International Journal of 3D Printing Technologies and Digital Industries, cilt.5, sa.2, ss.155-163, 2021 (Hakemli Dergi)
Additive Manufacturing (AM) is a rapidly developing technology which provides opportunity to build
up complex geometries due to the freedom of manufacturing. Lattice structures, three-dimensional opencelled structures composed of one or more repeating unit cells, can be produced with unique mechanical,
thermal, acoustic, biomedical and electrical properties by optimization of type and dimension of unit
cell and additive manufacturing parameters. Lattice structures provide lightweight and porous parts
which are widely preferable in biomedical applications. Different type of lattice structures have been
used for obtaining bone like implant surface to accelerate osseointegration. There are many studies in
this field, but the ideal designs and dimensional accuracy of the various lattice structures for biomedical
field have not been completely reached. In this study, octahedral, star and dodecahedron lattice structures
with thin strut diameter were manufactured by laser powder bed fusion technology (LPBF) by Ti6Al4V
powder. Cubic and plate samples were built on z-direction and their top and side surfaces were inspected
in terms of topographical characteristics and dimensional accuracy by scanning electron microscope.
Dimensional accuracy has been found to tend to shrinkage behavior for all lattice structures. The best
dimensional accuracy was obtained from octahedral lattice structure comparing with strut diameters.