Türkçe Tweetler üzerinde Makine Öğrenmesi ile Nefret Söylemi Tespiti


Creative Commons License

Mayda İ., Diri B. , Yıldız T.

Avrupa Bilim ve Teknoloji Dergisi, sa.24, ss.328-334, 2021 (Diğer Kurumların Hakemli Dergileri)

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2021
  • Doi Numarası: 10.31590/ejosat.903854
  • Dergi Adı: Avrupa Bilim ve Teknoloji Dergisi
  • Sayfa Sayıları: ss.328-334

Özet

Sosyal medya ağlarının sayısının ve kullanımının artması beraberinde nefret söylemi içeriklerinin de daha çok paylaşılması problemini doğurmuştur. Gerek kamu otoriteleri gerekse sosyal medya ağlarının kendileri, artan nefret söylemiyle mücadele kapsamında çeşitli politikalar üretmektedir. Kullanıcılar tarafından üretilen verinin hacminin oldukça büyük olması nedeniyle nefret söylemi tespitinde otomatik sistemlere ihtiyaç duyulmaktadır. Özellikle son yıllarda başta İngilizce olmak üzere birçok dil üzerinde otomatik nefret söylemi çalışması yapılmış olmasına rağmen Türkçe üzerine kapsamlı bir çalışma henüz sunulmamıştır. Bu çalışma bu ihtiyaca karşılık vermek amacıyla yapılmıştır. Farklı hedef gruplara dair anahtar kelimelerin geçtiği 1000 adet Türkçe tweet toplanmış ve iki değerlendirici tarafından üç sınıflı (nefret söylemi, saldırgan ifade, hiçbiri) olarak ayrı ayrı etiketlenmiştir. Oluşturulan Türkçe nefret söylemi veri seti sonraki çalışmalarda kullanılabilmesi için kamuya açık olarak paylaşılmıştır. Bu veri seti üzerinde farklı özellik kümeleri ve farklı makine öğrenmesi algoritmaları kullanılarak çeşitli testler gerçekleştirilmiştir. Üç sınıflı veri seti üzerinde en yüksek performans %79,9 F-ölçüm değeri ile SMO (Sıralı Minimal Optimizasyon) algoritmasının kullanıldığı testte elde edilmiştir. Türkçe nefret söylemi tespitinde daha başarılı sonuçlar almak için veri seti boyutunun artırılması gerekirken, sunulan bu çalışmanın gelecekte yapılacak çalışmalara öncü niteliğinde olması beklenmektedir.