Upper bounds for E-J matrices


Akgun F., Rhoades B. E.

APPLIED MATHEMATICS & INFORMATION SCIENCES, cilt.6, sa.3, ss.1125-1127, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 6 Sayı: 3
  • Basım Tarihi: 2012
  • Dergi Adı: APPLIED MATHEMATICS & INFORMATION SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1125-1127
  • Anahtar Kelimeler: nonnegative decreasing sequences, E-J generalized Hausdorff matrices, upper bounds, HAUSDORFF MATRICES, OPERATORS, LP
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

In a recent paper [5] Lashkaripour and Foroutannia obtained the norm of a Hausdorff matrix, considered as a bounded linear operator from l(p)(w) to l(p)(v), where l(p)(w) and l(p)(v) are weighted l(p)-spaces, and p >= 1. As a corollary to this result they obtain a new proof for a Hausdorff matrix, with nonnegative entries, to be a bounded operator on l(p) for p > 1. In this paper these results are extended to the Endl- Jakimovski (E-J) generalized Hausdorff matrices.