INTRODUCTION TO COASTAL HYDRAULICS

HOMEWORK 4

Question 1

Rubble mound breakwater will be constructed at a depth of 5 m and will be designed for breaking wave condition. Number of units in cover layer is 2 . The bottom slope is $m=1 / 20$ and the wave period is $\mathrm{T}=9 \mathrm{sec}$. By using Hudson method;
a) Find the weight of the armor units in the cover layer at the trunk section (slope angle is $1 / 2$).
b) Calculate the deep water wave height of design wave. The angle between wave crests and the shoreline is 45° at deep water $\left(\alpha_{0}=45^{\circ}\right)$.
In this question, regular wave conditions will be taken into account.

		K_{D} (Trunk)		$\mathrm{K}_{\mathrm{D}}($ Head $)$	
Number of units in cover layer	Placement	Breaking wave	Non-breaking wave	Breaking wave	Non-breaking wave
2	Random	2	4	1.6	2.8

Question 2

A breakwater will be constructed at a 14 m water depth. The armour face slope of the breakwater is $1 / 1.5$. The design wave height and mean period are $\mathrm{H}_{\mathrm{s}}=3.0 \mathrm{~m}$ and $\mathrm{T}_{\mathrm{m}}=8.0 \mathrm{~s}$., respectively. The stability calculations of the breakwater will be made using Van der Meer method. Design the breakwater without permitting overtopping and draw the cross-section in scale.

Question 3

Calculate the stability of the caisson structure to be built in the project area where the specific gravity of the sea water is $10.20 \mathrm{kN} / \mathrm{m}^{3}$. The deep water significant wave height and significant wave period are $\mathrm{H}_{\mathrm{s} 0}=5.0 \mathrm{~m}$ and $\mathrm{T}_{\mathrm{s}}=6.0 \mathrm{~s}$., respectively. Bottom slope will be considered as $1 / 50$. Friction factor between caisson concrete structure and rubble mound foundation is $\mu=0.5$. Safety factor against sliding will be considered as 1.1 whereas safety factor against overturning as 1.2 .

