Free vibration of axially loaded zigzag and armchair nanobeams using doublet mechanics


Mechanics Based Design of Structures and Machines, vol.51, no.10, pp.5808-5833, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 51 Issue: 10
  • Publication Date: 2023
  • Doi Number: 10.1080/15397734.2021.2013878
  • Journal Name: Mechanics Based Design of Structures and Machines
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Compendex, INSPEC, DIALNET
  • Page Numbers: pp.5808-5833
  • Keywords: armchair, buckling, Doublet mechanics, FEM, vibration, zigzag
  • Yıldız Technical University Affiliated: Yes


Based on doublet mechanics theory and various beam theories, this paper presents free vibration of axially loaded zigzag and armchair nanobeams. A two-noded higher order beam element is used to solve the problems of nanobeams with various boundary conditions. The verification studies in terms of fundamental frequencies and buckling loads are performed by comparing the results by the present model with Molecular Dynamic Simulations, Doublet Mechanics, and Eringen’s nonlocal theory. The effects of material length scale parameter, slenderness ratio, nanotube model and boundary conditions on the fundamental frequencies of axially loaded nanobeams are investigated in details. Softening material behavior is detected for zigzag and armchair nanobeams. Having stiffer boundary conditions lead to the effect of material length scale parameter to be observed more prominently.