Particle Filtering-Based Low-Elevation Target Tracking With Multipath Interference Over the Ocean Surface


Shi X., Taheri A., Cecen T., Celik N.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, cilt.56, sa.4, ss.3044-3054, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 56 Sayı: 4
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1109/taes.2019.2961843
  • Dergi Adı: IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Business Source Elite, Business Source Premier, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.3044-3054
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

As radar signals propagate above the ocean surface to determine the trajectory of a target, the signals that are reflected directly from the target arrive at the receiver along with indirect signals reflected from the ocean surface. These unwanted signals must be properly filtered; otherwise, their interference may mislead the signal receiver and significantly degrade the tracking performance of the radar. To this end, we propose a low-elevation target tracking mechanism considering the specular and diffuse reflection effects of multipath propagation over the ocean surface simultaneously. The proposed mechanism consists of a state-space model and a particle filtering algorithm and promises considerable improvements in the capacity and accuracy of the radar tracking systems. The efficiency and accuracy of the developed target tracking method are tested and compared with an unscented Kalman filtering method in two- and three-dimensional space using a series of simulation experiments.