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 279 — #13

10.6 Symbol Timing Estimation 279

Since the short section of the preamble contains ten copies of the same sequence,
at most nine estimations can be made. However, it is unlikely that the early symbols
of the short preamble will be detected or available due to AGC convergence. This
is the reasoning behind providing additional copies of short preamble sequences.
If the short preamble is recovered early, meaning a large number of the symbols
were detected, then more frequency estimates can be made and eventually averaged
together.

The long portion of the preamble maintains the same symmetry as the short
portion, but there are only two halves to compare. Utilizing only the LLTF reduces
the estimation range since L increases. Nonetheless, if the AGC is unable to lock in
time the LLTF may need to be used for frequency estimation only. In the desirable
case, where both the short and long preamble sequences can be used, a staged
compensation design can be implemented. Similar to single carrier implementation
discussed in Chapter 7, the short sequence can be used to provide a coarse offset
estimate, and the long preamble can be used for fine frequency estimation. The
estimation methods are segregated in this way due to the amount of data that can
be used during estimation. Since the long preamble can generally use more data for
a given calculation of P it can provide more reliable estimates. This analysis comes
directly from [12], which estimates the variance of the estimate of �f as

σ 2 = 1
L × SNR

. (10.10)

10.6 Symbol Timing Estimation

After packet detection and frequency correction, symbol timing can be performed.
Symbol timing is similar to packet detection except that it provides symbol-level
precision estimation of the preamble sequences in the time domain. To provide this
additional precision a cross correlation is performed using the known transmitted
preamble sequence. Using cross correlation provides better SNR of the correlation,
but is not directly normalized to any range without additional scaling. This variable
range of values make cross correlation not ideal for initial packet detection.

The cross-correlation technique applied in OFDM symbol timing estimation
determines the boundary between the short and long training sequences with
sample-level precision since at this point future usage of the LSTF is not required.
An example implementation would be to utilize the first 80 samples of the LLTF
sequence defined as dLLTF(t). The metric c of dLLTF and the received signal r is

c(k) =
∣∣∣ L−1∑

m=0

d∗
LLTF(m)r(m + k)

∣∣∣2. (10.11)

In Code 10.4, two implementations for the calculation of c and are also
presented in Figure 10.9. Both should provide identical results, but computationally
the filter implementation will be more efficient.

Plotting c from either implementation in Code 10.4 should provide a plot similar
to Figure 10.9, which clearly show two peaks 64 samples away from one another.
These peaks represent strong correlations of the LLTF halves and will be pronounce

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 280 — #14

280 Orthogonal Frequency Division Multiplexing

Code 10.4 Determine Fine Symbol Offset Metric: fineSymEst.m

1 genOFDMPacket;
2 % Add random offset with noise
3 offset = randi([0 1e2]); y = [zeros(offset,1);y];
4 SNR = 0; r = awgn(y,SNR,’measured’);
5 %% Estimate fine sample offset
6 LSTF = Preamble(1:160);
7 LLTF = Preamble(161:161+160-1);
8 symLen = 80; % FFTLength + CPLen
9 known = LLTF(1:symLen,1);

10 % Filter
11 coeff = conj(flipud(known));
12 c_filt = abs(filter(coeff, 1, r)).ˆ2;
13 % Correlation
14 m = abs(xcorr(r,known)).ˆ2;
15 padding = length(r)-symLen+1;% Remove padding added to known sequence
16 c_cor = m(padding:end);

0                     200                   400                    600                  800                 1,000                 1,200                1,400
Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ag

ni
tu

de

64 Sample gap

Figure 10.9 Symbol timing metric c using cross correlation for r at a SNR of 10 dB. Peaks at the
positions of the LLTF sequences are clearly visible above the reset of the correlation samples.

in c even under low SNR conditions. From these sample positions OFDM symbol
boundaries can be directly determined and OFDM demodulation can be performed
with a FFT.

The actual offset can be calculated easily as follows in Code 10.5, since the first
peak position will be shifted by half the length of the LLTF (1 OFDM symbol) due
to the correlation operation.

10.7 Equalization

The last piece to the receiver is the equalizer, which is responsible for reducing
channel effects and removing any residual phase or frequency offsets remaining
the in the received signal. The technique discussed here is performed after OFDM

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 281 — #15

10.7 Equalization 281

Code 10.5 Calculate Offset Position: fineSymEst.m

20 [v1,peak1] = max(c_cor);
21 c_cor(peak1) = 0;
22 [v2,peak2] = max(c_cor);
28 % Get numerical offset
29 if abs(peak2-peak1)==FFTLength
30 % Adjust position from start of LLTF
31 p = min([peak1 peak2]);
32 LLTF_Start_est = p-symLen;
33 LSTF_Start_est = LLTF_Start_est - length(LSTF);
34 % Display
35 disp([offset LSTF_Start_est]);
36 end

demodulation, although other methods do exist that can be implemented before the
FFT operation.

One of the primary advantages of the cyclic prefix is that it helps transform
the linear convolution between the transmitted signal s[n] and the channel impulse
response h[n] into a symbol-by-symbol circular convolution. To clearly see this,
let us take a closer look at a given OFDM symbol with cyclic prefix, the symbol
starting at time n = 0. Denoting by s[0], . . . , s[2N −1] the 2N samples of output of
the transmitter IDFT for the first OFDM symbol, the addition of the cyclic prefix
gives rise to a new signal; namely,

s̃[n] =
{

s[n + 2N − K] 0 ≤ n ≤ K − 1
s[n − K] K ≤ n ≤ 2N − 1

Denoted by r̃[n], the result of the convolution of the signal s̃[n] with the length-L
channel impulse response h[n] yields

r̃[n] =
L−1∑
k=0

h[k]s̃[n − k]

=




n−K∑
k=0

h[k]s[n − K − k] +
L−1∑

k=n−K+1

s[n − k + 2N − K] K ≤ n ≤ K + L − 1

L−1∑
k=0

h[k]s[n − K − k] K + L ≤ n ≤ 2N − 1

From the above equation, it is readily observed that after the removal of the
cyclic prefix, the received sequence r[n] = r̃[n + K] is equal to

r[n] =
2N−1∑
k=0

h[k]s[((n − k))2N] = h[n] ©2N s[n]. (10.12)

Thus, the received samples resulting from the removal of the cyclic prefix are
made up of the circular convolution of the sent signal (i.e., 2N samples per symbol)
with the channel impulse response h[n]. Observing (10.12) in the frequency domain,

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 282 — #16

282 Orthogonal Frequency Division Multiplexing

we see the following:
R[k] = H[k].S[k],

where capital letters represent 2N-point DFTs of the corresponding sequences.
Referring back to Figure 10.2, the 2N-point DFT R[k] of the received samples
is already computed and is denoted by p̄k[�].

Referring to Figures 10.3 and 10.1(b), if we consider the multiplication of the
corresponding frequency samples together, we notice that each of the subcarriers
experiences a different channel gain H[k]. Therefore, what must be done is to
multiply each subcarrier with a gain that is an inverse to the channel frequency
response acting on that subcarrier. This is the principle behind per tone equalization.
Knowing what the channel frequency gains are at the different subcarriers, one
can use them to reverse the distortion caused by the channel by dividing the
subcarriers with them. For instance, if the system has 64 subcarriers centered at
frequencies ωk = 2πk/64, k = 0, . . . , 63, then one would take the CIR h[n]
and take its 64-point FFT, resulting with the frequency response H[k], k =
0, . . . , 63. Then, to reverse the effect of the channel on each subcarrier, simply
take the inverse of the channel frequency response point corresponding to that
subcarrier,

W[k] = 1
H[k] , (10.13)

and multiply the subcarrier with it.
Looking back at the WLAN-based frame structure, the LLTF can be best

used for channel estimation since it will always been known at the receiver
and has subcarriers that span the entire OFDM symbol. The LLTF has two
complete OFDM symbols that are both used for channel estimation, averaging
their estimates for more reliable results. To perform OFDM demodulation the
comm.OFDMDemodulator will be utilize, which can be conveniently generated
from a modulator object matching the necessary settings (see Code 10.8).

Code 10.6 OFDM Modulator/Demodulator: exampleMod.m

1 % Modulator
2 Mod = comm.OFDMModulator(...
3 ’FFTLength’ , FFTLength,...
4 ’NumGuardBandCarriers’, [6;5],...
5 ’CyclicPrefixLength’, 0,...
6 ’NumSymbols’, 2,...
7 ’InsertDCNull’, true);
8 % Demodulator
9 Demod = comm.OFDMDemodulator(Mod);

Using this demodulator object the LLTF can be demodulated and the
channel estimated using the least squares (zero-forcing) method described. This
demodulation of the LLTF, channel estimation, and equalization of the data
symbols with the LLTF is provided in Code 10.7. However, even with this additional
correction frequency offsets can still exist in the data. Luckily, there are pilots still

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 283 — #17

10.7 Equalization 283

embedded within the data symbols to correct for these problems. Code 10.7 provides
equalization with these inserted pilots as well.

The pilots are utilized in a very simple way to correct for the additive phase
rotation that can be experienced from symbol to symbol in the data. This rotation
again is a complex gain and will be estimated in a similar way as the LLTF was used

Code 10.7 OFDM Equalization: eqOFDM.m

1 genOFDMPacket;
2 % Add random offset
3 offset = randi([0 1e2]); y = [zeros(offset,1);y];
4 %% Equalization Example
5 r = awgn(y(offset+1:end),15,’measured’); Fs = 1e6;
6 pfOffset = comm.PhaseFrequencyOffset(’SampleRate’,Fs,...
7 ’FrequencyOffset’,Fs*0.001);
8 r = pfOffset(r);
9 %% Channel estimation

10 preambleOFDMMod = comm.OFDMModulator(...
11 ’FFTLength’ , FFTLength,...
12 ’NumGuardBandCarriers’, NumGuardBandCarriers,...
13 ’CyclicPrefixLength’, 0,’NumSymbols’, 2,’InsertDCNull’, true);
14 od = comm.OFDMDemodulator(preambleOFDMMod);
15 od.PilotOutputPort = true;
16 % OFDM Demodulate LLTF
17 LLTF = Preamble(161:161+160-1); rLLTF = r(161+32:161+160-1);
18 [rLLTFFreq,rp] = od(rLLTF); [LLTFFreq,p] = od(LLTF(33:end));% remove CP
19 % Estimate channel
20 ls = rLLTFFreq./LLTFFreq; % Least-square estimate
21 chanEst = mean(ls,2); % Average over both symbols
22 CSI = real(chanEst.*conj(chanEst));
23 ls = rp./p; % Least-square estimate
24 chanEstPilots = mean(ls,2); % Average over both symbols
25 CSIPilots = real(chanEstPilots.*conj(chanEstPilots));
26 %% Perform Equalization
27 data = r(2*length(LLTF)+1:end);
28 odd = comm.OFDMDemodulator(DataOFDMMod);
29 [dataFreq,pilots] = odd(data);
30 % Apply LLTF’s estimate to data symbols and data pilots
31 postLLTFEqData = bsxfun(@times, dataFreq, conj(chanEst(:))./CSI(:));
32 postLLTFEqPilots = ...
33 bsxfun(@times, pilots, conj(chanEstPilots(:))./CSIPilots(:));
34 % Visualization objects
35 tt1 = comm.ConstellationDiagram;tt2 = comm.ConstellationDiagram;
36 tt2.Position = tt2.Position + [500 0 0 0];
37 % Estimate remaining offsets with pilots
38 correctedSymbols = zeros(size(postLLTFEqData));
39 for symbol = 1:size(postLLTFEqData,2)
40 % Estimate rotation across pilots
41 p = postLLTFEqPilots(:,symbol);
42 e = conj(mean(p.*conj(Pilots(:,symbol))));
43 % Equalize
44 sig = postLLTFEqData(:,symbol).*e;
45 correctedSymbols(:,symbol) = sig;
46 % Visualize
47 tt1(sig);tt2(postLLTFEqData(:,symbol));pause(0.1);
48 end

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 284 — #18

284 Orthogonal Frequency Division Multiplexing

for equalization [16]. Assuming that the pilots in the data were also corrected by
the LLTF estimates, the Np pilots from the data OFDM p̂(k) symbols are evaluated
against the known pilots p(k) to produce a single gain:

e(k) = 1
Np

Np−1∑
n=0

pn(k)p̂∗
n(k). (10.14)

This complex gain e(k) is then multiplied by each sample in the kth OFDM symbol.
To be clear pn(k) is the nth known pilot of the kth OFDM symbol.

10.8 Bit and Power Allocation

Resource allocation is an important aspect in OFDM design, since it determines the
BER performance of the OFDM system. Given a fixed bit rate and a transmitted
power constraint, the BER can be minimized by properly allocating the bit and
power levels over the subcarriers. In this section, we will introduce the theory and
technique concerning the bit and power allocation.

Most OFDM systems use the same signal constellation across all subcarriers, as
shown in Figure 10.10(a), where the commutator allocates bit groupings of the same
size to each subcarrier. However, their overall error probability is dominated by
the subcarriers with the worst performance. To improve performance, adaptive
bit allocation can be employed, where the signal constellation size distribution
across the subcarriers varies according to the measured SNR values, as shown in
Figure 10.10(b), where the commutator allocates bit groupings of different sizes.
In extreme situations, some subcarriers can be turned off or nulled if the subcarrier
SNR values are poor.

Assuming that both the transmitter and receiver possess knowledge of the
subcarrier SNR levels, one is able to determine the subcarrier BER values. Since
the subcarrier BER values are dependent on the choice of modulation used for a
given SNR value, we can vary the modulation scheme used in each subcarrier in
order to change the subcarrier BER value. Larger signal constellations (e.g., 64-
QAM) require larger SNR values in order to reach the same BER values as smaller
constellations (e.g., 4-QAM) which have smaller SNR values.

We will simply allocate the number of bits bi on subcarrier i according to

bi = log2

(
1 + γi

�

)
, (10.15)

where γi is the SNR of subcarrier i (not in dB). Of course, (10.15) gives rise to
noninteger numbers of bits around the resulting bi’s, appropriately.

Channel responses are not always linear. In particular, certain frequencies can
be far more attenuated than others. It can be shown that the optimum power
distribution for the subcarriers should be a constant K. Determining what this level
should be is done through water pouring, or choosing the power at a frequency,
P(f ), such that all P(f1) = P(fn).

P(f ) is given by

P(f ) =
{

λ − N(f )

|H(F)|2 , f εF

0, f εF′ (10.16)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 285 — #19

10.9 Putting It All Together 285

where N(f ) is the PDF of Gaussian noise, H(f ) is the transfer function representing
a linear channel, and λ is the value for which∫

F
P(f )df = P, (10.17)

or the area under the curve in Figure 10.11. This water filling is done so that the
probability of a bit error is the same for all subcarriers.

10.9 Putting It All Together

So far, all the necessary receiver algorithms to recover OFDM symbols transmitted
over the air have been provided. Obviously the overall design could be enhanced by
utilizing channel code and scramblers to reduce received BER, but the basic building
blocks are provided. In review a flowchart of the receiver process is provided
in Figure 10.12, which provides the basic comments on how the preamble and
pilots are used. The goal is the maximally utilize the preamble symbols to provide
the majority of the synchronization corrections, which differs in many ways from
the single carrier implementations that heavily rely on just the modulation scheme
itself.

N0=4

N1=4

N2=4

N3=4

NM-3=4

NM-2=4

NM-1=4

NTotal = Nii=0

M-1

N0=1

N1=3

N2=6

N3=4

NM-3=7

NM-2=2

NM-1=3

NTotal = Ni
i=0

M-1

(a) (b)

Σ Σ

Figure 10.10 Comparison of (a) constant and (b) variable rate commutators with equivalent
total rate.

f

)(fP

Figure 10.11 Illustration of the water-filling principle. Notice how power is allocated to each
subcarrier, such that the resulting power would be a constant K.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 286 — #20

286 Orthogonal Frequency Division Multiplexing

Search or
LSTF (packet
detection)

CFO
estimation
with found
LSTF

Search
for LLTF
(symbol
timing)

Channel
estimation
and
equalization
with LLTF

Estimate
and correct
phase offsets
with pilots

LMS equalization
with known
training data to
reach convergence

Evaluate phase
difference between
halves of LSTF
and LLTF
preamble sections

Use cross-
correlation and
locate twin
peaks of LLTF
to determine
exact LLTF/LSTF
boundary

Evaluate both
symbols in LLTF
that span data
subcarriers for
channel effects

Evaluate pilots
for residual phase
rotation roughly
equal for samples
in each individual
OFDM symbol

Figure 10.12 System overview for OFDM receiver for full frame recovery.

10.10 Chapter Summary

This chapter focused on the principle and implementation of multicarrier
modulation, based on the 802.11a WLAN standard. Details were provided on the
benefits of OFDM, including the simplistic receiver design. OFDM is the modern
mechanism for high-speed transmission and reception, ranging from wired internet
to even some satellite links. Although the implementation of the receiver is basically
reversed from the previous succession of chapters, it can be considered much simpler
than our single-carrier implementations.

References

[1] Cioffi, J. M., Chapter 34, “Asymmetric Digital Subscriber Lines,” in Communications
Handbook, CRC Press in Cooperation with IEEE Press, 1997.

[2] Golden, P., H. Dedieu, and K. Jacobsen, Fundamentals of DSL Technology, Boca Raton,
FL: Auerbach Publications, 2004.

[3] Golden, P., and H. Dedieu, and K. Jacobsen, Implementation and Applications of DSL
Technology, Boca Raton, FL: Auerbach Publications, 2007.

[4] Hanzo, L. L., Y. Akhtman, L. Wang, and M. Jiang, MIMO-OFDM for LTE, WiFi and
WiMAX: Coherent versus Non-coherent and Cooperative Turbo Transceivers, Chichester,
UK: Wiley-IEEE Press, 2010.

[5] Lee, B. G., and S. Choi, Broadband Wireless Access and Local Networks: Mobile
WiMaxand WiFi, Norwood, MA: Artech House, 2008.

[6] Pareek, D., WiMAX: Taking Wireless to the Max, Auerbach Publications, 2006.
[7] Nuaymi, L., WiMAX: Technology for Broadband Wireless Access, Chichester, UK: Wiley,

2007.
[8] Sesia, S., I. Toufik, and M. Baker, LTE—The UMTS Long Term Evolution: From Theory

to Practice, Second Edition, Chichester, UK: Wiley, 2011.
[9] Cox, C., An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G Mobile

Communications, Second Edition, Chichester, UK: Wiley, 2012.
[10] Digital Video Broadcasting (DVB), Implementation Guidelines for a Second Generation

Digital Terrestrial Television Broadcasting System (DVB-T2), ETSI TS 102 831 V1.2.1,
ETSI, 2012.

[11] IEEE Standard for Information Technology–Telecommunications and Information
Exchange between Systems, Local and Metropolitan Area Networks–Specific
Requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications–Amendment 4: Enhancements for Very High Throughput for
Operation in Bands below 6 GHz, IEEE Std 802.11ac-2013 (Amendment to IEEE Std
802.11-2012, as amended by IEEE Std 802.11ae-2012, IEEE Std802.11aa-2012, and IEEE
Std 802.11ad-2012), December 2013, pp. 1–425.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

....._________.H....._________.H....._________.H....._________.H....._________. 



Wyglinski: “ch10_new” — 2018/3/26 — 11:43 — page 287 — #21

10.10 Chapter Summary 287

[12] Schmidl, T. M., and D. C. Cox, “Robust Frequency and Timing Synchronization for
OFDM,” IEEE Transactions on Communications, Vol. 45, No. 12, December 1997, pp.
1613–1621.

[13] Minn, H., M. Zeng, and V. K. Bhargava, “On Timing Offset Estimation for OFDM
Systems,” IEEE Communications Letters, Vol. 4, No. 7, 2000, pp. 242–244.

[14] Kang, K. W., J. Ann, and H. S. Lee, “Decision-Directed Maximum-Likelihood Estimation
of OFDM Frame Synchronisation Offset,” IEEE Electronics Letters, Vol. 30, No. 25,
December 1994, pp. 2153–2154.

[15] Cisco Inc., “Configuring Receiver Start of Packet Detection Threshold’, Cisci Wireless
Controller Guide, Release 8, April 2015, pp. 517–523

[16] van Zelst, A., and T. C. W. Schenk, “Implementation of a MIMO OFDM-Based Wireless
LAN System,” IEEE Transactions on Signal Processing, Vol. 52, No. 2, February 2004,
pp. 483–494.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 289 — #1

C H A P T E R 11

Applications for Software-Defined Radio

Until now, the focus of this book was on understanding and mastering the
tools of building a successful communication system using software-defined radio
technology. Both theoretical concepts regarding the various building blocks of a
communication system and practical insights on how to implement them have been
extensively covered. The question one might be asking at this point is: What can
I do with SDR? Indeed, SDR is a very powerful tool for designing, exploring,
and experimenting with communication systems, but how can one wield this
tool to innovate and create? In this chapter, two applications are discussed that
significantly benefit from the versatility and performance of SDR: cognitive radio
and vehicular networking. In particular, two approaches for implementing the
intelligence and learning in cognitive radio will be discussed; namely, bumblebee
behavioral modeling and reinforcement learning. As for vehicular networking, we
will focus on the IEEE 802.11p and IEEE 1609 standards that define vehicle-to-
vehicle and vehicle-to-infrastructure within vehicular ad hoc networks (VANETs).
The goal of this chapter is to provide the reader with insights on how SDRs can be
employed in these advanced applications.

11.1 Cognitive Radio

The concept of cognitive radio, whose term was coined in 2000 by Joseph Mitola [1],
is a powerful methodology for performing communications where each radio
within the network has the capability to sense its environment, adapt its operating
behavior, and learn about new situations on-the-fly as they are encountered (see
Figure 11.1). As a result of cognitive radio’s ability to sense, adapt, and learn,
it requires the communication system it is operating on to be highly versatile.
Consequently, SDR technology is very well suited for implementing cognitive
radio-based communication systems.

Although SDR seems to be a great fit for cognitive radio applications, there
are several design and implementation considerations that need to be addressed.
Referring to Figure 11.2, we see how the cognitive radio engine forms a layer
on top of the baseband processing portion of the SDR platform. The baseband
processing can be one of several computing technologies, such as general purpose
microprocessor systems, FPGAs, DSPs, GPUs, ARM, and other embedded
computing technologies. In fact, it might even be possible to have a SDR with
several types of baseband processing technologies co-existing on the same system.
Given a computing technology for a specific SDR system, one needs to be mindful
that not all SDRs are built the same and that each computing technology has its
advantages and disadvantages. For instance, FPGAs are not easily reprogrammable,

289

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 290 — #2

290 Applications for Software-Defined Radio

Sense

Adapt Learn

Figure 11.1 The sense, adapt, learn cycle of cognitive radio. This cycle is what differentiates
cognitive radio from those that are purely automated or adaptive because of the presence of learning
in this functional cycle.

which means they are not well suited for communication system operations that
frequently change. On the other hand, they are very suitable for those applications
requiring raw computational speed. Choosing the right computing hardware can
significantly affect the performance of your cognitive radio.

If we study Figure 11.2 more closely, we can see that the cognitive radio engine
consists of several inputs (sensed environment, expected performance metrics,
available radio configurations), an output (radio configuration to be implemented),
and a feedback loop. At the heart of the cognitive radio engine is the decision-making
process, which determines the best possible radio configuration to be implemented
based on past experiences, available radio configurations, sensed environmental
parameters, and desired performance metrics. The decision-making process is often
implemented using machine learning, of which there is a plethora of choices to
select. To understand the design considerations for a cognitive radio engine, let us
look at each of these elements more closely.

Machine learning techniques have been extensively studied to either partially or
entirely automate the (re)configuration process (see [2–6] and references therein).
However, the solutions produced by these techniques often require some knowledge
of the wireless device and the target networking behavior (e.g., high data rates, high
error robustness, and low network latency [7]). Nevertheless, machine learning
techniques are well suited to handle scenarios possessing a very large device
configuration solution space [4–6].

One major issue affecting cognitive radio systems is the accuracy of their
decisions, which are based on the quality and quantity of input information to
the cognitive radio engine. Thus, with more information available to the system,
this enables the cognitive radio engine to make better decisions such that it achieves
the desired user experience more precisely. Referring back to Figure 11.2, three
types of parameters employed by a cognitive radio system exist:

1. Device Configurations: A collection of parameters that can be altered to
change the current operating state of the device. Note that several potential
configurations may not be possible to implement, and are thus disallowed
by the adaptation algorithm.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 291 — #3

11.1 Cognitive Radio 291

RF
Front
End

Microprocessor

Digital logic

Baseband processing

A/D

D/A

Cognitive
decision making

Environmental
information

Available
radio
functions

Final radio
design and
configuration

Performance
metrics

Software defined radio platform

Cognitive radio engine

Figure 11.2 Concept diagram of a cognitive radio engine operating on a software-defined radio
platform.

2. Environmental Parameters: These parameters represent the information
about the current status of the device as well as its sensed wireless
environment using external sensors.

3. Target Networking Experience: These metrics approximately describe the
average human user’s experience when operating the wireless networking
device. The goal of the any cognitive radio is to achieve the best-possible
value for a given metric.

Since all applications operate in different environments and possess different
requires, a solution produced by the cognitive radio engine for one application
that achieves superior performance might yield unacceptable performance when
that same solution is applied to a different application.

The definition of an optimal decision is a combination of device configuration
and environmental parameters that achieve the target networking experience
better than any other combination available. Defining a proper list of parameters
constituting a device configuration to be employed by a cognitive radio system is of
prime importance. A well-constructed list consists of common wireless parameters
that each possess a large impact on the target networking behavior. Table 11.1
shows a list of nine transmission parameters commonly used in wireless networking
devices.

Environmental parameters inform the system of the surrounding environment
characteristics. These characteristics include internal information about the
device operating state and external information representing the wireless channel
environment. Both types of information can be used to assist the cognitive radio

Analog Devices perpetual eBook license – Artech House copyrighted material. 

------------------, I ---------- ---------- I 

I -------- I 
I I --------
1 1 I I 

I : I I 
I L _______ I '---~-~ I 

I ~-~ I L-----------------~ 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 292 — #4

292 Applications for Software-Defined Radio

Table 11.1 Several Common Wireless Networking Device Configuration
Parameters∗
Parameter Description
Transmit power Raw transmission power
Modulation type Type of modulation
Modulation index Number of symbols for a given modulation scheme
Carrier frequency Center frequency of the carrier
Bandwidth Bandwidth of transmission signal
Channel coding rate Specific rate of coding
Frame size Size of transmission frame
Time division duplexing Percentage of transmit time
Symbol rate Number of symbols per second

∗ From [5, 8].

in making decisions. These variables along with the target networking experience
are used as inputs to the algorithm. Table 11.2 shows a list of six environmental
parameters that can affect the operational state of a cognitive radio device.

The purpose of a machine learning-based cognitive radio system is to
autonomously improve the wireless networking experience for the human operator.
However, improving this experience can mean several different things. Much
research is focused on improving the accommodation of many wireless users
within the same network. Other important aspects include providing error-free
communications, high data rates, limiting interference between users, and even the
actual power consumption of the wireless networking device, which is extremely
important in mobile applications. As shown in Table 11.3, we have defined five
common target networking experiences that guide the cognitive radio to a specific
optimal solution for the cognitive radio system.

The target experiences presented in Table 11.2 represent the means for guiding
the state of the cognitive radio-based wireless system. The cognitive radio makes use
of these experiences through relationships that describe how modifying the device
parameters achieve these objectives. To facilitate the decision making process, each
target networking experience must be represented by a mathematical relationship
that relates a device configuration and environmental parameters to a scalar value
that describes how well this set achieve the specific goal [5, 8]. These functions will
provide a way for the cognitive radio to rank combinations of configurations and
environmental parameters, ultimately leading to a final decision.

Note that it is possible to specify several target networking experiences
simultaneously, with the final score being represented by a numerical value. In
this case, the individual scores of the target experiences are weighted according to
their importance in the specific application and summed together, forming the final
overall score [5].

11.1.1 Bumblebee Behavioral Model
So far we have focused on the framework surrounding the decision making process
of a cognitive engine, but we have not really explored the different approaches
for decision making on the radio itself. Consequently, let us explore two potential
approaches for performing the decision making operation. The first approach is a
biologically inspired method based on the behavior of bumblebees [9].

When people talk about cognitive radio, they hear the word cognitive and
associate it with some sort of human intelligence that is driving the decision making

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 293 — #5

11.1 Cognitive Radio 293

Table 11.2 Several Common Wireless Networking Environmental Parameters∗

Parameter Description
Signal power Signal power as seen by the receiver
Noise power Noise power density for a given channel
Delay spread Variance of the path delays and their amplitudes for a channel
Battery life Estimated energy left in batteries
Power consumption Power consumption of current configuration
Spectrum information Spectrum occupancy information

∗ From [5, 8].

Table 11.3 Several Common Wireless Networking Target Experiences∗

Objective Description
Minimize bit error rate Improve overall BER of the transmission environment
Maximize data throughput Increase overall data throughput transmitted by radio
Minimize power consumption Decrease amount of power consumed by system
Minimize interference Reduce the radio interference contributions
Maximize spectral efficiency Maximize the efficient use of the frequency spectrum

∗ From [5, 8].

process. However, this might actually be overkill in terms of the performance we
are seeking and the significant cost associated with the computational complexity.
As a result, several researchers have instead focused on lifeforms with simpler
cognitive capabilities as the basis for their cognitive radio engines as well as
decision-making processes employed in other applications. Over the past several
decades, researchers have investigated the behavior of ant colonies and honeybees
as the basis for intelligent and efficient decision-making. These lifeforms possess the
characteristic of being social animals, which means they exchange information with
each other and perform an action that yields the best possible reward. However, ant
colonies and honeybees suffer from being socially dependent lifeforms, which means
that the actions of one entity is completely dependent on those of the collective.
When translating these biologically inspired decision-making processes to cognitive
radio and SDR, this yields a very challenging operating environment. Suppose
that each radio operates a cognitive radio engine that collects information on its
environment as well as information from nearby radios. As a result of this extensive
information, we would expect that the radio would make excellent decisions on its
own configuration. However, if these socially dependent models are used, this also
constrains how these decisions are made on a per-radio basis.

Bumblebees are also social lifeforms that operate within a collective. However,
unlike honeybees and ant colonies, bumblebees are socially independent by nature
since they collect information from their environment and share information with
each other, but they make their own decisions without control from the collective.
It is this sort of flexility that makes bumblebees ideal for operating environments
that could potentially change quickly over time. As for employing the bumblebee
behavioral model in cognitive radio, it is well suited for operating environments
where the network topology changes frequently, the channel conditions and spectral
availability changes as a function of time, and the number of radios that are part of
the network changes. Consequently, having each radio running a cognitive engine
based on a bumblebee behavioral model is great since they gather information about
the environment and then act to enhance their own performance.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 294 — #6

294 Applications for Software-Defined Radio

In order to implement a bumblebee behavioral model for a cognitive radio
engine, we need to leverage foraging theory on which bumblebees and many other
lifeforms employ when gathering resources [9]. Essentially, foraging theory is a
form of resource optimization employed by lifeforms to gather food, hunt prey,
and seek shelter, along with various other operations. In the case of bumblebees, it
is possible to map their activities and interpretations of the world that surrounds
them to a wireless communication environment employing software-defined radio.
For example, Table 11.4 presents the mapping between bumblebee behavior and
perceptions to that of a vehicular ad hoc network that is dynamically accessing
spectrum. It can be observed that many of the actions described for bumblebees
possess some degree of similarity with those of a cognitive radio-based vehicle
network.

11.1.2 Reinforcement Learning
Another decision-making process that has been receiving significant attention lately
is reinforcement learning, which is a form of machine learning. As shown in
Figure 11.3, reinforcement learning employs an agent that takes as inputs the
reward of the previous action and the associated state and determines a new action.
This action could be anything, but for the purposes of building cognitive radio
engines the actions would mostly be specific radio configurations such that the
performance of the communication system will be acceptable for the prevailing
operating conditions, such as a dispersive wireless channel. At the receiver, the
resulting reward associated with the action is calculated, which defines how well or
how poorly the action was chosen. It is sent back via overhead channel to the agent
in order to close the feedback loop such that the agent can adjust future actions
(recall the feedback loop in the cognitive radio engine, as seen in Figure 11.2).

Although the structure described in Figure 11.3 appears to be straightforward,
the one concern is about the overhead channel that is needed to close the loop.
If there was some way of minimizing the impact of the overhead channel in this
framework, this reinforcement learning approach could be made to be more robust.
As a result, one approach for minimizing the overhead channel impact while still
maintaining decent performance is to employ a neural network. The neural network
is essentially a black box that can be trained using a large amount of data in order
to create a complex input-output relationship in lieu of a closed-form mathematical
expression. Referring to Figure 11.4, we can see an example of how a neural network

Table 11.4 Several Definitions in Connected Vehicular Communications and
Their Equivalent Definitions in Bumblebees∗

Vehicles Bumblebees
In-band interference Bees foraging on the same floral species
Out-of-band interference Bees foraging on alternative floral species
Minimum channel energy level Maximum nectar level per floral species
Computation/process time Handling/searching time
Latency vs. reliability Sampling frequency vs. choice accuracy
Switching cost/ time between channels Switching cost/time between floral species
Channel activity over time Floral species occupancy over time
Channel-user distribution Bee distribution across floral species

∗ From: [9]

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 295 — #7

11.2 Vehicular Networking 295

Communication
channelTransmitter Receiver

Agent

At

Rt St

St+1 Rt+1

Overhead channel

At = Action

Rt = Reward

St = State

Figure 11.3 Concept diagram of a reinforcement learning approach for intelligently adapting a
communication system to its operating environment [10].

Neural 

Networks
Agent

Channel 

Environment

States s

Rewards r

Actions a

RLNN

s

a

r

Figure 11.4 Hybrid reinforcement learning framework for communication systems [11].

can be employed within the reinforcement learning framework in order to assist the
agent in deciding actions based on past rewards and states. It turns out that if the
neural network is sufficiently trained such that it mathematically models associated
rewards of the communication channel, it can be used to run the reinforcement
learning agent until the channel conditions significantly change such that the neural
network needs to be retrained.

11.2 Vehicular Networking

With some insight regarding cognitive radio, let us now proceed with exploring an
application where cognitive radio combined with SDR technology can truly be a
game-changer: vehicular networking.

Vehicular networking has been extensively researched over the past several
decades [12], especially with respect to vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications [13–16]. Given the complex nature of the
operating environment, including a rapidly changing network topology [17], time-
varying physical characteristics of the propagation medium [18, 19], and the need
for a robust medium access control (MAC) protocol [20], vehicular networking is
a challenging research area being addressed by both academia and industry.

IEEE 802.11p (Dedicated Short Range Communications or DSRC) and IEEE
1609 (Wireless Access in Vehicular Environments or WAVE) are ratified standards
for the implementation of V2V and V2I network architectures [13, 16, 20–23].
Given that these standards are relatively simple extensions of the popular IEEE

Analog Devices perpetual eBook license – Artech House copyrighted material. 

I I 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 296 — #8

296 Applications for Software-Defined Radio

802.11 family of wireless networking architectures, the ability to deploy compliant
wireless devices is relatively inexpensive. However, unlike indoor environments
employing Wi-Fi, vehicular networking environments are much more complex,
introducing problems not experienced previously by the Wi-Fi community.

VANETs are one type of mobile ad hoc networks (MANETs) that specifically
addresses scenarios involving moving ground vehicles. Three types of VANET
applications include [16]

• Road safety applications: Warning applications and emergency vehicle
warning applications. Messages from these applications possess top priority.

• Traffic management applications: Local and map information.
• Infotainment: Multimedia content based on the traditional IPv6 based

internet.

In a VANET architecture, both V2V and V2I links may exist in order to support
the communications within the network. In V2V, each vehicle is equipped with
an onboard unit (OBU) where V2V communications is conducted between the
OBUs of each vehicle mainly for road safety applications and traffic management
applications [24]. The measurements for V2V DSRC are available from [15]. In
V2I applications, roadside infrastructure might be equipped with a road side unit
(RSU). In order to support these V2V and V2I communications within a VANET,
two standardized protocols exist for VANETs: IEEE 802.11p and IEEE 1609.
Figure 11.5 provides a graphical representation of the protocol stack of a vehicular
radio unit employing IEEE 802.11p and IEEE 1609.

Referring to Figure 11.5, IEEE 802.11p [13] specifies the PHY and MAC
layers, while the upper layers are defined by the IEEE 1609.x protocols. IEEE
802.11p possesses many similar characteristics relative to the IEEE 802.11-2012
standard [23]. However, to reduce the communications latency in a highly dynamic
vehicular communications environment, the MAC layer needs to be defined in
such a way that it can support rapid changes in the networking topology and the
need for low-latency communications. Consequently, both IEEE 802.11p and IEEE
1609.4 define new characteristics for the MAC layer. For instance, in IEEE802.11
the wireless nodes could form a service set (SS) such that the nodes possess the
same service ID (SSID) and share communications. The network possessing an

Safety message

Safety Non-safety

Application layer

Wave short message
protocol (WSMP)

Transport layer
(TCP or UDP)

Network layer (IPv6)

LLC Sublayer

MAC sublayer extension (multichannel)

MAC sublayer (hybrid coordination function)

PHY Layer

SAE J2735

IEEE 1609.3

IEEE 802.2

IEEE 1609.4

IEEE 802.11-
2012

IETF RFC 793/
768
IETF RFC
2460

Figure 11.5 Protocol stack for a vehicular communication system.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

.1 1 7 

1 -
1 I 

! 
! 

I 
-



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 297 — #9

11.2 Vehicular Networking 297

access point (AP) is referred to as a basic service set (BSS) while a network with
no AP (i.e., an ad hoc network), is referred to as an independent BSS (IBSS).
Several BSS could connect together to form an extended service set (ESS), while
all the BSSs in one ESS can share the same extended SSID (ESSID). The problem
with respect to a VANET is that the formation of a SS before the start of any
communications may potentially be time consuming, which is not suitable for
rapidly changing vehicular networking environments. To handle this issue, the
IEEE 802.11p standard proposed an out-of-context BSS (OCB), where the OCB
mode applies to multiple devices within the coverage area of a single radio link.
In OCB mode, the vehicle can send or receive data any time without forming or
being a member of an SS. Additionally, the IEEE 802.11p standard removed the
authentication, association, and data confidentiality mechanisms from the MAC
layer and moved them to an independent higher layer defined in IEEE 1609.2 [21].
Conversely, IEEE 802.11p still keeps the BSS mode, which is mainly used for
infotainment applications via V2I communication.

For MAC, conventional IEEE 802.11 uses carrier sense multiple access
(CSMA)/collision avoidance (CA). IEEE 802.11p still employs the CSMA
mechanism, but it also employs a hybrid coordination function (HCF), which
ensures the quality of service (QoS) via an enhance defense cooperation agreement
(EDCA) defined in IEEE 802.11e. Data from the different services have different
priorities depending on its importance. For instance, the performance of CSMA/CA
and the proposed self-organizing time division multiple access (STDMA) mechanism
demonstrates the lower occurance of dropped packets relative to CSMA/CA [25].
However, this paper does not fully consider the HCF mechanism (i.e., the QoS
based EDCA and contention-free period (CPF)-based HCCA are not evaluated). A
priority-based TDMA MAC mechanism designed to decrease the packet drop rate
in a transmission was also proposed for WAVE [26].

The PHY layer of a VANET based on IEEE 802.11p is derived from the IEEE
802.11a standard with three different channel width options: 5 MHz, 10 MHz,
and 20 MHz, among which 10 MHz is recommended. As with IEEE 802.11a,
IEEE 802.11p uses OFDM including 52 carriers, which consists of 48 data carriers
and 4 pilots, and 8-µs symbol intervals. The physical channel supports BPSK,
SPSK, 16-QAM, and 64-QAM. In addition to IEEE 802.11p, IEEE 1609.4 defines
multichannel behavior in the MAC layer [20]. Given that the PHY layer consists
of seven channels, IEEE 1609.4 defines the channel switching mechanism among
the CCH and SCHs. IEEE 1609.3 defines two types of messages in VANET:
Wave Short Message Protocol (WSMP) and IPv6 stack [22]. IPv6 is usually
for infotainment applications while the safety applications are transmitted via
WAVE Short Messages (WSM). Additionally, SAE J2945 specifies the minimum
communication performance requirements of the SAE J2735 DSRC message sets
and associated data frames and data elements. In order to ensure interoperability
between vehicles, SAE J2945 further defines BSMs sending rate, transmit power
control, and adaptive message rate control.

SAE standards have been extensively used by the automotive industry with
respect to safety message implementation. In particular, SAE J2735 defines 15 types
of safety messages such as the basic safety message (BSM), signal phase time (SPT)
message, and MAP message [16].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 298 — #10

298 Applications for Software-Defined Radio

BSM is broadcast to surrounding vehicles periodically at a frequency of 10 Hz,
announcing the state information of the vehicle such as position, speed, acceleration,
and heading direction [27]. Selective broadcasting is used, where other cars at
the edge of the DSRC transmit range will rebroadcast a message sent by another
vehicle. When the orginal message sender receives the rebroadcasted message, it
will cancel its own broadcast. The BSM message feature is mandatory in DSRC.
Note that selective broadcasting for VANETs has been implemented in NS-3 [28].
In SAEJ2735, the BSM message consists of two sections: the basic section and the
optional section [29]. The basic section includes position, motion, time, and general
status of the vehicle information, which are always sent using a combination of
the DER encoding and some octet binary large-object encoding [27]. The optional
section is only sent when it is necessary. This section provides information to assist
the receiving devices in further processing.

Vehicles within the DSRC range can share situational awareness information
among each other via BSM, including scenarios such as

• Lane Change Warning: Vehicles periodically share situational information
including position, heading, direction, and speed via V2V communication
within the DSRC range. When a driver signals a lane change intention, the
OBU is able to determine if other vehicles are located in blind spots. The driver
will be warned if other vehicles do exist in the blind spot; this is referred to as
blind spot warning. On the other hand, if no vehicles exist in the blind spot,
the OBU will predict whether or not there is enough of a gap for a safe lane
change based on the traffic information via BSMs. If the gap in the adjacent
lane is not sufficient, a lane change warning is provided to the driver.

• Collision Warning: The vehicle dynamically receives the traffic info from
BSMs and compares that information with its own position, velocity,
heading, and roadway information. Based on the results of the comparison
algorithm, the vehicle will determine whether a potential collision is likely to
happen and a collision warning is provided to the driver.

• Emergency Vehicle Warning: Emergency vehicles transmit a signal to inform
nearby vehicles that an emergency vehicle is approaching.

In addition to the regular safety messages, BSM messages can be also be
used to transmit control messages. It can help in a cooperative collision warning
environment [30], in a safety message routing application [17], or improve the
power control [31]. For the emergency channels (i.e., Channel 172 and Channel
184), BSM can convey power control information to coordinate the transmission
power on each channel. Conversely, the BSM can be used as inputs to the vehicle’s
control algorithms. The control messages are transmitted among the vehicles within
the range.

Given these specifications and standards regarding VANET communications, it
is possible for an individual to implement their own radios capable of V2V and V2I
communications. Although the complexity of the radio design is significant since
the entire protocol stack is extensive, the information is sufficient to create a radio
compliant with IEEE 802.11p and IEEE 1609. The primary issues to be considered
when implementing IEEE 802.11p and IEEE 1609 on a SDR platform include the

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 299 — #11

11.3 Chapter Summary 299

computing performance of the radio itself, the bandwidth limitations in terms of
achievable throughput, and the real-time functionality of every function across
the protocol stack. Despite these challenges, the opportunity exists to construct
these vehicular communication SDR systems that can network on the road in real
time.

11.3 Chapter Summary

In this chapter, we briefly examined two real-world applications that can extensively
leverage SDR technology: cognitive radio and vehicular networking. With respect
to cognitive radio, we explored how to set up the cognitive radio engine on a
SDR platform and presented at least two ways to construct the decision-making
process using either a bumblebee behavioral model or a reinforcement learning
approach. Regarding vehicular network, we presented a short introduction to the
IEEE 802.11p and IEEE 1609 standards that can enable us to construct our own
vehicular networks from scratch using SDR technology.

In this book, we have delved into the theoretical foundations of signals, systems,
and communications, and then explored the real-world issues associated with
communication systems and the solutions needed to mitigate these impairments,
and finally presented several advanced topics in equalization and OFDM
implementations before introducing real-world applications such as cognitive radio
and vehicular networking. Of course, this book only scratches the surface of the
entire communication systems domain, but it is hoped that this book will serve as
a starting point for mastering this very important topic.

References

[1] Mitola, J., Cognitive Radio—An Integrated Agent Architecture for Software Defined Radio,
Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2000.

[2] Barker, B., A. Agah, and A. M. Wyglinski, “Mission-Oriented Communications Properties
for Software Defined Radio Configuration,” in Cognitive Radio Networks, Y. Xiao and F.
Hu (eds.), Boca Raton, FL: CRC Press, 2008.

[3] Newman, T., A. M. Wyglinski, and J. B. Evans, “Cognitive Radio Implementation
for Efficient Wireless Communication,” in Encyclopedia of Wireless and Mobile
Communications, B. Furht, (ed.), Boca Raton, FL: CRC Press, 2007.

[4] Newman, T., R. Rajbanshi, A. M. Wyglinski, J. B. Evans, and G. J. Minden. “Population
Adaptation for Genetic Algorithm-Based Cognitive Radios,” Mobile Networks and
Applications, Vol. 13, No. 5, 2008, pp. 442–451.

[5] Newman, T. R., B. A. Barker, A. M. Wyglinski, A. Agah, J. B. Evans, and G. J.
Minden, “Cognitive Engine Implementation for Wireless Multicarrier Transceivers” Journal
on Wireless Communications and Mobile Computing, Vol. 7, No. 9, November 2007,
pp. 1129–1142.

[6] Rieser, C. J., Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed
Genetic Algorithms for Secure and Robust Wireless Communications and Networking,
Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA,
2005.

[7] Troxel, G. D., E. Blossom, and S. Boswell, et al., “Adaptive Dynamic Radio Open-source
Intelligent Team (ADROIT): Cognitively Controlled Collaboration among SDR Nodes,”

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 300 — #12

300 Applications for Software-Defined Radio

in Proceedings of the IEEE Communications Society Conference on Sensors, Mesh and Ad
Hoc Communications and Networks (SECON)—Workshop on Networking Technologies
for Software-Defined Radio Networks. Reston, VA, August 2006.

[8] Wyglinski, A. M., M. Nekovee, and T. Hou, Cognitive Radio Communications
and Networks: Principles and Practice, Burlington, MA: Academic Press, 2009,
http://www.elsevierdirect.com/ISBN/9780123747150/Cognitive-Radio-Communications-
and-Networks.

[9] Aygun, B., R. J. Gegear, E. F. Ryder, and A. M. Wyglinski, “Adaptive Behavioral
Responses for Dynamic Spectrum Access-Based Connected Vehicle Networks,” IEEE
Comsoc Technical Committeeon Cognitive Networks, Vol. 1, No. 1, December 2015.

[10] Ferreira, P. V. R., R. Paffenroth, A. M. Wyglinski, T. M. Hackett, S. G. Bilen, R. C. Reinhart,
and D. J. Mortensen., “Multi-Objective Reinforcement Learning for Cognitive Radio-Based
Satellite Communications,” in 34th AIAA International Communications Satellite Systems
Conference, Cleveland, OH, October 2016.

[11] Ferreira, P. V. R., R. Paffenroth, A. M. Wyglinski, T. M. Hackett, S. G. Bilen, R. C.
Reinhart, and D. J. Mortensen, “Multi-Objective Reinforcement Learning-Based Deep
Neural Networks for Cognitive Space Communications,” in Cognitive Communications
for Aerospace Applications Workshop (CCAA), Cleveland, OH, June 2017.

[12] Hartenstein, H., and L. Laberteaux, “A Tutorial Survey on Vehicular Ad Hoc Networks,”
IEEE Communications Magazine, Vol. 46, No. 6, 2008, pp. 164–171.

[13] IEEE Standard for Information Technology–Local and Metropolitan Area Networks–
Specific Requirements–Part 11: Wireless LAN medium access control (MAC) and physical
layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments,
Technical Report, July 2010.

[14] Kenney, J. B., “Dedicated Short-Range Communications (DSRC) Standards in the United
States,” Proceedings of the IEEE, Vol. 99, No. 7, 2011, pp. 1162–1182.

[15] Muller, M., “WLAN 802.11p Measurements for Vehicle to Vehicle (V2V) DSRC,”
Application Note Rohde & Schwarz, Vol. 1, 2009, pp. 1–25.

[16] IEEE Guide for Wireless Access in Vehicular Environments (WAVE)—Architecture, IEEE
Std1609.0-2013, March 2014, pp. 1–78.

[17] Tonguz, O., N. Wisitpongphan, F. Bai, P. Mudalige, and V. Sadekar, “Broadcasting in
VANET,” 2007 Mobile Networking for Vehicular Environments, MOVE, June 2007,
pp. 7–12.

[18] Akhtar, N., S. C. Ergen, and O. Ozkasap, “Vehicle Mobility and Communication Channel
Models for Realistic and Efficient Highway VANET Simulation,” IEEE Transactions on
Vehicular Technology, Vol. 64, No. 1, January 2015, pp. 248–262.

[19] Akhtar, N., O. Ozkasap, and S. C. Ergen, “VANET Topology Characteristics under
Realistic Mobility and Channel Models,” in 2013 IEEE Wireless Communications and
Networking Conference (WCNC), April 2013, pp. 1774–1779.

[20] IEEE Standard for Wireless Access in Vehicular Environments (WAVE)–Multi-Channel
Operation Corrigendum 1: Miscellaneous Corrections, IEEE P1609.4-2010/Cor1/D4,
August 2014, pp. 1–24.

[21] IEEE Draft Trial-Use Standard for Wireless Access in Vehicular Environments–Security
Services for Applications and Management Messages,” IEEE Std P1609.2/D6, 2006.

[22] IEEE Approved Draft Standard for Wireless Access in Vehicular Environments (WAVE)–
Networking Services, IEEE P1609.3v3/D6, November 2015, pp. 1–162.

[23] IEEE Standard for Information Technology–Telecommunications and Information
Exchange between Systems Local and Metropolitan Area Networks–Specific Requirements
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, Technical Report, March 2012.

[24] Uzcátegui, R. A., A. J. De Sucre, and G. Acosta-Marum, “WAVE: A Tutorial,” IEEE
Communications Magazine, Vol. 47, No. 5, 2009, pp. 126–133.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch11_new” — 2018/3/26 — 11:43 — page 301 — #13

11.3 Chapter Summary 301

[25] Bilstrup, K., E. Uhlemann, E. G. Strom, and U. Bilstrup, “Evaluation of the IEEE
802.11p MAC Method for Vehicle-to-Vehicle Communication,” in Vehicular Technology
Conference, VTC2008-Fall, IEEE 68th IEEE, 2008, pp. 1–5.

[26] Li, B., M. S. Mirhashemi, X. Laurent, and J. Gao, “Wireless Access for Vehicular
Environments.” Journal on Wireless Communications and Networking, 2009: 576217,
https://doi.org/10.1155/2009/576217.

[27] DSRC Implementation Guide: A Guide to Users of SAE J2735 Message Sets over DSRC,
SAE International, February 2010.

[28] Bür,K., and M. Kihl, “Selective Broadcast for VANET Safety Applications,” in SNOW–the
2nd Nordic Workshop on System and Network Optimization for Wireless, Salen, Sweden,
2011.

[29] Vehicle Information Exchange Needs for Mobility Applications, RITA Intelligent
Transportation Systems Joint Program Office, February 2012 [online], available
athttp://www.its.dot.gov/.

[30] ElBatt, T., S. K. Goel, G. Holland, H. Krishnan, and J. Parikh, “Cooperative Collision
Warning Using Dedicated Short Range Wireless Communications,” Proceedings of the 3rd
International Workshop on Vehicular Ad Hoc Networks–VANET ’06, p. 1, 2006 [online],
available at http://portal.acm.org/citation.cfm?doid=1161064.1161066.

[31] Yoon, Y., and H. Kim, “Resolving Distributed Power Control Anomaly in IEEE 802.lip
WAVE,” IEICE Transactions on Communications, Vol. E94-B, No. 1, 2011, pp. 290–292.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 303 — #1

A P P E N D I X A

A Longer History of Communications

A.1 History Overview

This section is included not to encourage mindless memorization of names or
dates, or to overwhelm the reader, but to help understand how communications
systems have changed, how adoption of new concepts can be lengthy, and how the
technology we use every day in our modern communications infrastructure came
to be. Some may wonder if this section is necessary at all; however, as Carl Sagan
famously said, “If you wish to make an apple pie from scratch, you must first invent
the universe” [1]. The more the history of communications is understood, the more
of a modern marvel the current communications are. It was only 260 short years ago
that an an anonymous letter in a magazine was published theorizing instantaneous
communication by routing 26 wires (one for each letter of the alphabet; coding
schemes were not commonplace), sending static electric pulses down the wire, and
watching pith balls move at the other end (Volta had not developed the battery yet).
This was an early trigger for the multicentury communications revolution.

It goes without saying that communications systems are limited to the
transmission media that are available at the time. Aboriginal Australians in the
Western Desert, indigenous peoples of North America, ancient Chinese soldiers
stationed along the Great Wall, and the ancient Greeks all devised complex
systems of how to transmit messages based on fire or smoke signals. Polybius,
a Greek historian, developed a an early coding system of alphabetical smoke
signals around 150 BCE that converted Greek alphabetic characters into numeric
characters [2]. Each of these approaches possesses the same sort of engineering
trade-offs that modern communication systems struggle with today, including
transmission distance and data rate.

Some of these communication schemes are still used today; for example the
semaphores shown in Figure A.1 that are used when stealth outside of the line of
sight is required (flags don’t emit RF, which could give away location).

It wasn’t until the early 1990s when everything was beginning to come together.
It was the unique combination of RF capability, software, algorithms, and computer
hardware that are necessary to actually implement things. In fact it was only in 1993
that the term software-defined radio was mentioned.

This brief history will ignore the improvements of Johannes Gutenberg’s
movable type printing press, developed in around 1440, which spawned an entire
printing and publishing economy. By 1700, the number of various books and
scholarly journals published in Europe was an estimated 150 to 200 million
copies [3]. This ability to share ideas and concepts with contemporary scientists,

303

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 304 — #2

304 A Longer History of Communications

Figure A.1 Persian Gulf (Novmber 29, 2005) Quartermaster Seaman Ryan Ruona signals with
semaphore flags during a replenishment at sea aboard the Nimitz-class aircraft carrier USS Theodore
Roosevelt (CVN 71). Roosevelt and embarked Carrier Air Wing Eight (CVW-8) are currently underway
on a regularly scheduled deployment conducting maritime security operations. (U.S. Navy photo by
Photographer’s Mate Airman Javier Capella (RELEASED).)

inventors, and engineers of the day and of future helped to usher in the continuing
scientific revolution.

People like Leonardo da Vinci are not noted in this list. While he made
substantial discoveries in anatomy, civil engineering, geology, optics, and
hydrodynamics, he did not publish his findings. Future generations of inventors,
scientists, and engineers had no formal documentation to study or expand upon [4].

A.2 1750–1850: Industrial Revolution

By many accounts, 1750 kicks off the Industrial Revolution, which occurred from
approximately 1750 to 1850. This transition created change for many:

• Hand production giving way to to mechanization;
• New processes for chemical and iron production;
• The increased adoption of steam power;
• The rise of the factory system;
• People moving from cottage-based industries to factory jobs.

Innovations developed late in the period, such as adoption of locomotives,
steamboats and steamships, hot blast iron smelting and other new technologies,
such as the electrical telegraph, continued to change daily life for many [5].

1748: Leonhard Euler publishes Introductio in Analysin Infinitorum (“Introduction
to the analysis of the infinite”) [6]. Euler was not only one of the most
important and influential mathematicians, but also the most prolific. He
wrote more than 500 books and papers during his lifetime [7].

1752: Benjamin Franklin shows that lightning is caused by electricity during his
well-known kite experiment in Philadelphia [8].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 305 — #3

A.3 1850–1945: Technological Revolution 305

1753: An anonymous writer in the Scots Magazine suggests an electrostatic
telegraph. Using multiple wires, a message would be transmitted by
observing the deflection of pith balls [9].

1769: James Watt develops a reciprocating steam engine, capable of powering a
fly wheel [10].

1792: Claude Chappe constructs a semaphore network across France during the
French Revolution to provide a swift and reliable communication system. It
brought news over a distance of 230 kilometers in under one hour, faster
than any other communications method at the time [11].

1800: Alessandro Volta develops the voltaic pile (now known as a battery). With
a constant source of DC voltage, more practical experiments could be made
and new apparatus invented [12].

1804: Improving on James Watt’s steam engine, Richard Trevithicks build the first
full-scale working railway steam locomotive [13].

1820: Johann Schweigger builds the first sensitive galvanometer, an electro-
mechanical instrument for detecting and indicating electric current [14].

1827: Georg Ohm publishes the book Die galvanische Kette, mathematisch
bearbeitet [15] (“The Galvanic Circuit Investigated Mathematically”),
where the fundamental law of electric circuits, V = I × R—what becomes
known as Ohm’s law—is shared. At the time, Ohm’s employor, the
Dreikönigsgymnasium in Cologne, did not appreciate his work and Ohm
resigned from his teaching position [16].

1827: André-Marie Ampère publishes the book Mémoire sur la théorie
mathématique des phénomènes électrodynamiques uniquement déduite de
lexperience (“Memoir on the Mathematical Theory of Electrodynamic
Phenomena, Uniquely Deduced from Experience”) [17]. This is the text that
created electrodynamics as a field of study.

1831: Michael Faraday produces current from a moving magnet, called a disc
dynamo, later to be known as an electrical generator [18].

1833: Carl Friedrich Gauss installs a 1,200m long wire above Göttingen’s roofs to
experiment with the telegraph [19].

1837: Charles Babbage designs the mechanical analytical engine, the first a general-
purpose computer [20].

1837: Samuel Morse patents a recording electric telegraph. In order to sell his new
equipment, an alphabet encoding scheme referred to as Morse code was used
in order to communicate strings of characters [21]. Simple to use, electric
telegraphs were extensively employed during most of the 1800s, with data
rates dependent on the skill of the telegraph operator and the capabilities of
the equipment.

A.3 1850–1945: Technological Revolution

The Technological Revolution, or what many call the Second Industrial Revolution,
was punctuated by advancements in manufacturing that enabled the widespread
adoption of preexisting technological systems such as telegraph and railroad

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 306 — #4

306 A Longer History of Communications

networks, gas and water supply, and sewage systems. The enormous expansion
of rail and telegraph lines after 1870 allowed unprecedented movement of people
and ideas. In the same time period, new technological systems were introduced,
most significantly electrical power and telephones.

1860: Giovanni Caselli demonstrates his pantelegraph, an early form of facsimile
machine, which transmitted a likeness of a signature over 140 km over
normal telegraph lines [22].

1864: James Maxwell publishes a paper, A Dynamical Theory of the
Electromagnetic Field, which tells the world about his findings about
electromagnetic waves and the math behind them. A collection of 20
equations become known as Maxwell’s equations [23].

1865: At the International Telegraph Convention in Paris, the Union
Tèlègraphique Internationale (International Telegraph Union or ITU)
was formed to codify and ensure interoperability within the growing
international telegraphic traffic within Europe [24].

1869: The First Transcontinental Railroad is completed. It was a 3,077 km
continuous railroad line that connected the eastern U.S. rail network with
the Pacific coast in San Francisco Bay [25]

1873: Maxwell publishes his text A Treatise on Electricity and Magnetism [26].
This would be read by many, including Hermann von Helmholtz, a faculty
member at the University of Berlin.

1874: Karl Braun develops the cat’s-whisker detector, later known as a point-
contact rectifier. Consisting of a thin wire that lightly touches a crystal
of semiconducting mineral (usually galena), this device was used as the
detector in early crystal radios, from the early twentieth century through
1945 [27].

1876: Alexander Graham Bell successfully implementes the world’s first telephone,
ushering in a new age of voice-based electronic communications [28]. It was
now possible for any individual to communicate with any other individual
anywhere on the planet, constrained only by the wired medium connecting
the two of them to each other.

1879: Thomas Edison files for a U.S. patent for an electric lamp using “a carbon
filament or strip coiled and connected ... to platina contact wires” [29].

1879: Heinrich Hertz, a Ph.D. student, is given the challenge by his faculty
advisor, Hermann von Helmholtz, to prove the practical uses of Maxwell’s
equations, which were published only a few years before. Although Hertz
did some analysis, he thought this suggestion was too difficult and worked
on electromagnetic induction instead [30].

1885: Karl Benz builds the first practical motorized automobile [31].
1886: Heinrich Hertz receives his professorship at the Karlsruhe Institute of

Technology and is finally able to fulfill his advisor’s challenge and builts
an apparatus for generating and detecting radio waves [30]. This eliminated
the needed wired medium for communications (no more cables), since radio
waves would be generated by a transmitter and propagate throughout an
area until they are intercepted by a receiver.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 307 — #5

A.3 1850–1945: Technological Revolution 307

1894: Jagadish Bose uses a cat’s-whisker detector to detect radio waves in his
pioneering experiments with microwaves [32], finally applying for a patent
on a galena detector in 1901 [33].

1897: Karl Braun builds the first cathode-ray tube (CRT) and cathode ray tube
oscilloscope [34].

1901: Guglielmo Marconi demonstrates the very first trans-Atlantic wireless
transmission between Poldhu, Cornwall, in England and Signal Hill, St.
John’s, in Newfoundland in 1901 [35], using messages encoded using Morse
code [36]. The viability of wirelessly transmitting information over very
large distances was proven. With the success of this experiment, wireless
data transmission became an option for connecting people around the world
without the need for any wired communication infrastructure.

1904: John Fleming develops the oscillation valve, later to be called the two-
electrode vacuum-tube rectifier (now known as a diode) [37]. Fleming’s
diode was used in radio receivers and radars for many decades afterward as
part of the ring mixer, as shown in Figure A.2.

1905: While accepting his 1909 Nobel Prize for physics, Karl Braun describes how
he carefully arranged three antennas to transmit a directional signal [38].
This invention led to the development of radar, smart antennas, and MIMO.

1905: Reginald Fessenden describes a proposed method of producing an audible
signal from the new Morse code continuous wave transmitters he calls the
heterodyne principle [39]. It was not a practical device at the time, since the
oscillating vacuum-tube had not been developed yet.

1906: The International Radiotelegraph Union was unofficially established at first
International Radiotelegraph Convention in Berlin [40].

1907: Lee De Forest develops grid audions, the first vacuum tube based amplifier,
the precursor to the triode [41].

1912: Henry Ford develops and manufactures the first affordable automobile,
turning the automobile into a practical conveyance [42].

1913: While an undergraduate student at Columbia, Edwin Armstrong prepares a
series of comprehensive demonstrations and papers that carefully document
his research on De Forest’s grid audions, employing regeneration (later
known as positive feedback) producing amplification hundreds of times
greater than previously thought possible [43].

1915: Alexander Graham Bell and Thomas A. Watson talk to each other over a
3, 400-km wire between New York and San Francisco [44].

RF
IN

IF
OUT

LO
IN

Figure A.2 Diode ring mixer based on Fleming’s oscillation valve [45].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 308 — #6

308 A Longer History of Communications

1917: Eric Tigerstedt files a patent for a pocket-size folding telephone with a
very thin carbon microphone, a suggestion of the mobile phones we know
today [46].

1917: The superheterodyne is patented. With three different patent applications
being filed by three different people, Lucien Lèvy, Edwin Armstrong, and
Walter Schottky, it is unknown who actually was first. Eventually, the U.S.
patent office recognizes both Armstrong and Lèvy as the inventors [47]. The
superheterodyne is the design used in almost all modern radio receivers.
Figure A.3 shows a block diagram of a single-conversion superheterodyne
radio receiver used as the fundamental architecture for many modern radios.

1924: Harry Nyquist, an engineer in AT&T’s Department of Development and
Research (later to be known as Bell Telephone Laboratories) studies
telegraph signaling with the objective of finding the maximum signaling rate
that could be used over a channel with a given bandwidth, and publishes
“Certain Factors Affecting Telegraph Speed” [48].

1927: Charles Ducas patents a method of electroplating circuit patterns, the
fundamental technology used in the manufacturing of printed circuit
boards [49].

1928: Harold Black of Bell Labs patents negative feedback in amplifiers, where he
defines negative feedback as a type of coupling that reduces the gain of the
amplifier, in the process greatly increasing its stability and bandwidth [50].

1928: Nyquist also publishes futher findings in his article, “Certain Topics in
Telegraph Transmission Theory” [51]. Both his papers provide fundamental
contributions to a quantitative understanding of data transmission.

1932: The International Telegraph Convention and International Radiotelegraph
Convention merge into the International Telecommunication Union (ITU)
in Madrid. This new convention covers the three fields of communication:
telegraphy, telephony, and radio [40].

1932: Since superheterodyne architecture was normally implemented in multiple
stages, and required large components, a team of British scientists develop
what they call the homodyne, later renamed as synchrodyne, what we now

Demodulator
Audio

Mixer
RF
amplifier amplifier

RF amplifier

Local
oscillator

and filter
RF
filter

Figure A.3 Single-conversion superheterodyne radio receiver. The incoming radio signal from the
antenna (left) is passed through an RF filter to attenuate some undesired signals, amplified in a radio
frequency (RF) amplifier, and mixed with an unmodulated sine wave from a local oscillator. The result
is a beat frequency or heterodyne at the difference between the input signal and local oscillator
frequencies, a lower frequency called the IF. The IF signal is selected and strengthened by several IF
stages that bandpass filter and amplify the signal. The IF signal is then applied to a demodulator that
extracts the modulated audio signal. An audio amplifier further amplifies the signal, and the speaker
makes it audible.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 309 — #7

A.4 1946–1960: Jet Age and Space Age 309

call the zero-IF radio architecture [52]. While the homodyne had shown
performance improvements from the superheterodyne, it was difficult to
implement due to component tolerances at the time, which must be of small
variation for this type of circuit to function successfully and the requirement
of a PLL (the superhet only requires a oscillator).

1940: The term RADAR was used by the United States Navy as an acronym for
radio detection and ranging [53].

1945: Arthur C. Clarke, science fiction writer, pens a letter to the editor of
Wireless World describing how geostationary satellites would be ideal
telecommunications relays [54].

A.4 1946–1960: Jet Age and Space Age

While research was being done and patents filed about jet engines since the 1920s,
it was not until Hans von Ohain and Max Hahn designed and built what would
be the first gasoline-fueled jet engine, known as HeS 3. Providing 5 kN of force, it
was fitted to simple and compact He 178 airframe and in 1939, the Jet Age began
[55]. Commercial aviation introduced jets with the first scheduled flight of the de
Havilland Comet, the world’s first commercial jetliner, in 1952 [56, 57].

With people hurling through the sky at hundreds of kilometers per hour, the
need for sophisticated communications grew, and knowing your location, and
where other people are (collision avoidance), becomes more critical.

1946: Electronic Numerical Integrator and Computer (ENIAC) is formally
dedicated at the University of Pennsylvania, becoming one of the earliest
electronic general-purpose computers made [58].

1947: Engineers at Bell Labs observe that when two gold contacts are applied to
a crystal of germanium, a signal is produced with the output power greater
than the input, and this device is soon to be known as the transistor. Group
leader William Shockley sees the potential in this, and over the next few
months works to greatly expand the knowledge of semiconductors [59].

1948: Claude Shannon publishes “A Mathematical Theory of Communication” [60]
in the Bell System Technical Journal. Shannon shows that all communication
(voice, radio, data, etc.) is fundamentally the same, and furthermore, that
any source can be represented by digital data. He was able to quantify
that communication channels had a speed limit, measured in binary digits
per second, something that was revolutionary for its time. Shannon gave a
mathematical proof that there had to exist codes that would approach the
limit without losing any information at all, and this proof still holds to this
day [61].

The concepts of digital communication took off in the late 1950s, since
Shannon showed perfect information transfer is possible no matter the
noise, distortion, or signal amplitude. The concept of relay stations became
important, as data could be transfered from the source at A, to B (the relay)
to C (the destination) without the loss of information.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 310 — #8

310 A Longer History of Communications

1950: The Auto-Sembly process is patented by the United States Army [62]. This
was the solder dipped circuit process of assembling electrical circuits and
was widely adopted by both military and industrial designers [63].

1950: William Shockley publishes Electrons and Holes in Semiconductors [64],
becoming the reference text for other scientists working to develop and
improve new variants of the transistor.

1954: Epsco, a company founded by former UNIVAC engineer Bernie Gordon,
releases the first commercially offered analog-to-digital (ADC) to utilize
the shift-programmable successive approximation architecture and include
sample-and-hold function. It was called the 11-bit, 50-kSPS, 150 lbs,
Datrac converter. Implemented with vacuum tubes, it dissipated 500
watts, was designed for rack mounting (19" × 15" × 26"), and sold
for $8,000 to $9,000. It was the first commercial ADC suitable for
digitizing AC waveforms, such as speech [65]. Because of vacuum tube
technology, the converters were very expensive, bulky, and dissipated lots
of power. There was practically no volume commercial usage of these
devices.

1956: William Shockley moves to Mountain View, California, to start Shockley
Semiconductor Laboratory, starting the silicon valley revolution [66].

1957: Because of Shockley’s management style, a eight unhappy employees leave
Shockley Semiconductor Laboratory and form Fairchild Semiconductor [66].
This is the start of a trend in silicon valley that continues to this day.

1957: The Soviet Union launches Elementary Satellite 1, or Sputnik 1, into elliptical
low earth orbit [67].

1958: Jack Kilby, a junior engineer at Texas Instruments (TI), comes to the
conclusion that the manufacturing of circuit components could be done on
a single piece of semiconductor material. He then files for the first integrated
circuit patent, miniaturized electronic circuits, the next year [68].

1962: The first communications satellite, Telstar 1 is launched [69]. Telstar 1
relayed data, a single television channel, or multiplexed telephone circuits
between Andover, Maine, Goonhilly Downs in southwestern England, and
at Pleumeur-Bodou, in northwestern France. Its use for transatlantic signals
was limited to 20 minutes in each 2.5 hour when the non geosynchronous
orbit passed the satellite over the Atlantic Ocean [70].

1965: Ray Stata and Matthew Lorber, two MIT graduates, found Analog Devices
Inc. [71]. The same year, the company releases its first product, the model
101 op-amp, which was a hockey-puck-sized module used in test and
measurement equipment [72].

1965: Gordon Moore, director of research and development at Fairchild
Semiconductor, observes that the number of components (transistors,
resistors, diodes, or capacitors) in a dense integrated circuit had doubled
approximately every year, and speculated that it would continue to do so for
at least the next ten years. He later revised the forecast rate to approximately
every two years [73]. This has become known as Moore’s law.

1966: Analog-to-digital converters (ADC) are now not enjoying the same amount
of scaling that their pure digital counterparts were. Computer Labs (acquired

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 311 — #9

A.4 1946–1960: Jet Age and Space Age 311

by Analog Devices in 1978) were selling an 8-bit, 10-MSPS converter that
was rack mounted, contained its own linear power supply, dissipating nearly
150 watts, and selling for approximately $10,000 [65].

1967: Barrie Gilbert develops a ring mixer based on transistors, which becomes
known as the Gilbert cell or the four quadrant multiplier [74]. Building on
the diode based ring mixer shown in Figure A.2, the diodes were replaced
by four transistors, performing the same switching function. This formed
the basis of the now-classical bipolar circuit shown in Figure A.4, which
is a minimal configuration for the fully balanced version. Millions of such
mixers have been made, now including variants in CMOS, BiCMOS, and
GaAs.

The Gilbert cell is attractive as an active mixer for the following
reasons:

• It can be monolithically integrated with other signal processing
circuitry.

• It can provide conversion gain, whereas a diode-ring mixer always
has an insertion loss.

• It requires much less power to drive the LO port.
• It provides improved isolation between the signal ports.
• Is far less sensitive to load-matching, requiring neither diplexer nor

broadband termination.
1967: Andrew Viterbi, a faculty of electrical engineering at UCLA and UCSD,

publishes an algorithm to decode convolutionally encoded data [75], known
as the Viterbi algorithm. It is still used widely in cellular phones for error
correcting codes, as well as many other applications. Viterbi did not patent
the algorithm, a decision he does not regret [76].

1969: The first successful message on the ARPANET, which laid the foundations
of the internet is sent by a UCLA student programmer [77].

LO
INPUT

IF OUTPUT

Q2

IEE

Q6Q5Q4Q3

Q1

RF
INPUT

Figure A.4 Classic integrated active mixer [45].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 312 — #10

312 A Longer History of Communications

A.5 1970–1979: Information Age

The Information Age is characterized by the shift from traditional industry that
the Industrial Revolution, to an economy based on information computerization.
The 1970s were driven by a large number of emerging applications, including high-
volume calculators, high-resolution digital voltmeters, industrial process control,
digital video, military phased array radar, medical imaging, vector scan displays,
and raster scan displays. These systems had formerly utilized conventional (at the
time) analog signal processing techniques, or ASICs, but the increased availability of
low-cost computing technology generated a desire to take advantage of the increased
performance and flexibility offered by digital signal processing, as well as the need
for compatible data converters. Central to this age is the mass production and
widespread use of digital logic circuits and their derived technologies, including the
computer and cellular phones.

1970: The term digital receiver is coined by a researcher at a United States
Department of Defense laboratory, where a software baseband analysis
tool called Midas (multiuser interactive digital analysis system) was created,
which had its operation defined in software running on a mainframe of the
time [78].

1971: The Intel Corporation releases, the Intel 4004, the first commercially
available 4-bit central processing unit (CPU) [79].

1971: Texas Instruments invents and releases the first microcontroller (MCU), the
TMS1802NC [80].

1971: ALOHAnet connects the Hawaiian islands with a UHF wireless packet
network. The goal was to use low-cost commercial radio equipment to
connect users on Oahu and the other Hawaiian islands with a central time-
sharing computer on the main University of Hawaii, Oahu campus [81].

1972: Signetics (later acquired by Philips Semiconductors, and now NXP, and,
at the time of this writing is being acquired by Qualcomm) introduces
the NE555V timer. As of 2003, it was estimated that 1 billion units were
manufactured every year [82].

1972: Pulse code modulation (PCM) of voice frequencies, the ITU-T standard
for audio companding known as G.711 is released. It is a narrowband
(300–3400 Hz) audio codec that provides voice quality similar to analog
signal transmission over copper lines, known as plain old telephone service
(POTS) [83].

1973: Martin Cooper of Motorola makes the first publicized handheld mobile
phone call on a prototype DynaTAC, a 4.4-lb (2-kg) phone.

1973: The U.S. Department of Defense kicks off planning for the Defense
Navigation Satellite System (DNSS), soon to be renamed Navigation System
Using Timing and Ranging (Navstar), and eventually Global Positioning
System (GPS). Ten prototype satellites are launched between 1978 and 1985.

1975: Paul Allen and Bill Gates officially establish Microsoft and license Altair
BASIC [84].

1975: Analog Devices releases the AD7570, a 10-bit, 50-kHz CMOS SAR ADC on
a monolithic device. Due to the difficulty of designing good comparartors,

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 313 — #11

A.6 1980–1989: Digital Revolution 313

amplifiers, and references on the early CMOS processes, the AD7570
required an external comparator as well as an external voltage reference [65].

1975: Barrie Gilbert joins Analog Devices and releases the AD534 [85] Precision
IC Multiplier. This is the first device to utilize laser trimming and the Gilbert
cell, to provide less than ±0.25 % 4-quadrant error [86].

1975: Steven Sasson develops the first digital camera [87]. At 3.6 kg, using
a 100,100-pixel (0.01 megapixels) sensor, the resulting black-and-white
digital image is recorded onto a cassette tape, taking 23 seconds [88].

1976: Steve Jobs, Steve Wozniak, and Ronald Wayne found Apple Computer [89].
The company’s first product is the Apple I, a computer designed and hand-
built by Wozniak [90].

1977: What Byte magazine later refers to the 1977 Trinity of personal
computing [91]:

• Apple releases the Apple, based on 6502 running at 1.023 MHz
• Commodore releases the Commodore Personal Electronic Transactor

(PET), based on 6502 running at 1 MHz
• Tandy releases the TRS-80 based on a Zilog Z80 at 1.77 MHz

1978: The EEPROM (electrically erasable programmable read-only memory)
is developed by Hughes Microelectronics Division, which offers a huge
improvement from EPROM in that it is now not necessary to shine UV
light on the memory to erase it [92].

1978: Texas Instrument produces the first Speak & Spell, with the technological
centerpiece being the TMS5100, the industry’s first digital signal processor
(DSP). It also sets other milestones, being the first chip to use linear predictive
coding to perform speech synthesis [93].

1978: The AD574 is released by Analog Devices, the most significant SAR ADC
ever produced [94]. It is the first device representing a complete solution,
including Zener reference, timing circuits, and three-state output buffers for
direct interfacing to an 8-, 12- or 16-bit microcontroller or microprocessor
bus [65]. This becomes the industry standard 12-bit ADC for its time, but
is based on two die in the same package.

1978: Fred Harris, professor of electrical engineering, San Diego State University,
publishes his most cited paper, “On the use of windows for harmonic
analysis with the Discrete Fourier Transform” [95], receiving over 10, 000
peer citations for the papers he has published and information he has
shared [96]. Dr Harris started publishing papers in 1962, and continues
to this day.

A.6 1980–1989: Digital Revolution

The Digital Revolution is the continued change from mechanical and analog
electronic technology to digital electronics which began, depending on the market
segment, anywhere from the late 1950s to the late 1970s with the adoption of digital
signal processing and desktop computing that continues to the present day.

1981: IBM Personal Computer is introduced, based on a 4.77 MHz Intel 8088
16 KB RAM, color graphics adapter, and no disk drives [97].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 314 — #12

314 A Longer History of Communications

1982: The Internet Protocol Suite (TCP/IP) is standardized by the U.S. Department
of Defense, which permits worldwide proliferation of interconnected
networks [98].

1983: The Motorola DynaTAC 8000X commercial portable cellular phone is
released. A full charge takes roughly 10 hours and offers 30 minutes of
talk time. It was priced at $3, 995 in 1984, and used an analog modulation
scheme, known as advanced mobile phone system, or AMPS.

1983: John G. Proakis [99] publishes his first of ten books on digital
communications and signal processing, including Digital Communications
(McGraw Hill) [100]. He goes on write many books on the subject:
Digital Signal Processing [101], Digital Signal Processing Laboratory [102],
Advanced Digital Signal Processing [101], Digital Processing of Speech
Signals [103], and Communication Systems Engineering [104]. His books
have educated a generation of students and engineers about the fundamentals
and theory associated with SDR.

1983: Altera is founded and delivers the industry’s first reprogrammable logic
device in 1984, the EP300, which features a quartz window in the package
that requires users to shine an ultraviolet lamp on the die to erase the EPROM
cells that hold the device configuration [105].

1983: President Ronald Reagan issues a directive making GPS freely available
for civilian use, once it is sufficiently developed, as a common good. The
first production satellite was launched on February 14, 1989, and the 24th
satellite was launched in 1994.

1983: Work begins to develop a European standard for digital cellular voice
telecommunications, which eventually becomes GSM.

1984: Apple Computer introduces the first Macintosh computer. It is the first
commercially successful personal computer to use a graphical user interface
(GUI) and mouse, which become standard features in computers [106].
It features a 7.83 MHz 32-bit Motorola 68000 CPU, built-in 9-inch
monochrome screen, 512 × 342 graphics, 400 kB 3.5-inch Sony floppy disk
drive, mouse, 128 kB RAM. Weight is 20 pounds, size is 9.7 × 10.9 × 13.5
inches, and price ranges from $1,995 to $2,495.

1984: The term software radio is coined by a team at the Garland, Texas Division
of E-Systems Inc. (now Raytheon) to refer to a digital baseband receiver and
the team publishes in their E-Team company newsletter [107].

1984: MathWorks is founded, and MATLAB made its public debut at the
IEEE Conference on Decision and Control in Las Vegas, Nevada [108].
Used in industry and education, in particular the teaching of linear
algebra, numerical analysis, it is popular with scientists involved in signal
processing.

1984: The ITU releases the V.32 recommendation for a dial-up modem, allowing
bidirectional data transfer at either 9.6 kbit/s at a symbol rate of 2,400 baud
using QAM modulation [109].

1985: Analog Devices rereleases AD574 in single-chip monolithic form, as shown
in Figure A.5. For the first time a low-cost commercial plastic converter is
available in mass volume.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 315 — #13

A.6 1980–1989: Digital Revolution 315

1

14

28

15

2

3

4

5

6

7

8

9

10

11

12

13

27

26

25

24

23

22

21

20

19

18

17

16

CONTROL

CLOCK SAR

3

S
T
A
T
E

O
U
T
P
U
T

B
U
F
F
E
R
S

MSB

N
I
B
B
L
E

N
I
B
B
L
E

N
I
B
B
L
E

LSB

10V
REF

12

12

C

B

A

12

AD574A

3k

19.95k

9.95k

5k

5k

NDAC VEE

8kIREF

COMP

DIGITAL COMMON
DC

IDAC

IDAC =
4 x N x IREF

+5V SUPPLY
VLOGIC

DATA MODE SELECT
12/8

STATUS
STS
DB11
MSB

DB10

DB9

DB8

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0
LSB

DIGITAL
DATA
OUTPUTS

CHIP SELECT
CS

BYTE ADDRESS/
SHORT CYCLE

AO
READ/CONVERT

R/C
CHIP ENABLE

CE
+12/+15V SUPPLY

VCC

+10V REFERENCE
REF OUT

ANALOG COMMON
AC

REFERENCE INPUT
REF IN

-12/-15V SUPPLY
VEE

BIPOLAR OFFSET
BIP OFF

10V SPAN INPUT
10VIN

20V SPAN INPUT
20VIN

Figure A.5 The industry standard AD574 12 bit 28.5 kSPS ADC.

1985: A ruling by the U.S. Federal Communications Commission releases 902 to
928, 2400 to 2483.5 and 5725 to 5850 MHz bands for unlicensed use [110].
This creates the industrial, scientific, and medical (ISM) radio bands.

1987: Fifteen representatives from 13 European countries sign a memorandum of
understanding in Copenhagen to develop and deploy a common cellular
telephone system across Europe, and EU rules are passed to make GSM a
mandatory standard.

1987: Flash memory (both NOR and NAND types) is developed by Toshiba and
presented at the IEEE 1984 International Electron Devices Meeting (IEDM)
held in San Francisco [111].

1987: Over 15 billion USD from venture capital is invested in semiconductor
startups from 1980 through 1987 [112]. The semiconductor industry
continues to grow, with startups such as Linear Technologies (founded
1987, acquired by Analog Devices 2016), Hittite Microwave (founded
acquired by Analog Devices), Wolfson Microeltronics (founded acquired by
Cirrus Logic), Atmel (founded 1984, acquired by Microchip 2016), Xilinx
(founded 1984), Altera (founded 1983, acquired by Intel 2015), Maxim
(1983), and Micron (1978).

1988: The ITU-T approves G.722, an wideband (507000 Hz) audio codec
operating at 48, 56 and 64 kbit/s. Technology of the codec is based on
subband ADPCM (SB-ADPCM). G722 provides improved speech quality
due to a the wider bandwidth of G.711 released 16 years earlier [113].

1988: Crystal Semiconductor (later purchased by Cirrus Logic) releases the
monolithic CSZ5316, the first commercial �-� ADC. With 16-bit

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 316 — #14

316 A Longer History of Communications

resolution, and an effective throughput rate of 20 kSPS is suitable for
voiceband digitization [65].

1989: Nils Rydbeck, CTO at Ericsson Mobile, proposes a short-link radio
technology to connect wireless headsets to mobile phones, which eventually
becomes known as Bluetooth.

1989: public commercial use of the internet begins with the connection of MCI
Mail and Compuserve’s email capabilities [114].

A.7 1990–1999: Age of the Public Internet (Web 1.0)

Digital signal processing and computing technology continue to revolutionize the
1990s. Between 1990 and 1997, individual PC ownership in the United States rose
from 15% to 35%. Cell phones of the early 1990s and earlier were very large,
lacked extra features, and were used by only a few percent of the population. Only
a few million people used online services in 1990, and the World Wide Web had
only just been invented. The first Web browser went online in 1993 and by 2001,
more than 50% of some Western countries had internet access, and more than 25%
had cell phone access. Advancements in computer modems, ISDN, cable modems,
and DSL lead to faster connections to the internet.

Wireless transmission technology has gradually evolved over time; the
superheterodyne architecture developed in 1917, shown in Figure A.3, is still the
go-to radio architecture of the time. It has taken advantage of the current integrated
circuits and morphed into multistage receiver architectures typically consisting of
one or two mixing stages, which are fed into single-chip ADCs and DACs. A
multistage superheterodyne transceiver architecture can be seen in Figure A.6.

The first conversion stage converters (up or down) the RF frequencies to a
lower intermediate frequency (IF1). The first IF1 is then translated down to a lower
frequency (IF2) baseband frequency that the ADC or DAC can digitize. In addition
to the mixers, there are filters, amplifiers, and step attenuators at each stage. The
filtering is used to reject unwanted out-of-band (OOB) signals. If unchecked, these
OOB signals can create spurious signals (spurs) that falls on top of a desired signal,
making it difficult or impossible to demodulate. The actual IF1 or IF2 frequencies
depends on the frequency and spur planning, as well as mixer performance and
available filters for the RF front-end. These radios are mostly fixed frequency (not
very tunable), as the desire for performance (sensitivity) has been traded off for
flexibility.

1990: Advanced RISC Machines Ltd (ARM) is founded as a joint venture between
Acorn Computers, Apple Computer (now Apple Inc.) and VLSI Technology.
The company develops the Acorn RISC Machine (ARM) processor, which
is now used in 98% of the more than 1 billion mobile phones sold each
year [115].

1991: Algorithms for MPEG-1 Audio Layer I, II and III, which become known as
international standard ISO/IEC 11172-3 [116] (MPEG-1 Audio or MPEG-1
Part 3), or mp3, are approved in 1991 and finalized in 1992 [117].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



W
yglinski:

“appendix-a”
—

2018/3/26
—

11:42
—

page
317

—
#15

A
.7

1990–1999:A
ge

ofthe
Public

Internet
(W

eb
1.0)

317

Figure A.6 Multistage superheterodyne receive and transmit signal chains [118].

A
nalog D

evices perpetual eB
ook license – A

rtech H
ouse copyrighted m

aterial. 

PA D.ri:Ver LPF Mix.er LPF IF Amp LPF Mixer LPF IFAmp LPF DAC Digital Filter 

Power 
Management 

Sensors 

AudlolVldeo 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 318 — #16

318 A Longer History of Communications

1991: The ITU releases the V.32bis recommendation for a dial-up modem,
allowing bidirectional data transfer at 14.4 kbit/s using trellis-modulated
data using the Viterbi algorithm [109].

1991: Linus Torvalds, a computer science student, starts working on some simple
ideas for an operating system, and 10,239 lines of code, version 0.01 of the
Linux kernel, is released on the FTP server [119].

1991: Former Finnish prime minister Harri Holkeri makes the world’s first GSM
call, calling Kaarina Suonio (mayor of the city of Tampere, where Nokia
was founded) [120].

1991: SpeakEasy I, a software-defined radio project, is kicked off by the U.S.
military [121] Although different parts of SDR technology were available
since the 1970s and the first demonstration as a SDR prototype (with a fixed
RF implementation) was presented in 1988 [122], SpeakEasy was the first
large-scale software radio.

When a communication device is designed for one unique unique
purpose, only using one unique waveform, at one unique frequency, different
devices made by different people are not interoperable with one another.
The U.S. military had this exact problem—they had many different types
of radios and waveforms for each branch and group of the armed services,
and in times of conflict, they could not talk to each other in real time. This
was not an academic exercise—lives were being lost due to the inability to
communicate. They needed a single system that could communicate with
over 10 other different types of military radios.

This was the key milestone for the advancement of SDR technology.
The developers wanted to test the feasibility of a multiband (different RF
frequencies), multimode (different waveforms) radio in practical settings.

1991: CERN, a European organization for particle research, publicizes the new
World Wide Web project.

1992: The first short messaging service (SMS or text message) message is sent over
the GSM network.

1993: Joseph Mitola coins the term software-defined radio [123].
1994: The SpeakEasy project is successfully demonstrated. It was not only a

success, but a significant leap forward in SDR technology. It used four Texas
Instruments TMS320C40 processor, which ran at 40 MHz and a SUN Sparc
10 workstation as the man-machine interface, implementing more than ten
military communication standards, with transmission carrier frequencies
ranging from 2 to 2000 MHz, which at that time was a major advancement
in communication systems engineering. The SpeakEasy implementation
allowed for software upgrades of new functional blocks, such as modulation
schemes and coding schemes. Note that given the microprocessor technology
at the time, the physical size of the SpeakEasy prototypes were large enough
to fit in the back of a truck and required a significant amount of power.

Since the SpeakEasy program had taken 3 years to complete, (two
cycles of Moore’s law), many thought it would be easy to scale down to a
faster, lower-power processor. However, since everything was hand-coded
in assembly (to maximize performance), this was not possible. Development

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 319 — #17

A.8 Post-2000: Everything comes together 319

was stuck. The observation was that it had taken 3 years to write software
for a platform that Moore’s law made obsolete in 18 months.

1994: Linus Torvalds releases the Linux kernel 1.0, with 176, 250 lines of
code [124].

1995: Sony releases the Playstation worldwide. It is the first computer
entertainment platform to ship 100 million units, which it reached 9 years
and 6 months after its initial launch [125]

1996: John O’Sullivan takes a technique he developed in 1977 for sharpening
and improving picture clarity in radio astronomy images using Fourier, and
reapplies the technique for reducing multipath interference of radio signals
as part of a research project to detect exploding mini black holes the size of
an atomic particles. While his main experiment failed, his signal processing
techniques were patented and applied to future 802.11 standards.

1996: Linus Torvalds releases the Linux kernel 2.0, with 632, 062 lines of
code [126].

1997: The first version of the 802.11 protocol is released and provides up to
2 Mbit/s link speeds.

1998: The Bluetooth Special Interest Group (SIG) is formed, and the first
specification is released.

1998: The ITU releases the V.90 recommendation for a dial-up modem, allowing
56 kbit/s digital download and 33.6 kbit/s analog upload. using digital
modulation [127].

1999: The IEEE ratifies an upgrade to the 802.11 specification with 802.11b to
permit 11 Mbit/s link speeds.

2000: Bluetooth products begin to ship, including mice, PC cards, headsets, and
phones [128].

2001: Jimmy Wales and Larry Sanger launch Wikipedia [129].

A.8 Post-2000: Everything comes together

Since 2000, the amount of research and development activities has exploded. New,
faster-, or lower-power communications schemes are almost being announced on
a yearly basis. In 2008, worldwide GSM subscribers exceeded three billion people;
however in 2016, operators are decommissioning networks to make ready for LTE
and other standards. The rate of change has increased substantially.

References

[1] Sagan, C., Cosmos, New York: Random House. 1980.
[2] Polybius, The Histories of Polybius, published in Vol. IV of the Loeb Classical

Library edition, 1922 through 1927, http://penelope.uchicago.edu/Thayer/E/Roman/Texts/
Polybius/10*.html#45.6.

[3] Febvre, L., and Martin, H.-J., The Coming of the Book: The Impact of Printing 1450–
1800, London: New Left Books, 1976, quoted in Anderson, B., Comunidades Imaginadas.
Reflexiones sobre el origen y la difusin del nacionalismo, Fondo de cultura econmica,
Mexico, 1993, p. 58f.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 320 — #18

320 A Longer History of Communications

[4] Capra, F., The Science of Leonardo; Inside the Mind of the Genius of the Renaissance,
New York: Doubleday, 2007.

[5] Landes, D. S., The Unbound Prometheus, Cambridge, UK: Press Syndicate of the University
of Cambridge, 1969.

[6] Euler, L., E101–Introductio in analysin infinitorum, Volume 1, 1748, The Euler
Archive, in the original Latin, http://eulerarchive.maa.org/pages/E101.html, and a
modern English translation by Ian Bruce, a retired physics professor, formerly of the
University of Adelaide, South Australia, at http://www.17centurymaths.com/contents/
introductiontoanalysisvol1.htm.

[7] Wilson, R., Read Euler, Read Euler, he Is the Master of Us All, March 1, 2007,
https://plus.maths.org/content/os/issue42/features/wilson/index.

[8] Franklin, B., “The Kite Experiment,” The Pennsylvania Gazette, October 19, 1752, in
The Papers of Benjamin Franklin, The American Philosophical Society and Yale University,
digital edition by The Packard Humanities Institute, Vol. 4, p. 360a. Retrieved November
24, 2017.

[9] Marland, E. A., Early Electrical Communication, London: Abelard-Schuman Ltd., 1964,
pp. 17–19.

[10] Carnegie, A., James Watt, The Minerva Group, Inc, p. 215, http://www.jameswatt.info/
andrew-carnegie/3-captured-by-steam.html.

[11] Grandstrand, O., “Semaphore Signalling,” in R. W. Burns (ed.), Communications: An
International History of the Formative Years, Herts, UK: The Institution of Engineering
and Technology, 2004.

[12] Decker, F., “Volta and the ‘Pile,’ ” Electrochemistry Encyclopedia, Case Western Reserve
University, January 2005.

[13] Amgueddfa Cymru National Museum Wales, “Richard Trevithick’s Steam Locomotive,”
2008, Museumwales.ac.uk. https://museum.wales/articles/2008-12-15/Richard-
Trevithicks-steam-locomotive/.

[14] Wickens, A. P., A History of the Brain: From Stone Age Surgery to Modern
Neuroscience, London: Psychology Press, 2014, https://books.google.com/
books?id=gSKcBQAAQBAJ&pg=PA124.

[15] Ohm, G., http://www2.ohm-hochschule.de/bib/textarchiv/Ohm.Die_galvanische_Kette.pdf.
[16] Chisholm, H. (ed.), “Ohm, Georg Simon,” Encyclopedia Britannica, 20 (11th Edition),

Cambridge, UK: Cambridge University Press, 1911, p. 34.
[17] Ampère, A,-M., Mémoire sur la théorie mathématique des phénomènes

électrodynamiques uniquement déduite de lexperience, http://www.ampere.cnrs.fr/textes/
theoriemathematique/pdf/theorie_mathematique.pdf.

[18] Alglave, M., and Boulard, J., The Electric Light: Its History, Production, and Applications,
translated by T. O’Conor Sloan, New York: D. Appleton & Co., 1884, p. 224, also
available on Google Books, http://books.google.com/books?id=zh5pbMMwARQC&pg=
PA224).

[19] Vail, A., The American Electro Magnetic Telegraph: With the Reports of Congress, and a
Description of All Telegraphs Known, Employing Electricity Or Galvanism, 1847, Lea &
Blanchard.

[20] Graham-Cumming, J., The 100-Year Leap (2010-10-04), O’Reilly Radar,
http://radar.oreilly.com/2010/10/the-100-year-leap.html. Retrieved August 1, 2012.

[21] Burns, R. W., Communications: An International History of the Formative Years, London:
The Institution of Engineering and Technology, 2004.

[22] Huurdeman, A. A., The Worldwide History of Telecommunications, John Wiley & Sons,
2003.

[23] Maxwell, J., “A Dynamical Theory of the Electromagnetic Field,” Philosophical
Transactions of the Royal Society of London, 1865, http://rstl.royalsocietypublishing.org/
content/155/459.full.pdf.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 321 — #19

A.8 Post-2000: Everything comes together 321

[24] International Telecommunications Union, ITU History, 1993, http://www.itu.int/itudoc/
about/itu/history/history.txt.

[25] Vernon, E. (ed.), Travelers’ Official Railway Guide of the United States
and Canada, Philadelphia: The National General Ticket Agents’ Association,
June, 1870, Tables 215, 216, http://www.lancerlovers.com/Resources/Travel/
Travellers%20guide%20to%20trains%201871.pdf.

[26] Treatise on Electricity and Magnetism, 1873, http://www.aproged.pt/biblioteca/
MaxwellI.pdf.

[27] Braun, E., and S. MacDonald, Revolution in Miniature: The History and Impact of
Semiconductor Electronics, Second Edition, Cambridge, UK: Cambridge University Press,
1982, pp. 11–12.

[28] Bell, A. G., Improvement in Telegraphy, U.S. Patent No. 174465, 2 1876, issued March 7,
1876.

[29] Levy, J., Really Useful: The Origins of Everyday Things, New York: Firefly Books, 2003,
p. 124.

[30] Heilbron, J. L. (ed.), The Oxford Guide to the History of Physics and Astronomy, Oxford,
UK: Oxford University Press, 2005, p. 148.

[31] Company History, Benz Patent Motor Car: The First Automobile (1885–1886),
https://www.daimler.com/company/tradition/company-history/1885-1886.html.

[32] Emerson, D. T., “The Work of Jagadish Chandra Bose: 100 Years of mm Wave Research,”
IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 12, December
1997, pp. 2267–2273, http://ieeexplore.ieee.org/document/643830/.

[33] Bose, J. C., Detector for Electrical Disturbances, U.S. Patent No. 755840, published
September 30, 1901, issued March 29, 1904.

[34] Braun F., Ueber ein Verfahren zur Demonstration und zum Studium des zeitlichen Verlaufs
variabler Strme (On a Process for the Display and Study of the Course in Time of
Variable Currents), 1897, Annalen der Physik und Chemie, 3rd series, http://onlinelibrary;
wiley.com/doi/10.1002/andp.18972960313/abstract

[35] Marconi National Historic Site, http://www.pc.gc.ca/en/lhn-nhs/ns/marconi/index.
[36] Belrose, J. S., “Marconi and the History of Radio,” IEEE Antennas and Propagation

Magazine, Vol. 46, No. 2, 2004, pp. 130.
[37] Harr, C., Ambrose J. Fleming Biography. Pioneers of Computing. The History

of Computing Project, June 23, 2003, http://www.thocp.net/biographies/
fleming_ambrose.htm.

[38] Braun, K. F., Nobel Lecture: Electrical Oscillations and Wireless Telegraphy, p. 239, Nobel
Media AB 2013, https://www.nobelprize.org/nobel_prizes/physics/laureates/1909/braun-
lecture.pdf.

[39] Karwatka, D., “Reginald Fessenden and Radio Transmission,” Tech Directions, Vol. 63,
No. 8, March 2004, p. 12.

[40] ITU Constitution and Convention, http://www.itu.int/en/history/Pages/
ConstitutionAndConvention.aspx.

[41] L., De Forest, Device for Amplifying Feeble Electrical Currents, U.S. Patent No. 841387,
issued January 15, 1907.

[42] Henry Ford Museum & Greenfield Village, “The Life of Henry Ford.” Retrieved November
28, 2013, https://web.archive.org/web/20011005164558/http://www.hfmgv.org/
exhibits/hf/.

[43] Armstrong, E., U.S. Patent No. 1,113,149, Wireless Receiving System, published October
6, 1914.

[44] The New York Times, “Phone to Pacific from the Atlantic,” January 26, 1915. Retrieved
July 21, 2007, http://www.nytimes.com/learning/general/onthisday/big/0125.html.

[45] Mixers and Modulators, http://www.analog.com/media/en/training-seminars/tutorials/
MT-080.pdf.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 322 — #20

322 A Longer History of Communications

[46] Tigerstedt, E., Danish Patent 22091, https://ie.espacenet.com/publicationDetails/
originalDocument?CC=DK&NR=22091C#ND=3&date=19170430 19170430.

[47] Klooster, J. W., Icons of Invention: The Makers of the Modern World from Gutenberg to
Gates, Santa Barbara, CA: ABC-CLIO, 2009.

[48] Nyquist, H., “Certain Factors Affecting Telegraph Speed,” Bell System Technical Journal,
Vol. 3, April 1924, pp. 324–346.

[49] Harper, C. A., Electronic Materials and Processes Handbook, McGraw-Hill, pp. 7.3
and 7.4.

[50] Brittain, J. E., “Electrical Engineering Hall of Fame: Harold S Black” Proceedings of the
IEEE, Vol. 99, No. 2, February 2011, pp. 351–353, doi:10.1109/jproc.2010.2090997.
https://www.ieee.org/documents/proc_scanpast0211.pdf.

[51] Nyquist, H., “Certain Topics in Telegraph Transmission Theory,” A.I.E.E. Transactions,
Vol. 47, April 1928, pp. 617–644.

[52] Hayward, W., and Dick Bingham, “Direct Conversion–A Neglected Technique,” November
1968, QST. ARRL: 1517, 156.

[53] The United States Army Signal Corps Officer Candidate School Association, “Part 4,
America between the Wars,” 2013, http://www.armysignalocs.com/index_oct_13.html.

[54] Clarke, A. C., “V2 for Ionosphere Research?” Wireless World, February 1945, p. 45.
[55] Warsitz, L., The First Jet Pilot: The Story of German Test Pilot Erich Warsitz, South

Yorkshire, UK: Pen and Sword Books, 2009.
[56] “Great Airliners 11: de Havilland Comet,” Flight, March 14, 1974. Retrieved 26 April

2012, https://www.flightglobal.com/pdfarchive/view/1974/1974%20-%200411.html.
[57] Walker, T., The First Jet Airliner: The Story of the de Havilland Comet, Newcastle upon

Tyne, UK: Scoval Publishing Ltd., 2000.
[58] Weik, M. H., The ENIAC Story. O R D N A N C E, Washington, DC: American Ordnance

Association, January/February 1961. Retrieved March 29, 2015, https://web.archive.org/
web/20110814181522/http://ftp.arl.mil/˜mike/comphist/eniac-story.html.

[59] American Physical Society, This Month in Physics History, November 17–December
23, 1947: Invention of the First Transistor, 2000, http://www.aps.org/publications/
apsnews/200011/history.cfm.

[60] Shannon, C. E., “A Mathematical Theory of Communication,” Bell System Technical
Journal, Vol. 27, No. 3, July 1948,pp. 379–423, https://en.wikipedia.org/wiki/
A_Mathematical_Theory_of_Communication.

[61] Waldrop, M. M., “Claude Shannon: Reluctant Father of the Digital Age,” MIT
Technology Review, July 1, 2001, https://www.technologyreview.com/s/401112/claude-
shannon-reluctant-father-of-the-digital-age/.

[62] Abramson, M., and S. F. Danko, United States Patent 2,756,485, “Process of assembling
electrical circuits,” August 28, 1950.

[63] http://smithsonianchips.si.edu/danko/danko.htm.
[64] Shockley, W., Electrons and Holes in Semiconductors with Applications to

Transistor Electronics, Bell Laboratory series, 1950, https://en.wikipedia.org/wiki/
Electrons_and_Holes_in_Semiconductors_with_Applications_to_Transistor_Electronics.

[65] Kester, W., The Data Conversion Handbook, Analog Devices, 2005,
http://www.analog.com/en/education/education-library/data-conversion-handbook.html.

[66] Brock, G. W., The Second Information Revolution, Harvard University Press, 2003.
[67] Zak, A., “Sputnik’s Mission,” 2015. Retrieved 27 December 2015,

http://www.russianspaceweb.com/sputnik_mission.html.
[68] Kilby, J. S., Miniaturized Electronic Circuits, 1964, US Patent No. 3,138,743,

https://www.google.com/patents/US3138743.
[69] U.S. Registry of Objects Launched into Outer Space, US Space Objects Registry 1962-

ALPHA EPSILON 1, June 19, 2013. Retrieved 2013-10-02. https://web.archive.org/

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 323 — #21

A.8 Post-2000: Everything comes together 323

web/20131005021146/https://usspaceobjectsregistry.state.gov/Lists/SpaceObjects/
DispForm.aspx?ID=90

[70] Mann, A., “Telstar 1: The Little Satellite That Created the Modern World 50 Years Ago,”
Wired Magazine, July 2012, https://www.wired.com/2012/07/50th-anniversary-telstar-1/.

[71] Analog Devices, Our 50-Year Journey, 2015, http://www.analog.com/en/timeline/50th-
timeline.html.

[72] Analog Devices, 10 Facts to Know About Analog Devices, Inc., 2015,
http://www.analog.com/media/en/other/about-ADI/Ten-Facts-to-Know-About-Analog-
Devices.pdf.

[73] Moore, G. E., “Lithography and the Future of Moore’s Law,” SPIE, Vol. 2438, 1995,
http://www.lithoguru.com/scientist/CHE323/Moore1995.pdf.

[74] Analog Multipliers, http://www.analog.com/media/en/training-seminars/tutorials/MT-
079.pdf.

[75] Viterbi, A., “Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm,” IEEE Transactions on Information Theory, Vol. 13, No. 2, April
1967, http://ieeexplore.ieee.org/document/1054010/.

[76] Morton, D., Andrew Viterbi, Electrical Engineer, An Oral History, San Diego: IEEE Global
History Network, http://ethw.org/Oral-History:Andrew_Viterbi#Linkabit_and_M.2FA-
COM.3B_development_and_consumers.

[77] Savio, J., “Browsing History: A Heritage Site Has Been Set Up in Boelter Hall 3420, the
Room the First Internet Message Originated in,” Daily Bruin, UCLA, April 1 2011.

[78] Grayver, E., Implementing Software Defined Radio, New York: Springer Science & Business
Media.

[79] Intel Corporation, https://www.intel.com/content/www/us/en/history/museum-story-of-
intel-4004.html.

[80] http://www.circuitstoday.com/microcontroller-invention-history.
[81] Abramson, N., “The ALOHA System–Another Alternative for Computer

Communications,” Proc. 1970 Fall Joint Computer Conference, AFIPS Press,
1970, https://robotics.eecs.berkeley.edu/˜pister/290Q/Papers/MAC%20protocols/
ALOHA%20abramson%201970.pdf.

[82] Ward, J., “The 555 Timer IC, An Interview with Hans Camenzind,” The Semiconductor
Museum, 2004, http://www.semiconductormuseum.com/Transistors/LectureHall/
Camenzind/Camenzind_Index.htm.

[83] International Telecommunications Union, G.711: Pulse Code Modulation (PCM) of Voice
Frequencies, http://www.itu.int/rec/T-REC-G.711/.

[84] Allan, R. A., A History of the Personal Computer, London, Ontario: Allan Publishing,
2001, https://books.google.com/books?id=FLabRYnGrOcC&hl=en.

[85] Analog Devices, AiD534 www.analog.com/AD534.
[86] Gilbert, B., “A New Technique for Analog Multiplication,” IEEE Journal Solid State

Circuits, Vol. 10, No. 6, December 1975, pp. 437–447.
[87] Jarvis, A., “How Kodak Invented the Digital Camera in 1975,” May 9, 2008,

techradar.com, https://web.archive.org/web/20120110030031/http://www.techradar.com/
news/photography-video-capture/how-kodak-invented-the-digital-camera-in-1975-
364822.

[88] Estrin, J., “Kodak’s First Digital Moment,” The New York Times, August 12, 2015,
https://lens.blogs.nytimes.com/2015/08/12/kodaks-first-digital-moment/?smid=pl-share.

[89] Williams, R., “Apple Celebrates 39th Year on April 1,” The Telegraph, April 1,
2015, Telegraph Media Group. Retrieved July 9, 2017, http://www.telegraph.co.uk/
technology/apple/11507451/Apple-celebrates-39th-year-on-April-1.html.

[90] Wozniak, S., and G. Smith, iWoz: Computer Geek to Cult Icon: How I Invented the
Personal Computer, Co-Founded Apple, and Had Fun Doing It, New York: W. W. Norton
& Company, 2007.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 324 — #22

324 A Longer History of Communications

[91] Byte Magazine, “Most Important Companies,” September 1995. Archived from the
original on June 18, 2008. Retrieved June 10, 2008, https://web.archive.org/web/
20080618072507/http://www.byte.com/art/9509/sec7/art15.htm.

[92] http://ethw.org/Milestones:The_Floating_Gate_EEPROM,_1976_-_1978.
[93] Wiggins, R., “An Integrated Circuit for Speech Synthesis,” conference paper, May

1980, DOI: 10.1109/ICASSP.1980.1170897. Source: IEEE Xplore Conference: Acoustics,
Speech, and Signal Processing, IEEE International Conference on ICASSP ’80, Vol. 5,
http://ieeexplore.ieee.org/document/1170897/.

[94] Analog Devices, www.analog.com/AD574.
[95] Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier

Transform,” Proceedings of the IEEE, Vol. 66, No. 1, 1978, pp. 51–83.
[96] Harris, F., Google Scholar, https://scholar.google.com/citations?hl=en&user=6A5Xoro

AAAAJ&view_op=list_works.
[97] IBM Computers, Presenting the IBM of Personal Computers, PC Magazine

(advertisement), February/March 1982, inside front cover. Retrieved October
20, 2013, https://books.google.com/books?id=w_OhaFDePS4C&lpg=RA2-
PA18&pg=PP2#v=onepage&q&f=false.

[98] Hauben, R., “From the ARPANET to the Internet,” TCP Digest (UUCP), January 2001.
Retrieved July 5, 2007, http://www.columbia.edu/˜rh120/other/tcpdigest_paper.txt.

[99] Proakis, J. G., http://www.cdsp.neu.edu/info/faculty/proakis/proakis.html
https://www.jacobsschool.ucsd.edu/faculty/faculty_bios/index.sfe?fmp_recid=94
http://ethw.org/John_G._Proakis

[100] Proakis, J. G., Digital Communications (Third Edition), New York: McGraw Hill, 1994.
[101] Proakis, J. G., C. M. Rader, and F. Ling, Advanced Digital Signal Processing, New York:

Macmillan, 1992.
[102] Ingle, V. K., and J. G. Proakis, Digital Signal Processing Laboratory: Using the ADSP-2101

Microcomputer, Englewood Cliffs, NJ: Prentice Hall, 1991.
[103] Deller, J. R., J. G. Proakis, and J. H. L. Hansen, Discrete-Time Processing of Speech Signals,

Wiley-IEEE Press, 1999.
[104] Proakis, J. G., and M. Salehi, Communication Systems Engineering, Upper Saddle River,

NJ: Prentice Hall, 2002.
[105] https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-

beginning.html.
[106] Polsson, K., Chronology of Apple Computer Personal Computers. Archived from

the original on August 21, 2009. See May 3, 1984, https://web.archive.org/web/
20090821105822/http://www.islandnet.com/˜kpolsson/applehis/appl1984.htm.

[107] Johnson, P., “New Research Lab Leads to Unique Radio Receiver,” E-Systems Team,
Vol. 5, No. 4, May 1985, pp. 6–7, http://chordite.com/team.pdf.

[108] Schrader, C. B., and M. W. Spong, “The IEEE Conference on Decision and Control–Tracing
CDC History,” IEEE Control Systems Magazine, Vol. 24, No. 6, December 2004, p. 5666,
doi:10.1109/MCS.2004.1368481.

[109] International Telecommunication Union, V.32, Series V: Data Communication over
the Telephone Network, Interfaces and Voiceband Modems, 1998, https://www.itu.int/
rec/dologin_pub.asp?lang=e&id=T-REC-V.34-199802-I!!PDF-E&type=items.

[110] Federal Communications Commission of the United States, Authorization of Spread
Spectrum Systems under Parts 15 and 90 of the FCC Rules and Regulations June 18,
1985, https://web.archive.org/web/20070928054826/http://www.marcus-spectrum.com/
documents/81413RO.txt.

[111] Masuoka, F., M. Momodomi, Y. Iwata, and R Shirota, New Ultra High
Density EPROM and Flash EEPROM with NAND Structure Cell, Electron
Devices Meeting, 1987 International. IEEE 1987, http://ieeexplore.ieee.org/document/
1487443/?arnumber=1487443.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-a” — 2018/3/26 — 11:42 — page 325 — #23

A.8 Post-2000: Everything comes together 325

[112] DataQuest, A Decade of Semiconductor Companies, 1988 Edition,
http://archive.computerhistory.org/resources/access/text/2013/04/102723194-05-01-
acc.pdf.

[113] International Telecommunications Union, G.722: 7 kHz Audio-Coding within 64 kbit/s,
https://www.itu.int/rec/T-REC-G.722.

[114] InfoWorld Media Group, InfoWorld (September 25, 1989). InfoWorld Media Group, Inc.
Archived from the original on January 29, 2017, via Google Books.

[115] The Telegraph,” History of ARM: From Acorn to Apple,” January 6, 2011,
http://www.telegraph.co.uk/finance/newsbysector/epic/arm/8243162/History-of-ARM-
from-Acorn-to-Apple.html.

[116] International Organization for Standardization, Information Technology–Coding of
Moving Pictures and Associated Audio for Digital Storage Media at Up to about 1,5
Mbit/s–Part 3: Audio, https://www.iso.org/standard/22412.html.

[117] International Organization for Standardization, MPEG press release, Kurihama,
November 1991. Archived from the original on May 3, 2011, Retrieved July 17, 2010,
https://web.archive.org/web/20110503174827/http://mpeg.chiariglione.org/meetings/
kurihama91/kurihama_press.htm.

[118] Hall, B., and W. Taylor, “X- and Ku-Band Small Form Factor Radio Design,” Analog
Devices Inc., Wilmington, MA, 2017 http://www.analog.com/en/technical-articles/x-and-
ku-band-small-form-factor-radio-design.html.

[119] Torvalds, L. B., Free Minix-Like Kernel Sources for 386-AT, October 5, 1991,
newsgroup, comp.os.minix https://groups.google.com/forum/#!msg/comp.os. minix/
4995SivOl9o/GwqLJlPSlCEJ

[120] Rediff, “GSM is 20! Transcript of World’s First Such Call,” July 1, 2011,
http://www.rediff.com/business/slide-show/slide-show-1-tech-transcript-of-the-worlds-
first-gsm-call/20110701.htm.

[121] Lackey, R. J., and D. W. Upmal, “Speakeasy: The Military Software Radio,” IEEE
Communications Magazine, May, 1995.

[122] Hoeher, P., and H. Lang. “Coded-8PSK Modem for Fixed and Mobile Satellite Services
Based on DSP,” in Proceedings of the First International Workshop on Digital Signal
Processing Techniques Applied to Space Communications, Noordwijk, the Netherlands,
1988.

[123] Mitola, J., III, “Software Radios: Survey, Critical Evaluation and Future Directions” IEEE
Aerospace and Electronic Systems Magazine, April 1993.

[124] Torvalds, L., Linux Kernel Source Code, Version 1.0 https://www.kernel.org/pub/linux/
kernel/v1.0/.

[125] “Sony PlayStation 2 Breaks Record as the Fastest Computer Entertainment Platform
to Reach Cumulative Shipment of 100 Million Units,” press release, Sony Computer
Entertainment, November 30, 2005. Archived from the original (PDF) on January
3, 2006; retrieved June 8, 2008, https://web.archive.org/web/20060103211119/
http://www.scei.co.jp:80/corporate/release/pdf/051130e.pdf.

[126] Torvalds, L., Linux Kernel Source Code, Version 2.0, https://www.kernel.org/pub/linux/
kernel/v2.0/.

[127] International Telecommunication Union, V.90 Series V: Data Communication over
the Telephone Network, Simultaneous Transmission of Data and Other Signals,
1998, https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V90-199809-I!!PDF-
E&type=items.

[128] Bluetooth SIG: Our History, https://www.bluetooth.com/about-us/our-history.
[129] https://en.wikipedia.org/wiki/History_of_Wikipedia.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 327 — #1

A P P E N D I X B

Getting Started with MATLAB
and Simulink

You will be using MATLAB and Simulink for the experiments and for the open-
ended design projects in this book. This appendix serves as a brief refresher of
MATLAB, since you should have used it before. However, if you don’t have
extensive experience with Simulink, then this appendix shows you how to get
started with the tool. Please note the MATLAB portion of this appendix is mainly
based on the MATLAB documentation presented in [1] and the Simulink portion
is based on the Simulink Basics Tutorial presented in [2], but here we extract the
most important and fundamental concept so that you can quickly get started after
reading this appendix. For more information about these two products, you are
encouraged to refer to [1] and [2].

B.1 MATLAB Introduction

MATLAB is widely used in all areas of applied mathematics, in education and
research at universities, and in industry. MATLAB stands for Matrix Laboratory
and the software is built up around vectors and matrices. Consequently, this makes
the software particularly useful for solving problems in linear algebra, but also
for solving algebraic and differential equations as well as numerical integration.
MATLAB possesses a collection of graphic tools capable of producing advanced
GUI and data plots in both 2-D and 3-D. MATLAB also has several toolboxes useful
for performing communications, signal processing, image processing, optimization,
and other specialized operations.

MathWorks has created an excellent online tutorial to review basic and
advanced concepts, as well as provide instructor lead tutorials to show off
the various capabilities of MATLAB. It can be found at https://matlabacademy.
mathworks.com

B.2 Useful MATLAB Tools

This section introduces general techniques for finding errors, as well as using
automatic code analysis functions in order to detect possible areas for improvement
within the MATLAB code. In particular, the MATLAB debugger features located
within the Editor, as well as equivalent Command Window debugging functions,
will be covered.

327

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 328 — #2

328 Getting Started with MATLAB and Simulink

Debugging is the process by which you isolate and fix problems with your code.
Debugging helps to correct two kinds of errors:

• Syntax errors: For example, misspelling a function name or omitting a
parenthesis.

• Run-time errors: These errors are usually algorithmic in nature. For example,
you might modify the wrong variable or code a calculation incorrectly.
Run-time errors are usually apparent when an M-file produces unexpected
results. Run-time errors are difficult to track down because the function’s
local workspace is lost when the error forces a return to the MATLAB base
workspace.

B.2.1 Code Analysis and M-Lint Messages
MATLAB can check your code for problems and recommend modifications to
maximize the performance and maintainability through messages, sometimes
referred to as M-Lint messages. The term lint is the name given to similar tools
used with other programming languages such as C. In MATLAB, the M-Lint tool
displays a message for each line of an M-file it determines possesses the potential to
be improved. For example, a common M-Lint message is that a variable is defined
but never used in the M-file.

You can check for coding problems using three different ways, all of which
report the same messages:

• Continuously check code in the Editor while you work. View M-Lint
messages and modify your file based on the messages. The messages update
automatically and continuously so you can see if your changes addressed
the issues noted in the messages. Some messages offer extended information,
automatic code correction, or both.

• Run a report for an existing MATLAB code file: From a file in the Editor,
select Tools > Code Analyzer > Show Code Analyzer Report.

• Run a report for all files in a folder: In the Current Folder browser, click the
Actions button, then select Reports > Code Analyzer Report.

For each message, review the message and the associated code in order to make
changes to the code itself based on the message via the following process:

• Click the line number to open the M-file in the Editor/Debugger at that line.
• Review the M-Lint message in the report and change the code in the M-file

based on the message.
• Note that in some cases, you should not make any changes based on the

M-Lint messages because the M-Lint messages do not apply to that specific
situation. M-Lint does not provide perfect information about every situation.

• Save the M-file. Consider saving the file to a different name if you made
significant changes that might introduce errors. Then you can refer to the
original file as you resolve problems with the updated file.

• If you are not sure what a message means or what to change in the code as a
result, use the Help browser to look for related topics.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 329 — #3

B.2 Useful MATLAB Tools 329

You can also get M-Lint messages using the mlint function. For more information
about this function, you can type help mlint in the Command Window. Read
the online documentation [3] for more information about this tool.

B.2.2 Debugger
The MATLAB Editor, graphical debugger, and MATLAB debugging functions are
useful for correcting run-time problems. They enable access to function workspaces
and examine or change the values they contain. You can also set and clear
breakpoints, which are indicators that temporarily halt execution in a file. While
stopped at a breakpoint, you can change the workspace contexts, view the function
call stack, and execute the lines in a file one by one.

There are two important techniques in debugging: one is the breakpoint while
the other is the step. Setting breakpoints to pause the execution of a function
enables you to examine values where you think the problem might be located.
While debugging, you can also step through an M-file, pausing at points where you
want to examine values.
There are three basic types of breakpoints that you can set in the M-files:

• A standard breakpoint, which stops at a specified line in an M-file.
• A conditional breakpoint, which stops at a specified line in an M-file only

under specified conditions.
• An error breakpoint that stops in any M-file when it produces the specified

type of warning, error, or NaN or infinite value.

You cannot set breakpoints while MATLAB is busy (e.g., running an M-file, unless
that M-file is paused at a breakpoint). While the program is paused, you can view
the value of any variable currently in the workspace, thus allowing you to examine
values when you want to see whether a line of code has produced the expected result
or not. If the result is as expected, continue running or step to the next line. If the
result is not as expected, then that line, or a previous line, contains an error.

While debugging, you can change the value of a variable in the current
workspace to see if the new value produces expected results. While the program
is paused, assign a new value to the variable in the Command Window, Workspace
browser, or Array Editor. Then continue running or stepping through the program.
If the new value does not produce the expected results, the program has a different
or another problem.

Besides using the Editor, which is a graphical user interface, you can also debug
MATLAB files by using debugging functions from the Command Window, or you
can use both methods interchangeably. Read the online documentation [4] for more
information about this tool.

B.2.3 Profiler
Profiling is a way to measure the amount of time a program spends on performing
various functions. Using the MATLAB Profiler, you can identify which functions
in your code consume the most time. You can then determine why you are
calling them and look for ways to minimize their use. It is often helpful to decide
whether the number of times a particular function is called is reasonable. Since

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 330 — #4

330 Getting Started with MATLAB and Simulink

programs often have several layers, your code may not explicitly call the most time-
consuming functions. Rather, functions within your code might be calling other
time-consuming functions that can be several layers down into the code. In this
case, it is important to determine which of your functions are responsible for such
calls.

Profiling helps to uncover performance problems that you can solve by

• Avoiding unnecessary computation, which can arise from oversight.
• Changing your algorithm to avoid costly functions.
• Avoiding recomputation by storing results for future use.

When you reach the point where most of the time is spent on calls to a small
number of built-in functions, you have probably optimized the code as much as
you can expect. You can use any of the following methods to open the Profiler:

• Select Desktop → Profiler from the MATLAB desktop.
• Select Tools → Open Profiler from the menu in the MATLAB

Editor/Debugger.
• Select one or more statements in the Command History window, right-click

to view the context menu, and choose Profile Code.
• Enter the following function in the Command Window: profile viewer.

To profile an M-file or a line of code, follow these steps after you open the Profiler,
as shown in Figure B.1:

1. In the Run this code field in the Profiler, type the statement you want to run.
2. Click Start Profiling (or press Enter after typing the statement).
3. When profiling is complete, the Profile Summary report appears in the

Profiler window.

Read the online documentation [5] for more information about this tool.

B.3 System Objects

System objects are a specialization of a class in MATLAB, which define a specific
set of methods that make initialization, runtime operation, and tear-down simple.

Figure B.1 The profiler window.

Analog Devices perpetual eBook license – Artech House copyrighted material. 

Profiler _ □ x 

file Edit Oe,ttu9 .Qeslctop Y{indow !:!@Ip ,., ,.~l~I ,.. 
_: lstart f rofilingl Run this code· ~p~ri-'°----------------~~~•J • Profile time· o sec 

Profiler for Improving Performance 
One way to improve the perform ance of your MATLAB prog rams ,s using profiling tools. MAllAB 
provides a graphical user inter face that is based on t he rEsults returned by the profi 1 e function. 
Use this too l to help you determine wht:r€ you can modify your code to make performance 
improvEm ent s . 

For details on how to use the Profi ler, see the Profil er doc umentat ion . 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 331 — #5

B.3 System Objects 331

A class itself is basically a set of functions that share a set of variables called
parameters. These parameters are defined within the class and have defined
scopes. Although many methods are implemented by system objects, the three
main methods a user should understand are setupImpl, stepImpl, and
releaseImpl. They will be written as

1 methods (Access = protected)
2 function setupImpl(obj)
3 % Set parameter
4 obj.x = 1;
5 end
6 end

setupImpl is used to initial parameters and perform calculations that are
needed for the life of the system object. stepImpl is the runtime function (method)
that is called generally multiple times and will consume or produce inputs/outputs.
Finally, releaseImpl is used to tear-down the object that will clear its memory
or perform closing actions. For example, if the object is to write data to a file it will
close the file when this method is called.

When a system object’s operator or step method is called, the initial call
will actually first call the setupImpl method. At this point the system object is
considered locked. Then the stepImpl method will be called. Successive operator
or step calls will only call the stepImpl method. To unlock the object the
releaseImpl method must be called. Once unlock the setupImpl will again
be called at the next operator or step call. We outline this process in a script here:

1 % Instantiate object
2 ss = dsp.SignalSource;
3 % setupImpl and stepImpl are called
4 data = ss();
5 % stepImpl is only called
6 data = ss();
7 % Object is unlocked
8 ss.release();
9 % setupImpl and stepImpl are called

10 data = ss.step();

System objects are extremely useful for encapsulating a large degree of
functionality and when state needs to be maintained. For example, filters require
state and are an obvious use for system objects. The toolboxes that make up
MATLAB utilize extensions for their system objects that are related to their
abbreviation. For example, system objects that are from the Communication
Systems Toolbox will have the extension comm, resulting in objects with names
such as comm.AGC, comm.CarrierSynchronizer, or comm.EVM. Examples in
the DSP Systems Toolbox are: dsp.FIRDecimator, dsp.SpectrumAnalyzer,
and dsp.SignalSource. More information about system objects can be found
in the MathWorks documentation with extensive details on their implementation
and use.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 332 — #6

332 Getting Started with MATLAB and Simulink

References

[1] The MathWorks, MATLAB Documentation, http://www.mathworks.com/help/techdoc/.
[2] University of Michigan, Simulink Basics Tutorial, http://www.engin.umich.edu/group/ctm/

working/mac/simulink_basics/.
[3] The MathWorks, Avoid Mistakes While Editing Code, http://www.mathworks.com/help/

techdoc/matlab_env/brqxeeu-151.html.
[4] The MathWorks, Debugging Process and Features, http://www.mathworks.com/help/

techdoc/matlab_env/brqxeeu-175.html.
[5] The MathWorks, Profiling for Improving Performance, http://www.mathworks.com/help/

techdoc/matlab_env/f9-17018.html

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-c” — 2018/3/26 — 11:42 — page 333 — #1

A P P E N D I X C

Equalizer Derivations

C.1 Linear Equalizers

Suppose we assume a transceiver model where the information source produces
amplitude values In applied to an infinite impulse train; namely,

s(t) =
∞∑

n=−∞
Inδ(t − nT), (C.1)

where δ(t) is the Dirac delta function. Applying a transmit pulse shaping filter hT(t)
to the information signal s(t), we obtain the transmitter’s output signal:

v(t) =
∞∑

n=−∞
InhT(t − nT), (C.2)

which is then sent through a propagation channel that is characterized by a channel
filter hC(t) and an additive white Gaussian noise signal z(t). The output of the
channel filter yields a signal:

p(t) =
∞∑

n=−∞
Inh(t − nT), (C.3)

where h(t) = hT(t) ∗ hC(t) is the channel impulse response. The signal intercepted
by the receiver is expressed as

r(t) = p(t) + z(t) =
∞∑

n=−∞
Inh(t − nT) + z(t). (C.4)

At the receiver, we would like to find the expression for the mean squared error
(MSE) and minimize it. To achieve this objective, we choose the receive filter hR(t)
to be matched to h(t), yielding the following optimal result:

hR(t) = h∗(−t), (C.5)

which results in the output of the receiver filter being equal to

y(t) = p(t) ∗ h∗(−t) + z(t) ∗ h∗(−t) =
∞∑

n=−∞
Ing(t − nT) + z(t) ∗ h∗(−t), (C.6)

333

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-c” — 2018/3/26 — 11:42 — page 334 — #2

334 Equalizer Derivations

where g(t) = h(t) ∗ hR(t), and

x(t) = φh(t) = h(t) ∗ h∗(−t) =
∞∫

−∞
h(t + τ)h∗(τ )dτ . (C.7)

Supposed that v(t) = z(t) ∗ h∗(−t), then we get the following expression:

y(t) =
∞∑

n=−∞
Inx(t − nT) + v(t). (C.8)

Now, let us sample the output of the receive filter such that

yk = y(kT) =
∞∑

n=−∞
Inx((k − n)T) + v(kT), (C.9)

=
∞∑

n=−∞
Inxk−n + vk. (C.10)

Note that xk is referred to as the channel autocorrelation. Furthermore, the vk
samples are not white due to the filtering by h∗(t), which means that E{vkvk+n} �=
δ(n). In these circumstances, we have a couple of options to deal with this colored
noise. One approach involves finding E{vkv∗

l } for the noise sequence vk. In this
approach, we know that vk(t) is Gaussian since z(t) is Gaussian. Furthermore, we
know that z(t) is white; that is, Sz(f ) = N0. Thus, if E{zast(s)z(t)} = N0δ(t − s), we
can then solve E{vkv∗

l } as follows:

E{vkv∗
l } =

∞∫
−∞

ds

∞∫
−∞

dth(t − lT)h∗(s − kT)E{z∗(s)z(t)}, (C.11)

= N0

∞∫
−∞

dth(t − lT)h∗(t − kT), (C.12)

= N0

∞∫
−∞

dth(t + |k − l|T)h∗(t). (C.13)

Since we have:

xk =
∞∫

−∞
h∗(t)h(t + kT)dt, (C.14)

which then gives us the expression for E{vkv∗
l } as:

E{vkv∗
l } = N0xk−l, (C.15)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-c” — 2018/3/26 — 11:42 — page 335 — #3

C.2 Zero-Forcing Equalizers 335

that can then be written as the autocorrelation function and the power spectral
density of vk; namely,

Rv(k) = E{vnv∗
k+n} = N0xk, (C.16)

Sv(z) = Z {
Rv(k)

} = N0X(z). (C.17)

The second approach for dealing with colored noise is to implement something
referred to as a whitening filter. In this case, we try to reverse the effects of the
receiver filter on the noise signal z(t). In other words, since we have the power
spectral density of vk equal to Sv(z) = N0X(z), we ultimately would like to have
the whitened noise power spectral density only equal to N0. To achieve this, we
assume that the z-transform of xk, X(z), can be represented by the following:

X(z) = F(z)F∗(1/z∗). (C.18)

Thus, in we have a whitening filter whose transfer function is equal to
1/F∗(1/z∗), the resulting power spectral density at the output of this whitening
filter should be equal to:

Sn(z) = 1
F(z)F∗(1/z∗)

Sv(z) = N0X(z)
X(z)

= N0, (C.19)

which yields an output noise signal that is white.

C.2 Zero-Forcing Equalizers

Suppose we assume a discrete time model for the receiver that is equal to the
following:

wk =
∞∑

n=−∞
Infk−n + nk, (C.20)

where wk is the output signal of the whitening filter, fk is the impulse response of
the whitening filter, and nk is the whitened noise signal with power spectral density
equal to N0.

In the zero-forcing equalizer (ZFE), we choose a transfer function C(z) such
that each ISI-compensated term qk = δk, which implies that there is no ISI present
and the resulting equalized outputs Ik + n′

k are subsequently quantized, yielding a
probability of error equal to Pe = Q(1/σ ′) for Ik = ±1. Although Pe is often used
as a performance metric for a communication system, in the case of equalizer design
we are going to use the minimum mean squared error (MMSE) as our metric; that
is, E{|Ik − Îk|2}.

Suppose we take the z-transform of (C.20), thus obtaining:

W(z) = I(z)F(z) + N(z) (C.21)

and once this has been filtered by the ZFE equalizer we get the output equal to

W(z)C(z) = I(z)F(z)C(z) + N(z)C(z), (C.22)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-c” — 2018/3/26 — 11:42 — page 336 — #4

336 Equalizer Derivations

with Q(z) = F(z)C(z). The objective of our ZFE is to generate an output equal to

Z−1{W(z)C(z)} = Ik ∗ qk + n′
k, (C.23)

where qk = δk; that is, no ISI present in the signal. Consequently, the ISI term in
this expression is F(z)C(z) and thus we want it to be equal to Q(z) = F(z)C(z) = 1
for qk = δk. Rearranging the terms, our ZFE should be equal to C(z) = 1/F(z).

C.3 Decision Feedback Equalizers

Although ZFE filters are conceptually straightforward, they almost always possess
an infinite number of taps, thus making them impossible to implement in real world
applications. Furthermore, when the signal resulting at the output of the whitening
filter is equalized using the ZFE, any noise contributions contained within the
equalized signal will no longer be white. As a result, there exists other equalizer
designs that can be more readily implemented in hardware. One of these is the
decision feedback equalizer (DFE), which consists of two filters: a feedforward
filter a(z) and a feedback filter b(z) − 1.

The feedforward filter a(z) is anti-causal and has the following form:

a(z) = a−1z + a−2z2 + a−3z3 + a−4z4 + . . . , (C.24)

while the feedback filter b(z) is a causal filter possessing the form:

b(z) − 1 = b1z−1 + b2z−2 + b3z−3 + b4z−4 + . . . . (C.25)

Consequently, we can design a(z) and b(z) such that

a(z) = CF∗(1/z∗) (C.26)

b(z) = F(z) (C.27)

F(z)F∗(1/z∗) = X(z) + N0. (C.28)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-d” — 2018/3/26 — 11:42 — page 337 — #1

A P P E N D I X D

Trigonometric Identities

exp(±jθ) = cos(θ) ± j sin(θ)

cos(θ) = 1
2

[exp(jθ) + exp(−jθ)]

sin(θ) = 1
2j

[exp(jθ) − exp(−jθ)]

sin2(θ) + cos2(θ) = 1

cos2(θ) − sin2(θ) = cos(2θ)

cos2(θ) = 1
2

[1 + cos(2θ)]

sin2(θ) = 1
2

[1 − cos(2θ)]
2 sin(θ) cos(θ) = sin(2θ)

sin(α ± β) = sin(α) cos(β) ± cos(α) sin(β)

cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β)

tan(α ± β) = tan(α) ± tan(β)

1 ∓ tan(α) tan(β)

sin(α) sin(β) = 1
2

[cos(α − β) − cos(α + β)]

cos(α) cos(β) = 1
2

[cos(α − β) + cos(α + β)]

sin(α) cos(β) = 1
2

[sin(α − β) + sin(α + β)]

337

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “abouttheauthor” — 2018/3/26 — 11:42 — page 339 — #1

About the Authors

Dr. Travis F. Collins holds M.S. and Ph.D. degrees in electrical
and computer engineering from Worcester Polytechnic
Institute (WPI) in Worcester, MA. Dr. Collins’ research is
focused on small cell interference modeling, phased-array
localization, and high performance computing for software-
defined radio (SDR). He has extensive experience developing
for SDR applications in many different software environments,
hardware architectures, and remains active in several open-
source-based SDR projects. Currently, Dr. Collins works as

a development engineer for Analog Devices, Inc. (ADI) in the Systems Development
Group. At ADI, Dr. Collins is responsible for transceiver applications and works
heavily on hardware and software integration projects.

Robin Getz has spent 25 years in the semiconductor industry,
and has held positions ranging from applications engineer to
field applications engineer to director of engineering. He has
worked on a variety of systems in the analog, digital, RF, and
software domains, as well as with large direct customers and
smaller customers. Robin has been with Analog Devices for
17 years and is the director of engineering for Analog Devices
Inc. Systems Development Group, where he works creating
HDL interfaces and device drivers for ADI’s mixed-signal

IC products. He holds four patents and a B.Sc. (EE) from the University of
Saskatchewan.

Dr. Di Pu was born in Suzhou, Jiangsu, China. She received
her M.S. and Ph.D. degrees from Worcester Polytechnic
Institute (Worcester, MA) in 2009 and 2013. During her
time at WPI, she was a member of the Wireless Innovation
Laboratory, where she conducted research into cognitive radio
system implementations. Dr. Pu is a recipient of the 2007
Institute Fellowship and is a 2013 Sigma Xi Research Award
winner in doctoral dissertation. Dr. Pu was an applications
engineer at Analog Devices, Inc., in Wilmington, MA after

she graduated from WPI. She is now a software engineer at Adobe Systems Inc. in
Seattle, WA.

339

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “abouttheauthor” — 2018/3/26 — 11:42 — page 340 — #2

340 About the Authors

Professor Alexander M. Wyglinski is internationally
recognized as an expert in the field of wireless communications,
cognitive radio, connected vehicles, software-defined radio,
dynamic spectrum access, electromagnetic security, vehicular
technology, wireless system optimization and adaptation,
autonomous vehicles, and cyber-physical systems. Dr.
Wyglinski is an associate professor of electrical and computer
engineering at Worcester Polytechnic Institute, (Worcester,
MA) as well as the director of the Wireless Innovation

Laboratory (WI Lab). Dr. Wyglinski is very active in the technical community,
serving on the organizing committees of numerous technical conferences and several
journal editorial boards. These activities include serving as the general cochair for
both the 2013 IEEE Vehicular Networking Conference and the 82nd IEEE Vehicular
Technology Conference in the Fall of 2015. Dr. Wyglinski’s editorial board
commitments include the IEEE Communications Magazine, IEEE Transactions on
Wireless Communications, and IEEE Transactions on Communications. In January
2018, Dr. Wyglinski will be the president of the IEEE Vehicular Technology Society,
an applications-oriented society of approximately 4,200 members that focuses on
the theoretical, experimental, and operational aspects of electrical and electronics
engineering in mobile radio, motor vehicles,and land transportation. Throughout
his academic career, Dr. Wyglinski has published approximately 40 journal papers,
over 80 conference papers, 9 book chapters, and 3 textbooks. He is currently being
or has been sponsored by organizations such as the Defense Advanced Research
Projects Agency, the Naval Research Laboratory, the MITRE Corporation, the
Office of Naval Research, the Air Force Research Laboratory Space Vehicles
Directorate, The MathWorks Inc., Toyota InfoTechnology Center U.S.A., and the
National Science Foundation. Dr. Wyglinski is a senior member of the IEEE, as well
as a member of Sigma Xi, Eta Kappa Nu, and the ASEE.

Analog Devices perpetual eBook license – Artech House copyrighted material. 


	Contents
	1 Introduction to SDR
	2 Signals and Systems
	3 Probability in Communications
	4 Digital Communications Fundamentals
	5 Understanding SDR Hardware
	6 Timing Synchronization
	7 Carrier Synchronization
	8 Frame Synchronization and Channel Coding
	9 Channel Estimation and Equalization
	10 OFDM
	11 Applications for SDR
	A Longer History of Communications 



