Functions: Domain and Range of a Function, Functions and Graphics, Some Elementary Functions (Polynomials, Rational Functions, Algebraic Functions), Some Concepts Related to Functions (Even-Odd Functions, Bounded Function, Increasing-Decreasing Functions, Implicit Function), Combinations of Functions (Sum, Difference, Product and Quotient), Composition of Functions, Piecewise Functions. Transcendental Functions: Trigonometric Functions,
Hafta |
Konular |
1 |
Matrisler: Matris tanımı,
matris çeşitleri (satır matris, sütun matris, sıfır matris, kare matris,
köşegen matris, skaler matris, birim matris),bir kare matrisin izi,
matrislerin eşitliği, matrislerin toplamı ve farkı, bir skalerle bir matrisin
çarpımı, matrislerin toplamı ve skalerle çarpımı ile ilgili özellikler,
matrislerin çarpımı ve bunlara ait özellikler, matrisin transpozesi ve
özellikleri |
2 |
Bazı Özel
Matrisler (Simetrik Matris, Anti Simetrik Matris, Periyodik Matris,
İdempotent Matris, Nilpotent Matris, İnvolut Matris, Ortogonal Matris), bir
matrisin eşleniği ve özellikleri, Hermitian Matris, Ters Hermitian Matris,
Regüler Matris, Singüler Matris ve matris uygulamaları |
3 |
Matrislerde elementer satır ve
sütün işlemleri, denk matrisler, bir matrisin satırca indirgenmiş (eşelon)
formu, matrisin rankı, bir kare matrisin tersi |
4 |
Determinantlar:
Bir kare matrisin determinantı, Laplace açılımı, determinant özellikleri |
5 |
Sarrus kuralı, Ek matris, bir
matrisin tersinin ek matris yardımı ile hesaplanması |
6 |
Lineer
Denklem Sistemleri: Lineer denklem sistemlerinin denk matrisler yardımı ile
çözümü, Lineer homojen denklem sistemleri |
7 |
Cramer yöntemi, Katsayılar
matrisinin inversi yardımı ile çözüm |
8 |
Ara Sınav
1 |
9 |
Vektörler: Vektör tanımı, vektörlerin
toplamı, farkı, vektörlerin analitik ifadesi, vektörlerin skaler çarpımı,
skaler çarpıma ait özellik, Vektörel çarpım ve özellikleri, Karışık çarpım ve
özellikleri, İki kat vektörel çarpım ve özellikleri |
10 |
Vektör
Uzayları: Vektör Uzayları tanımı ve ilgili teoremler. Alt Vektör Uzayı |
11 |
Germe kavramı ve temel
teoremler. Vektörlerin lineer bağımlılığı ve lineer bağımsızlığı ve konu ile
ilgili teoremler |
12 |
Kısa
Sınav, Taban ve boyut kavramı ve temel teoremler |
13 |
Koordinatlar ve geçiş
matrislerinin tanımı ve konu ile ilgili teoremler |
14 |
Öz değer
ve Öz vektörler: Bir kare matrisin öz değerleri ve öz vektörlerinin
hesaplanması, Cayley-Hamilton Teoremi yardımı ile bir kare matrisin tersinin
ve kuvvetinin hesaplanması |
15 |
Konu Tekrarı ve Uygulamaları |
16 |
Final |
Week |
Subjects |
1 |
Functions:
Domain and Range of a Function, Functions and Graphics, Some Elementary
Functions (Polynomials, Rational Functions, Algebraic Functions), Some
Concepts Related to Functions (Even-Odd Functions, Bounded Function,
Increasing-Decreasing Functions, Implicit Function), Combinations of
Functions (Sum, Difference, Product and Quotient), Composition of Functions,
Piecewise Functions. Transcendental Functions: Trigonometric Functions, |
2 |
Inverse of a Function, Inverse Trigonometric
Functions, Exponential and Logarithmic Functions, Hyperbolic-Inverse
Hyperbolic Functions. Limits: Limit of a Function, One-sided Limits, Theorems
on Limits (Limit Rules), Squeezing (Pinching) Theorem, |
3 |
Infinite Symbols
and Limit. Continuity: Continuity at a Point, Continuity over a Set, Types of
Discontinuity, Intermediate Value and Extreme Value Theorems. Derivative:
Derivative at a Point, Derivative as a Function, One-sided Derivatives,
Derivative over an Interval, |
4 |
Differentiability and Continuity, Differentiation
Rules, Higher Order Derivatives, Chain Rule, Implicit Differentiation,
Derivatives of Transcendent Functions, Tangent and Normal Lines,
Linearization and Differentials. |
5 |
Applications of
the Derivative: Rolle and Mean Value Theorems, Increasing-Decreasing
Functions, Extremum Values of Functions: First and Second Derivative Tests,
Indeterminate Forms, Concavity and Points of Inflection, Asymptotes, Simple
Curve Drawings. |
6 |
Definite Integral: Antiderivatives, Sigma Notation
and Limits of Finite Sums, Riemann Sums, Definite Integral, Properties of the
Definite Integral, Area of a Region Bounded by a Curve, Mean Value Theorem
for Definite Integrals |
7 |
Fundamental
Theorem of Calculus (Part 1, Part 2), Indefinite Integral: Integration
Tables, Change of Variables in Indefinite-Finite Integrals [Calculus of some
trigonometric integrals]. Integration Techniques: Integration by Parts, |
8 |
Midterm 1 |
9 |
Trigonometric
Substitution, Integrals of Rational Functions (Partial Fractions).
Applications of the definite integral: Areas of Plane Regions (Two or more
curves). |
10 |
Volumes of Solids of Revolution: Disk and Washer
Techniques, Cylindrical Shell Technique, Arc Length, Areas of Revolution
Surfaces. |
11 |
Improper
Integrals: Integrals of Type I and Type II. |
12 |
Quiz Parametric and Polar Curves: Polar Coordinates,
Relationship between Polar and Cartesian Coordinates, Introduction of Polar
Curves (Line, circle and cardioid curves in polar coordinates), Area in Polar
Coordinates, Length of a Polar Curve, |
13 |
Planar Curves
and Parametrization, Parametric Derivative, Length of a Parametric Curve.
Vectors: Vectors, Dot Product, Angle Between Two Vectors, Perpendicular
Vectors, Vector Product, Parallel Vectors, |
14 |
Lines in Space (Vectorial and parametric equations,
Angle between lines), Planes (Vectorial and general equation in space), Angle
Between Line and Plane. |
15 |
General Question
Solutions |
16 |
Final |