Enhancing the efficiency of sodium borohydride hydrolysis with a novel CoB-Triton catalyst


Kaya C., ÖZDEMİR J. H., ELÇİÇEK H., ÖZDEMİR O. K., KÖKKÜLÜNK G., ÜNLÜGENÇOĞLU K.

International Journal of Hydrogen Energy, vol.51, pp.489-503, 2024 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 51
  • Publication Date: 2024
  • Doi Number: 10.1016/j.ijhydene.2023.07.054
  • Journal Name: International Journal of Hydrogen Energy
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Artic & Antarctic Regions, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, INSPEC
  • Page Numbers: pp.489-503
  • Keywords: Cobalt boride catalyst, Hydrolysis of NaBH4, Surfactant, Triton X-100
  • Yıldız Technical University Affiliated: Yes

Abstract

Hydrogen is increasingly recognized as the most significant alternative solution for reducing global greenhouse gas emissions in maritime transportation. In particular, solid-state sodium borohydride (NaBH4) with its high hydrogen storage density stands out as the preferred choice due to its higher efficiency and improved safety. In present study, a surfactant-stabilized CoB catalyst was used in order to improve the hydrolysis performance of NaBH4. For this reason, the effects of Triton X-100, used as a surfactant in different quantities, on the hydrogen generation rate were tested. To characterize the prepared samples, several analytical techniques were employed, including field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), Mastersizer analysis, X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. According to findings, 40.2% faster hydrogen generation rate is obtained with CoB-Triton 150 contrary to CoB catalyst. The optimum concentrations are found as 5% NaOH and 5% NaBH4 and activation energy is 44.21 kj/mol for developed CoB-Triton 150 catalyst. Last of all, fuel cell performances show that the produced hydrogen from hydrolysis reaction through CoB-Triton 150 catalyst has nearly same fuel cell performance compared to industrial pure hydrogen. Consequently, Triton X-100 is a good candidate to improve the hydrolysis performance of NaBH4 and needs further research.