The Comparison and an Application of the Classic Least Squares Method and the Fuzzy Least Squares Method


Creative Commons License

Susuz Şimşek D., Çelik R.

6 th International Researchers, Statisticians and Young Statisticians Congress (IRSYSC2022), Antalya, Türkiye, 3 - 06 Kasım 2022, ss.86

  • Yayın Türü: Bildiri / Özet Bildiri
  • Basıldığı Şehir: Antalya
  • Basıldığı Ülke: Türkiye
  • Sayfa Sayıları: ss.86
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

 One of the numerical methods that we use in classical Linear Regression analysis when 

measuring the relationship between quantitative variables is the Least Squares Method. The main 

purpose of this method is to provide coefficient estimation values that help to reduce error terms. 

Since  it  will  be  difficult  for  us  to  reach  a  conclusion  with  the  classical  regression  model  when 

qualitative data are in question, the Fuzzy Regression Model comes across as an alternative way. The 

Fuzzy Regression Model emerged as a result of converting the concept of Fuzzy Logic into regression 

analysis.  For  example;  In  fuzzy  regression  analysis,  the  fact  that  the  data  do  not  have  a  normal 

distribution does not prevent the application of this analysis. In the analysis of the fuzzy regression 

model,  the  regression  coefficients  and  the  estimated  values  are  also  fuzzy  numbers.  The  most 

common method used to implement this analysis is the Fuzzy Least Squares Method developed by 

Diamond  (1988).  In  this  method,  it  tries  to  decode  the  fuzzy  gap  between  the  estimated  fuzzy 

independent variable value and the observed values in such a way that it is the smallest.