Atıf İçin Kopyala
Murat A.
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, cilt.63, sa.3, ss.269-276, 2023 (ESCI)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
63
Sayı:
3
-
Basım Tarihi:
2023
-
Doi Numarası:
10.14712/1213-7243.2022.027
-
Dergi Adı:
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
-
Derginin Tarandığı İndeksler:
Emerging Sources Citation Index (ESCI), Scopus, MathSciNet, zbMATH
-
Sayfa Sayıları:
ss.269-276
-
Anahtar Kelimeler:
Lucas number, Mersenne number, Diophantine equation, linear forms in logarithm
-
Yıldız Teknik Üniversitesi Adresli:
Evet
Özet
Let $(L_n)_{n\geq 0}$ be the Lucas sequence. We show that the Diophantine equation $ L_n-L_m=M_k$ has only the nonnegative integer solutions $(n,m,k)= (2,0,1)$, $(3, 1, 2)$, $(3, 2, 1)$, $(4, 3, 2)$, $(5, 3, 3)$, $(6, 2, 4)$, $(6, 5, 3)$ where $ M_k=2^k-1 $ is the $k$th Mersenne number and $ n > m$.