Present GPS velocity field along 1999 Izmit rupture zone: evidence for continuing afterslip 20 yr after the earthquake


Özarpacı S., Doğan U., Ergintav S., Çakır Z., Özdemir A., Floyd M., ...More

GEOPHYSICAL JOURNAL INTERNATIONAL, vol.224, no.3, pp.2016-2027, 2021 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 224 Issue: 3
  • Publication Date: 2021
  • Doi Number: 10.1093/gji/ggaa560
  • Journal Name: GEOPHYSICAL JOURNAL INTERNATIONAL
  • Journal Indexes: Science Citation Index Expanded, Scopus, Academic Search Premier, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, Communication Abstracts, Compendex, Environment Index, Geobase, INSPEC, Metadex, zbMATH, Civil Engineering Abstracts
  • Page Numbers: pp.2016-2027
  • Keywords: Creep and deformation, Satellite geodesy, Seismic cycle, Earthquake hazards, NORTH ANATOLIAN FAULT, POSTSEISMIC DEFORMATION, SLIP DISTRIBUTION, GEODETIC OBSERVATIONS, STRAIN ACCUMULATION, TURKEY, CREEP, CONSTRAINTS, DYNAMICS, REGION

Abstract

In order to better assess earthquake hazards, it is vital to have a better understanding of the spatial and temporal characteristics of fault creep that occur on ruptured faults during the period following major earthquakes. towards this end, we use new far-field GPS velocities from continuous stations (extending similar to 50-70 km from the fault) and updated near-fault GPS survey observations, with high temporal and spatial density, to constrain active deformation along the M-w 7.4,1999 Izmit, Turkey Earthquake fault. We interpret and model deformation as resulting from post-seismic afterslip on the coseismic fault. In the broadest sense, our results demonstrate that logarithmically decaying post-seismic afterslip continues at a significant level 20 yr following 1999 Earthquake. Elastic models indicate substantially shallower apparent locking depths at present than prior to the 1999 Earthquake, consistent with continuing afterslip on the coseismic fault at depth. High-density, near-fault GPS observations indicate shallow creep on the upper 1-2 km of the coseismic fault, with variable rates, the highest and most clearly defined of which reach similar to 12 mm yr(-1) (10-15 mm yr(-1), 95 per cent c.i.) near the epicentre between 2014-2016. This amounts to similar to half the long-term slip deficit rate.