Electronic Structures and Reactivities of COVID-19 Drugs: A DFT Study


Creative Commons License

AYDOĞDU Ş., HATİPOĞLU A.

ACTA CHIMICA SLOVENICA, cilt.69, sa.3, ss.647-656, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 69 Sayı: 3
  • Basım Tarihi: 2022
  • Doi Numarası: 10.17344/acsi.2022.7522
  • Dergi Adı: ACTA CHIMICA SLOVENICA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Central & Eastern European Academic Source (CEEAS), Chemical Abstracts Core, EMBASE, MEDLINE, Directory of Open Access Journals, DIALNET
  • Sayfa Sayıları: ss.647-656
  • Anahtar Kelimeler: COVID-19, SARS-COV-2, Global descriptors, DFT, Solvent effect, PREDICTION
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

These days, the world is facing the threat of pandemic Coronavirus Disease 2019 (COVID-19). Although a vaccine has been found to combat the pandemic, it is essential to find drugs for an effective treatment method against this disease as soon as possible. In this study, electronic and thermodynamic properties, molecular electrostatic potential (MEP) analysis, and frontier molecular orbitals (FMOs) of nine different covid drugs were studied with Density Functional Theory (DFT). In addition, the relationship between the electronic structures of these drugs and their biological effectiveness was examined. All parameters were computed at the B3LYP/6-311++g(d,p) level. The Solvent effect was evaluated using conductor-like polarizable continuum model (CPCM) as the solvation model. It was observed that electrophilic indexes were important to understand the efficiencies of these drugs in COVID-19 disease. Paxlovid, hydroxyquinone, and nitazoxanide were found as the most thermodynamically stable molecules. Thermodynamic parameters also demonstrated that these drugs were more stable in the aqueous media. Global descriptors and the reactivity of these drugs were found to be related. Nitazoxanide molecule exhibited the highest dipole moment. The high dipole moments of drugs can cause hydrophilic interactions that increase their effectiveness in an aqueous solution.