Duyurular & Dokümanlar

MAT1071 Mathematics 1 / Exercises (1-Domain)
Ders Notu
8.10.2025

MAT1071 Mathematics 1 / Exercises (1-Domain)


MAT1320 Lineer Cebir / Ders Notu (07.10.2025)
Ders Notu
7.10.2025

MAT1320 Lineer Cebir / Ders Notu (07.10.2025)


MAT1071 Mathematics 1 Lecture Notes (07.10.2025)
Ders Notu
7.10.2025
MAT1071 Mathematics 1 - Week 1
Ders Notu
6.10.2025

Functions: Domain and Range of a Function, Functions and Graphics, Some Elementary Functions (Polynomials, Rational Functions, Algebraic Functions), Some Concepts Related to Functions (Even-Odd Functions, Bounded Function, Increasing-Decreasing Functions, Implicit Function), Combinations of Functions (Sum, Difference, Product and Quotient), Composition of Functions, Piecewise Functions. Transcendental Functions: Trigonometric Functions,


MAT1071 Mathematics 1 Lecture Notes (06.10.2025)
Ders Notu
6.10.2025

MAT1071 Mathematics 1 Lecture Notes (06.10.2025)


MAT1320 Lineer Cebir / Haftalık Konular
Duyuru
1.10.2025

Hafta

Konular

1

Matrisler: Matris tanımı, matris çeşitleri (satır matris, sütun matris, sıfır matris, kare matris, köşegen matris, skaler matris, birim matris),bir kare matrisin izi, matrislerin eşitliği, matrislerin toplamı ve farkı, bir skalerle bir matrisin çarpımı, matrislerin toplamı ve skalerle çarpımı ile ilgili özellikler, matrislerin çarpımı ve bunlara ait özellikler, matrisin transpozesi ve özellikleri

2

Bazı Özel Matrisler (Simetrik Matris, Anti Simetrik Matris, Periyodik Matris, İdempotent Matris, Nilpotent Matris, İnvolut Matris, Ortogonal Matris), bir matrisin eşleniği ve özellikleri, Hermitian Matris, Ters Hermitian Matris, Regüler Matris, Singüler Matris ve matris uygulamaları

3

Matrislerde elementer satır ve sütün işlemleri, denk matrisler, bir matrisin satırca indirgenmiş (eşelon) formu, matrisin rankı, bir kare matrisin tersi

4

Determinantlar: Bir kare matrisin determinantı, Laplace açılımı, determinant özellikleri

5

Sarrus kuralı, Ek matris, bir matrisin tersinin ek matris yardımı ile hesaplanması

6

Lineer Denklem Sistemleri: Lineer denklem sistemlerinin denk matrisler yardımı ile çözümü, Lineer homojen denklem sistemleri

7

Cramer yöntemi, Katsayılar matrisinin inversi yardımı ile çözüm

8

Ara Sınav 1

9

Vektörler: Vektör tanımı, vektörlerin toplamı, farkı, vektörlerin analitik ifadesi, vektörlerin skaler çarpımı, skaler çarpıma ait özellik, Vektörel çarpım ve özellikleri, Karışık çarpım ve özellikleri, İki kat vektörel çarpım ve özellikleri

10

Vektör Uzayları: Vektör Uzayları tanımı ve ilgili teoremler. Alt Vektör Uzayı

11

Germe kavramı ve temel teoremler. Vektörlerin lineer bağımlılığı ve lineer bağımsızlığı ve konu ile ilgili teoremler

12

Kısa Sınav, Taban ve boyut kavramı ve temel teoremler

13

Koordinatlar ve geçiş matrislerinin tanımı ve konu ile ilgili teoremler

14

Öz değer ve Öz vektörler: Bir kare matrisin öz değerleri ve öz vektörlerinin hesaplanması, Cayley-Hamilton Teoremi yardımı ile bir kare matrisin tersinin ve kuvvetinin hesaplanması

15

Konu Tekrarı ve Uygulamaları

16

Final

MAT1320 Lineer Cebir / Ders Notu (30.09.2025)
Ders Notu
30.09.2025

MAT1320 Lineer Cebir / Ders Notu (30.09.2025)


MAT1071 Mathematics 1 Lecture Notes (30.09.2025)
Ders Notu
30.09.2025

MAT1071 Mathematics 1 Lecture Notes (30.09.2025)


MAT1071 Mathematics 1 / Lecture Notes (29.09.2025)
Ders Notu
29.09.2025

MAT1071 Mathematics 1 Lecture Notes (29.09.2025)


MAT1071 Mathematics 1 / Weekly Subjects
Duyuru
29.09.2025

Week

Subjects

1

Functions: Domain and Range of a Function, Functions and Graphics, Some Elementary Functions (Polynomials, Rational Functions, Algebraic Functions), Some Concepts Related to Functions (Even-Odd Functions, Bounded Function, Increasing-Decreasing Functions, Implicit Function), Combinations of Functions (Sum, Difference, Product and Quotient), Composition of Functions, Piecewise Functions. Transcendental Functions: Trigonometric Functions,

2

Inverse of a Function, Inverse Trigonometric Functions, Exponential and Logarithmic Functions, Hyperbolic-Inverse Hyperbolic Functions. Limits: Limit of a Function, One-sided Limits, Theorems on Limits (Limit Rules), Squeezing (Pinching) Theorem,

3

Infinite Symbols and Limit. Continuity: Continuity at a Point, Continuity over a Set, Types of Discontinuity, Intermediate Value and Extreme Value Theorems. Derivative: Derivative at a Point, Derivative as a Function, One-sided Derivatives, Derivative over an Interval,

4

Differentiability and Continuity, Differentiation Rules, Higher Order Derivatives, Chain Rule, Implicit Differentiation, Derivatives of Transcendent Functions, Tangent and Normal Lines, Linearization and Differentials.

5

Applications of the Derivative: Rolle and Mean Value Theorems, Increasing-Decreasing Functions, Extremum Values of Functions: First and Second Derivative Tests, Indeterminate Forms, Concavity and Points of Inflection, Asymptotes, Simple Curve Drawings.

6

Definite Integral: Antiderivatives, Sigma Notation and Limits of Finite Sums, Riemann Sums, Definite Integral, Properties of the Definite Integral, Area of a Region Bounded by a Curve, Mean Value Theorem for Definite Integrals

7

Fundamental Theorem of Calculus (Part 1, Part 2), Indefinite Integral: Integration Tables, Change of Variables in Indefinite-Finite Integrals [Calculus of some trigonometric integrals]. Integration Techniques: Integration by Parts,

8

Midterm 1

9

Trigonometric Substitution, Integrals of Rational Functions (Partial Fractions). Applications of the definite integral: Areas of Plane Regions (Two or more curves).

10

Volumes of Solids of Revolution: Disk and Washer Techniques, Cylindrical Shell Technique, Arc Length, Areas of Revolution Surfaces.

11

Improper Integrals: Integrals of Type I and Type II.

12

Quiz Parametric and Polar Curves: Polar Coordinates, Relationship between Polar and Cartesian Coordinates, Introduction of Polar Curves (Line, circle and cardioid curves in polar coordinates), Area in Polar Coordinates, Length of a Polar Curve,

13

Planar Curves and Parametrization, Parametric Derivative, Length of a Parametric Curve. Vectors: Vectors, Dot Product, Angle Between Two Vectors, Perpendicular Vectors, Vector Product, Parallel Vectors,

14

Lines in Space (Vectorial and parametric equations, Angle between lines), Planes (Vectorial and general equation in space), Angle Between Line and Plane.

15

General Question Solutions

16

Final