A Novel Knowledge Fusion Ensemble for Diagnostic Differentiation of Pediatric Pneumonia and Acute Bronchitis


Dabakoğlu E., YİĞİT Ö. E., Topal Y.

Diagnostics, cilt.15, sa.17, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 17
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/diagnostics15172258
  • Dergi Adı: Diagnostics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, EMBASE, INSPEC, Directory of Open Access Journals
  • Anahtar Kelimeler: acute bronchitis, diagnostic modeling, ensemble learning, machine learning, meta-learning, pediatric pneumonia, respiratory infections, stacking ensemble
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

Background: Differentiating pediatric pneumonia from acute bronchitis remains a persistent clinical challenge due to overlapping symptoms, often leading to diagnostic uncertainty and inappropriate antibiotic use. Methods: This study introduces DAPLEX, a structured ensemble learning framework designed to enhance diagnostic accuracy and reliability. A retrospective cohort of 868 pediatric patients was analyzed. DAPLEX was developed in three phases: (i) deployment of diverse base learners from multiple learning paradigms; (ii) multi-criteria evaluation and pruning based on generalization stability to retain a subset of well-generalized and stable learners; and (iii) complementarity-driven knowledge fusion. In the final phase, out-of-fold predicted probabilities from the retained base learners were combined with a consensus-based feature importance profile to construct a hybrid meta-input for a Multilayer Perceptron (MLP) meta-learner. Results: DAPLEX achieved a balanced accuracy of 95.3%, an F1-score of ~0.96, and a ROC-AUC of ~0.99 on an independent holdout test. Compared to the range of performance from the weakest to the strongest base learner, DAPLEX improved balanced accuracy by 3.5–5.2%, enhanced the F1-score by 4.4–5.6%, and increased sensitivity by a substantial 8.2–13.6%. Crucially, DAPLEX’s performance remained robust and consistent across all evaluated demographic subgroups, confirming its fairness and potential for broad clinical. Conclusions: The DAPLEX framework offers a robust and transparent pipeline for diagnostic decision support. By systematically integrating diverse predictive models and synthesizing both outcome predictions and key feature insights, DAPLEX substantially reduces diagnostic uncertainty in differentiating pediatric pneumonia and acute bronchitis and demonstrates strong potential for clinical application.